xref: /dragonfly/sys/vm/vm_page.c (revision fb5b3747)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 #include <vm/swap_pager.h>
89 
90 #include <machine/md_var.h>
91 
92 #include <vm/vm_page2.h>
93 
94 #define VMACTION_HSIZE	256
95 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
96 
97 static void vm_page_queue_init(void);
98 static void vm_page_free_wakeup(void);
99 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
100 static vm_page_t _vm_page_list_find2(int basequeue, int index);
101 
102 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
103 
104 LIST_HEAD(vm_page_action_list, vm_page_action);
105 struct vm_page_action_list	action_list[VMACTION_HSIZE];
106 static volatile int vm_pages_waiting;
107 
108 
109 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
110 	     vm_pindex_t, pindex);
111 
112 static void
113 vm_page_queue_init(void)
114 {
115 	int i;
116 
117 	for (i = 0; i < PQ_L2_SIZE; i++)
118 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
119 	for (i = 0; i < PQ_L2_SIZE; i++)
120 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
121 
122 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
123 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
124 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
125 	/* PQ_NONE has no queue */
126 
127 	for (i = 0; i < PQ_COUNT; i++)
128 		TAILQ_INIT(&vm_page_queues[i].pl);
129 
130 	for (i = 0; i < VMACTION_HSIZE; i++)
131 		LIST_INIT(&action_list[i]);
132 }
133 
134 /*
135  * note: place in initialized data section?  Is this necessary?
136  */
137 long first_page = 0;
138 int vm_page_array_size = 0;
139 int vm_page_zero_count = 0;
140 vm_page_t vm_page_array = 0;
141 
142 /*
143  * (low level boot)
144  *
145  * Sets the page size, perhaps based upon the memory size.
146  * Must be called before any use of page-size dependent functions.
147  */
148 void
149 vm_set_page_size(void)
150 {
151 	if (vmstats.v_page_size == 0)
152 		vmstats.v_page_size = PAGE_SIZE;
153 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
154 		panic("vm_set_page_size: page size not a power of two");
155 }
156 
157 /*
158  * (low level boot)
159  *
160  * Add a new page to the freelist for use by the system.  New pages
161  * are added to both the head and tail of the associated free page
162  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
163  * requests pull 'recent' adds (higher physical addresses) first.
164  *
165  * Must be called in a critical section.
166  */
167 vm_page_t
168 vm_add_new_page(vm_paddr_t pa)
169 {
170 	struct vpgqueues *vpq;
171 	vm_page_t m;
172 
173 	++vmstats.v_page_count;
174 	++vmstats.v_free_count;
175 	m = PHYS_TO_VM_PAGE(pa);
176 	m->phys_addr = pa;
177 	m->flags = 0;
178 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
179 	m->queue = m->pc + PQ_FREE;
180 	KKASSERT(m->dirty == 0);
181 
182 	vpq = &vm_page_queues[m->queue];
183 	if (vpq->flipflop)
184 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
185 	else
186 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
187 	vpq->flipflop = 1 - vpq->flipflop;
188 
189 	vm_page_queues[m->queue].lcnt++;
190 	return (m);
191 }
192 
193 /*
194  * (low level boot)
195  *
196  * Initializes the resident memory module.
197  *
198  * Preallocates memory for critical VM structures and arrays prior to
199  * kernel_map becoming available.
200  *
201  * Memory is allocated from (virtual2_start, virtual2_end) if available,
202  * otherwise memory is allocated from (virtual_start, virtual_end).
203  *
204  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
205  * large enough to hold vm_page_array & other structures for machines with
206  * large amounts of ram, so we want to use virtual2* when available.
207  */
208 void
209 vm_page_startup(void)
210 {
211 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
212 	vm_offset_t mapped;
213 	vm_size_t npages;
214 	vm_paddr_t page_range;
215 	vm_paddr_t new_end;
216 	int i;
217 	vm_paddr_t pa;
218 	int nblocks;
219 	vm_paddr_t last_pa;
220 	vm_paddr_t end;
221 	vm_paddr_t biggestone, biggestsize;
222 	vm_paddr_t total;
223 
224 	total = 0;
225 	biggestsize = 0;
226 	biggestone = 0;
227 	nblocks = 0;
228 	vaddr = round_page(vaddr);
229 
230 	for (i = 0; phys_avail[i + 1]; i += 2) {
231 		phys_avail[i] = round_page64(phys_avail[i]);
232 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
233 	}
234 
235 	for (i = 0; phys_avail[i + 1]; i += 2) {
236 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
237 
238 		if (size > biggestsize) {
239 			biggestone = i;
240 			biggestsize = size;
241 		}
242 		++nblocks;
243 		total += size;
244 	}
245 
246 	end = phys_avail[biggestone+1];
247 	end = trunc_page(end);
248 
249 	/*
250 	 * Initialize the queue headers for the free queue, the active queue
251 	 * and the inactive queue.
252 	 */
253 
254 	vm_page_queue_init();
255 
256 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
257 #if !defined(_KERNEL_VIRTUAL)
258 	/*
259 	 * Allocate a bitmap to indicate that a random physical page
260 	 * needs to be included in a minidump.
261 	 *
262 	 * The amd64 port needs this to indicate which direct map pages
263 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
264 	 *
265 	 * However, i386 still needs this workspace internally within the
266 	 * minidump code.  In theory, they are not needed on i386, but are
267 	 * included should the sf_buf code decide to use them.
268 	 */
269 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
270 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
271 	end -= vm_page_dump_size;
272 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	bzero((void *)vm_page_dump, vm_page_dump_size);
275 #endif
276 
277 	/*
278 	 * Compute the number of pages of memory that will be available for
279 	 * use (taking into account the overhead of a page structure per
280 	 * page).
281 	 */
282 	first_page = phys_avail[0] / PAGE_SIZE;
283 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
284 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
285 
286 	/*
287 	 * Initialize the mem entry structures now, and put them in the free
288 	 * queue.
289 	 */
290 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
291 	mapped = pmap_map(&vaddr, new_end, end,
292 	    VM_PROT_READ | VM_PROT_WRITE);
293 	vm_page_array = (vm_page_t)mapped;
294 
295 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
296 	/*
297 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
298 	 * we have to manually add these pages to the minidump tracking so
299 	 * that they can be dumped, including the vm_page_array.
300 	 */
301 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
302 		dump_add_page(pa);
303 #endif
304 
305 	/*
306 	 * Clear all of the page structures
307 	 */
308 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
309 	vm_page_array_size = page_range;
310 
311 	/*
312 	 * Construct the free queue(s) in ascending order (by physical
313 	 * address) so that the first 16MB of physical memory is allocated
314 	 * last rather than first.  On large-memory machines, this avoids
315 	 * the exhaustion of low physical memory before isa_dmainit has run.
316 	 */
317 	vmstats.v_page_count = 0;
318 	vmstats.v_free_count = 0;
319 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
320 		pa = phys_avail[i];
321 		if (i == biggestone)
322 			last_pa = new_end;
323 		else
324 			last_pa = phys_avail[i + 1];
325 		while (pa < last_pa && npages-- > 0) {
326 			vm_add_new_page(pa);
327 			pa += PAGE_SIZE;
328 		}
329 	}
330 	if (virtual2_start)
331 		virtual2_start = vaddr;
332 	else
333 		virtual_start = vaddr;
334 }
335 
336 /*
337  * Scan comparison function for Red-Black tree scans.  An inclusive
338  * (start,end) is expected.  Other fields are not used.
339  */
340 int
341 rb_vm_page_scancmp(struct vm_page *p, void *data)
342 {
343 	struct rb_vm_page_scan_info *info = data;
344 
345 	if (p->pindex < info->start_pindex)
346 		return(-1);
347 	if (p->pindex > info->end_pindex)
348 		return(1);
349 	return(0);
350 }
351 
352 int
353 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
354 {
355 	if (p1->pindex < p2->pindex)
356 		return(-1);
357 	if (p1->pindex > p2->pindex)
358 		return(1);
359 	return(0);
360 }
361 
362 /*
363  * Holding a page keeps it from being reused.  Other parts of the system
364  * can still disassociate the page from its current object and free it, or
365  * perform read or write I/O on it and/or otherwise manipulate the page,
366  * but if the page is held the VM system will leave the page and its data
367  * intact and not reuse the page for other purposes until the last hold
368  * reference is released.  (see vm_page_wire() if you want to prevent the
369  * page from being disassociated from its object too).
370  *
371  * The caller must hold vm_token.
372  *
373  * The caller must still validate the contents of the page and, if necessary,
374  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
375  * before manipulating the page.
376  */
377 void
378 vm_page_hold(vm_page_t m)
379 {
380 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
381 	++m->hold_count;
382 }
383 
384 /*
385  * The opposite of vm_page_hold().  A page can be freed while being held,
386  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
387  * in this case to actually free it once the hold count drops to 0.
388  *
389  * The caller must hold vm_token if non-blocking operation is desired,
390  * but otherwise does not need to.
391  */
392 void
393 vm_page_unhold(vm_page_t m)
394 {
395 	lwkt_gettoken(&vm_token);
396 	--m->hold_count;
397 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
398 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
399 		vm_page_busy(m);
400 		vm_page_free_toq(m);
401 	}
402 	lwkt_reltoken(&vm_token);
403 }
404 
405 /*
406  * Inserts the given vm_page into the object and object list.
407  *
408  * The pagetables are not updated but will presumably fault the page
409  * in if necessary, or if a kernel page the caller will at some point
410  * enter the page into the kernel's pmap.  We are not allowed to block
411  * here so we *can't* do this anyway.
412  *
413  * This routine may not block.
414  * This routine must be called with the vm_token held.
415  * This routine must be called with the vm_object held.
416  * This routine must be called with a critical section held.
417  */
418 void
419 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
420 {
421 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
422 	if (m->object != NULL)
423 		panic("vm_page_insert: already inserted");
424 
425 	/*
426 	 * Record the object/offset pair in this page
427 	 */
428 	m->object = object;
429 	m->pindex = pindex;
430 
431 	/*
432 	 * Insert it into the object.
433 	 */
434 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
435 	object->generation++;
436 
437 	/*
438 	 * show that the object has one more resident page.
439 	 */
440 	object->resident_page_count++;
441 
442 	/*
443 	 * Add the pv_list_cout of the page when its inserted in
444 	 * the object
445 	*/
446 	object->agg_pv_list_count = object->agg_pv_list_count + m->md.pv_list_count;
447 
448 	/*
449 	 * Since we are inserting a new and possibly dirty page,
450 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
451 	 */
452 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
453 		vm_object_set_writeable_dirty(object);
454 
455 	/*
456 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
457 	 */
458 	swap_pager_page_inserted(m);
459 }
460 
461 /*
462  * Removes the given vm_page_t from the global (object,index) hash table
463  * and from the object's memq.
464  *
465  * The underlying pmap entry (if any) is NOT removed here.
466  * This routine may not block.
467  *
468  * The page must be BUSY and will remain BUSY on return.
469  * No other requirements.
470  *
471  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
472  *	 it busy.
473  */
474 void
475 vm_page_remove(vm_page_t m)
476 {
477 	vm_object_t object;
478 
479 	lwkt_gettoken(&vm_token);
480 	if (m->object == NULL) {
481 		lwkt_reltoken(&vm_token);
482 		return;
483 	}
484 
485 	if ((m->flags & PG_BUSY) == 0)
486 		panic("vm_page_remove: page not busy");
487 
488 	object = m->object;
489 
490 	vm_object_hold(object);
491 
492 	/*
493 	 * Remove the page from the object and update the object.
494 	 */
495 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
496 	object->resident_page_count--;
497 	object->agg_pv_list_count = object->agg_pv_list_count - m->md.pv_list_count;
498 	object->generation++;
499 	m->object = NULL;
500 
501 	vm_object_drop(object);
502 
503 	lwkt_reltoken(&vm_token);
504 }
505 
506 /*
507  * Locate and return the page at (object, pindex), or NULL if the
508  * page could not be found.
509  *
510  * The caller must hold vm_token.
511  */
512 vm_page_t
513 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
514 {
515 	vm_page_t m;
516 
517 	/*
518 	 * Search the hash table for this object/offset pair
519 	 */
520 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
521 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
522 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
523 	return(m);
524 }
525 
526 /*
527  * vm_page_rename()
528  *
529  * Move the given memory entry from its current object to the specified
530  * target object/offset.
531  *
532  * The object must be locked.
533  * This routine may not block.
534  *
535  * Note: This routine will raise itself to splvm(), the caller need not.
536  *
537  * Note: Swap associated with the page must be invalidated by the move.  We
538  *       have to do this for several reasons:  (1) we aren't freeing the
539  *       page, (2) we are dirtying the page, (3) the VM system is probably
540  *       moving the page from object A to B, and will then later move
541  *       the backing store from A to B and we can't have a conflict.
542  *
543  * Note: We *always* dirty the page.  It is necessary both for the
544  *       fact that we moved it, and because we may be invalidating
545  *	 swap.  If the page is on the cache, we have to deactivate it
546  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
547  *	 on the cache.
548  */
549 void
550 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
551 {
552 	lwkt_gettoken(&vm_token);
553 	vm_object_hold(new_object);
554 	vm_page_remove(m);
555 	vm_page_insert(m, new_object, new_pindex);
556 	if (m->queue - m->pc == PQ_CACHE)
557 		vm_page_deactivate(m);
558 	vm_page_dirty(m);
559 	vm_page_wakeup(m);
560 	vm_object_drop(new_object);
561 	lwkt_reltoken(&vm_token);
562 }
563 
564 /*
565  * vm_page_unqueue() without any wakeup.  This routine is used when a page
566  * is being moved between queues or otherwise is to remain BUSYied by the
567  * caller.
568  *
569  * The caller must hold vm_token
570  * This routine may not block.
571  */
572 void
573 vm_page_unqueue_nowakeup(vm_page_t m)
574 {
575 	int queue = m->queue;
576 	struct vpgqueues *pq;
577 
578 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
579 	if (queue != PQ_NONE) {
580 		pq = &vm_page_queues[queue];
581 		m->queue = PQ_NONE;
582 		TAILQ_REMOVE(&pq->pl, m, pageq);
583 		(*pq->cnt)--;
584 		pq->lcnt--;
585 	}
586 }
587 
588 /*
589  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
590  * if necessary.
591  *
592  * The caller must hold vm_token
593  * This routine may not block.
594  */
595 void
596 vm_page_unqueue(vm_page_t m)
597 {
598 	int queue = m->queue;
599 	struct vpgqueues *pq;
600 
601 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
602 	if (queue != PQ_NONE) {
603 		m->queue = PQ_NONE;
604 		pq = &vm_page_queues[queue];
605 		TAILQ_REMOVE(&pq->pl, m, pageq);
606 		(*pq->cnt)--;
607 		pq->lcnt--;
608 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
609 			pagedaemon_wakeup();
610 	}
611 }
612 
613 /*
614  * vm_page_list_find()
615  *
616  * Find a page on the specified queue with color optimization.
617  *
618  * The page coloring optimization attempts to locate a page that does
619  * not overload other nearby pages in the object in the cpu's L1 or L2
620  * caches.  We need this optimization because cpu caches tend to be
621  * physical caches, while object spaces tend to be virtual.
622  *
623  * Must be called with vm_token held.
624  * This routine may not block.
625  *
626  * Note that this routine is carefully inlined.  A non-inlined version
627  * is available for outside callers but the only critical path is
628  * from within this source file.
629  */
630 static __inline
631 vm_page_t
632 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
633 {
634 	vm_page_t m;
635 
636 	if (prefer_zero)
637 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
638 	else
639 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
640 	if (m == NULL)
641 		m = _vm_page_list_find2(basequeue, index);
642 	return(m);
643 }
644 
645 static vm_page_t
646 _vm_page_list_find2(int basequeue, int index)
647 {
648 	int i;
649 	vm_page_t m = NULL;
650 	struct vpgqueues *pq;
651 
652 	pq = &vm_page_queues[basequeue];
653 
654 	/*
655 	 * Note that for the first loop, index+i and index-i wind up at the
656 	 * same place.  Even though this is not totally optimal, we've already
657 	 * blown it by missing the cache case so we do not care.
658 	 */
659 
660 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
661 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
662 			break;
663 
664 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
665 			break;
666 	}
667 	return(m);
668 }
669 
670 /*
671  * Must be called with vm_token held if the caller desired non-blocking
672  * operation and a stable result.
673  */
674 vm_page_t
675 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
676 {
677 	return(_vm_page_list_find(basequeue, index, prefer_zero));
678 }
679 
680 /*
681  * Find a page on the cache queue with color optimization.  As pages
682  * might be found, but not applicable, they are deactivated.  This
683  * keeps us from using potentially busy cached pages.
684  *
685  * This routine may not block.
686  * Must be called with vm_token held.
687  */
688 vm_page_t
689 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
690 {
691 	vm_page_t m;
692 
693 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
694 	while (TRUE) {
695 		m = _vm_page_list_find(
696 		    PQ_CACHE,
697 		    (pindex + object->pg_color) & PQ_L2_MASK,
698 		    FALSE
699 		);
700 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
701 			       m->hold_count || m->wire_count)) {
702 			/* cache page found busy */
703 			vm_page_deactivate(m);
704 #ifdef INVARIANTS
705                         kprintf("Warning: busy page %p found in cache\n", m);
706 #endif
707 			continue;
708 		}
709 		return m;
710 	}
711 	/* not reached */
712 }
713 
714 /*
715  * Find a free or zero page, with specified preference.  We attempt to
716  * inline the nominal case and fall back to _vm_page_select_free()
717  * otherwise.
718  *
719  * This routine must be called with a critical section held.
720  * This routine may not block.
721  */
722 static __inline vm_page_t
723 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
724 {
725 	vm_page_t m;
726 
727 	m = _vm_page_list_find(
728 		PQ_FREE,
729 		(pindex + object->pg_color) & PQ_L2_MASK,
730 		prefer_zero
731 	);
732 	return(m);
733 }
734 
735 /*
736  * vm_page_alloc()
737  *
738  * Allocate and return a memory cell associated with this VM object/offset
739  * pair.
740  *
741  *	page_req classes:
742  *
743  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
744  *	VM_ALLOC_QUICK		like normal but cannot use cache
745  *	VM_ALLOC_SYSTEM		greater free drain
746  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
747  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
748  *
749  * The object must be locked.
750  * This routine may not block.
751  * The returned page will be marked PG_BUSY
752  *
753  * Additional special handling is required when called from an interrupt
754  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
755  * in this case.
756  */
757 vm_page_t
758 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
759 {
760 	vm_page_t m = NULL;
761 
762 	lwkt_gettoken(&vm_token);
763 
764 	KKASSERT(object != NULL);
765 	KASSERT(!vm_page_lookup(object, pindex),
766 		("vm_page_alloc: page already allocated"));
767 	KKASSERT(page_req &
768 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
769 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
770 
771 	/*
772 	 * Certain system threads (pageout daemon, buf_daemon's) are
773 	 * allowed to eat deeper into the free page list.
774 	 */
775 	if (curthread->td_flags & TDF_SYSTHREAD)
776 		page_req |= VM_ALLOC_SYSTEM;
777 
778 loop:
779 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
780 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
781 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
782 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
783 	) {
784 		/*
785 		 * The free queue has sufficient free pages to take one out.
786 		 */
787 		if (page_req & VM_ALLOC_ZERO)
788 			m = vm_page_select_free(object, pindex, TRUE);
789 		else
790 			m = vm_page_select_free(object, pindex, FALSE);
791 	} else if (page_req & VM_ALLOC_NORMAL) {
792 		/*
793 		 * Allocatable from the cache (non-interrupt only).  On
794 		 * success, we must free the page and try again, thus
795 		 * ensuring that vmstats.v_*_free_min counters are replenished.
796 		 */
797 #ifdef INVARIANTS
798 		if (curthread->td_preempted) {
799 			kprintf("vm_page_alloc(): warning, attempt to allocate"
800 				" cache page from preempting interrupt\n");
801 			m = NULL;
802 		} else {
803 			m = vm_page_select_cache(object, pindex);
804 		}
805 #else
806 		m = vm_page_select_cache(object, pindex);
807 #endif
808 		/*
809 		 * On success move the page into the free queue and loop.
810 		 */
811 		if (m != NULL) {
812 			KASSERT(m->dirty == 0,
813 			    ("Found dirty cache page %p", m));
814 			vm_page_busy(m);
815 			vm_page_protect(m, VM_PROT_NONE);
816 			vm_page_free(m);
817 			goto loop;
818 		}
819 
820 		/*
821 		 * On failure return NULL
822 		 */
823 		lwkt_reltoken(&vm_token);
824 #if defined(DIAGNOSTIC)
825 		if (vmstats.v_cache_count > 0)
826 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
827 #endif
828 		vm_pageout_deficit++;
829 		pagedaemon_wakeup();
830 		return (NULL);
831 	} else {
832 		/*
833 		 * No pages available, wakeup the pageout daemon and give up.
834 		 */
835 		lwkt_reltoken(&vm_token);
836 		vm_pageout_deficit++;
837 		pagedaemon_wakeup();
838 		return (NULL);
839 	}
840 
841 	/*
842 	 * Good page found.  The page has not yet been busied.  We are in
843 	 * a critical section.
844 	 */
845 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
846 	KASSERT(m->dirty == 0,
847 		("vm_page_alloc: free/cache page %p was dirty", m));
848 
849 	/*
850 	 * Remove from free queue
851 	 */
852 	vm_page_unqueue_nowakeup(m);
853 
854 	/*
855 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
856 	 * the page PG_BUSY
857 	 */
858 	if (m->flags & PG_ZERO) {
859 		vm_page_zero_count--;
860 		m->flags = PG_ZERO | PG_BUSY;
861 	} else {
862 		m->flags = PG_BUSY;
863 	}
864 	m->wire_count = 0;
865 	m->hold_count = 0;
866 	m->act_count = 0;
867 	m->busy = 0;
868 	m->valid = 0;
869 
870 	/*
871 	 * vm_page_insert() is safe while holding vm_token.  Note also that
872 	 * inserting a page here does not insert it into the pmap (which
873 	 * could cause us to block allocating memory).  We cannot block
874 	 * anywhere.
875 	 */
876 	vm_page_insert(m, object, pindex);
877 
878 	/*
879 	 * Don't wakeup too often - wakeup the pageout daemon when
880 	 * we would be nearly out of memory.
881 	 */
882 	pagedaemon_wakeup();
883 
884 	lwkt_reltoken(&vm_token);
885 
886 	/*
887 	 * A PG_BUSY page is returned.
888 	 */
889 	return (m);
890 }
891 
892 /*
893  * Wait for sufficient free memory for nominal heavy memory use kernel
894  * operations.
895  */
896 void
897 vm_wait_nominal(void)
898 {
899 	while (vm_page_count_min(0))
900 		vm_wait(0);
901 }
902 
903 /*
904  * Test if vm_wait_nominal() would block.
905  */
906 int
907 vm_test_nominal(void)
908 {
909 	if (vm_page_count_min(0))
910 		return(1);
911 	return(0);
912 }
913 
914 /*
915  * Block until free pages are available for allocation, called in various
916  * places before memory allocations.
917  *
918  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
919  * more generous then that.
920  */
921 void
922 vm_wait(int timo)
923 {
924 	/*
925 	 * never wait forever
926 	 */
927 	if (timo == 0)
928 		timo = hz;
929 	lwkt_gettoken(&vm_token);
930 
931 	if (curthread == pagethread) {
932 		/*
933 		 * The pageout daemon itself needs pages, this is bad.
934 		 */
935 		if (vm_page_count_min(0)) {
936 			vm_pageout_pages_needed = 1;
937 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
938 		}
939 	} else {
940 		/*
941 		 * Wakeup the pageout daemon if necessary and wait.
942 		 */
943 		if (vm_page_count_target()) {
944 			if (vm_pages_needed == 0) {
945 				vm_pages_needed = 1;
946 				wakeup(&vm_pages_needed);
947 			}
948 			++vm_pages_waiting;	/* SMP race ok */
949 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
950 		}
951 	}
952 	lwkt_reltoken(&vm_token);
953 }
954 
955 /*
956  * Block until free pages are available for allocation
957  *
958  * Called only from vm_fault so that processes page faulting can be
959  * easily tracked.
960  */
961 void
962 vm_waitpfault(void)
963 {
964 	/*
965 	 * Wakeup the pageout daemon if necessary and wait.
966 	 */
967 	if (vm_page_count_target()) {
968 		lwkt_gettoken(&vm_token);
969 		if (vm_page_count_target()) {
970 			if (vm_pages_needed == 0) {
971 				vm_pages_needed = 1;
972 				wakeup(&vm_pages_needed);
973 			}
974 			++vm_pages_waiting;	/* SMP race ok */
975 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
976 		}
977 		lwkt_reltoken(&vm_token);
978 	}
979 }
980 
981 /*
982  * Put the specified page on the active list (if appropriate).  Ensure
983  * that act_count is at least ACT_INIT but do not otherwise mess with it.
984  *
985  * The page queues must be locked.
986  * This routine may not block.
987  */
988 void
989 vm_page_activate(vm_page_t m)
990 {
991 	lwkt_gettoken(&vm_token);
992 	if (m->queue != PQ_ACTIVE) {
993 		if ((m->queue - m->pc) == PQ_CACHE)
994 			mycpu->gd_cnt.v_reactivated++;
995 
996 		vm_page_unqueue(m);
997 
998 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
999 			m->queue = PQ_ACTIVE;
1000 			vm_page_queues[PQ_ACTIVE].lcnt++;
1001 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
1002 					    m, pageq);
1003 			if (m->act_count < ACT_INIT)
1004 				m->act_count = ACT_INIT;
1005 			vmstats.v_active_count++;
1006 		}
1007 	} else {
1008 		if (m->act_count < ACT_INIT)
1009 			m->act_count = ACT_INIT;
1010 	}
1011 	lwkt_reltoken(&vm_token);
1012 }
1013 
1014 /*
1015  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1016  * routine is called when a page has been added to the cache or free
1017  * queues.
1018  *
1019  * This routine may not block.
1020  * This routine must be called at splvm()
1021  */
1022 static __inline void
1023 vm_page_free_wakeup(void)
1024 {
1025 	/*
1026 	 * If the pageout daemon itself needs pages, then tell it that
1027 	 * there are some free.
1028 	 */
1029 	if (vm_pageout_pages_needed &&
1030 	    vmstats.v_cache_count + vmstats.v_free_count >=
1031 	    vmstats.v_pageout_free_min
1032 	) {
1033 		wakeup(&vm_pageout_pages_needed);
1034 		vm_pageout_pages_needed = 0;
1035 	}
1036 
1037 	/*
1038 	 * Wakeup processes that are waiting on memory.
1039 	 *
1040 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1041 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1042 	 *	 to wake processes up prior to the pageout daemon reaching
1043 	 *	 its target to provide some hysteresis.
1044 	 */
1045 	if (vm_pages_waiting) {
1046 		if (!vm_page_count_target()) {
1047 			/*
1048 			 * Plenty of pages are free, wakeup everyone.
1049 			 */
1050 			vm_pages_waiting = 0;
1051 			wakeup(&vmstats.v_free_count);
1052 			++mycpu->gd_cnt.v_ppwakeups;
1053 		} else if (!vm_page_count_min(0)) {
1054 			/*
1055 			 * Some pages are free, wakeup someone.
1056 			 */
1057 			int wcount = vm_pages_waiting;
1058 			if (wcount > 0)
1059 				--wcount;
1060 			vm_pages_waiting = wcount;
1061 			wakeup_one(&vmstats.v_free_count);
1062 			++mycpu->gd_cnt.v_ppwakeups;
1063 		}
1064 	}
1065 }
1066 
1067 /*
1068  *	vm_page_free_toq:
1069  *
1070  *	Returns the given page to the PQ_FREE list, disassociating it with
1071  *	any VM object.
1072  *
1073  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1074  *	return (the page will have been freed).  No particular spl is required
1075  *	on entry.
1076  *
1077  *	This routine may not block.
1078  */
1079 void
1080 vm_page_free_toq(vm_page_t m)
1081 {
1082 	struct vpgqueues *pq;
1083 
1084 	lwkt_gettoken(&vm_token);
1085 	mycpu->gd_cnt.v_tfree++;
1086 
1087 	KKASSERT((m->flags & PG_MAPPED) == 0);
1088 
1089 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1090 		kprintf(
1091 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1092 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1093 		    m->hold_count);
1094 		if ((m->queue - m->pc) == PQ_FREE)
1095 			panic("vm_page_free: freeing free page");
1096 		else
1097 			panic("vm_page_free: freeing busy page");
1098 	}
1099 
1100 	/*
1101 	 * unqueue, then remove page.  Note that we cannot destroy
1102 	 * the page here because we do not want to call the pager's
1103 	 * callback routine until after we've put the page on the
1104 	 * appropriate free queue.
1105 	 */
1106 	vm_page_unqueue_nowakeup(m);
1107 	vm_page_remove(m);
1108 
1109 	/*
1110 	 * No further management of fictitious pages occurs beyond object
1111 	 * and queue removal.
1112 	 */
1113 	if ((m->flags & PG_FICTITIOUS) != 0) {
1114 		vm_page_wakeup(m);
1115 		lwkt_reltoken(&vm_token);
1116 		return;
1117 	}
1118 
1119 	m->valid = 0;
1120 	vm_page_undirty(m);
1121 
1122 	if (m->wire_count != 0) {
1123 		if (m->wire_count > 1) {
1124 		    panic(
1125 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1126 			m->wire_count, (long)m->pindex);
1127 		}
1128 		panic("vm_page_free: freeing wired page");
1129 	}
1130 
1131 	/*
1132 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1133 	 */
1134 	if (m->flags & PG_UNMANAGED) {
1135 	    vm_page_flag_clear(m, PG_UNMANAGED);
1136 	}
1137 
1138 	if (m->hold_count != 0) {
1139 		vm_page_flag_clear(m, PG_ZERO);
1140 		m->queue = PQ_HOLD;
1141 	} else {
1142 		m->queue = PQ_FREE + m->pc;
1143 	}
1144 	pq = &vm_page_queues[m->queue];
1145 	pq->lcnt++;
1146 	++(*pq->cnt);
1147 
1148 	/*
1149 	 * Put zero'd pages on the end ( where we look for zero'd pages
1150 	 * first ) and non-zerod pages at the head.
1151 	 */
1152 	if (m->flags & PG_ZERO) {
1153 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1154 		++vm_page_zero_count;
1155 	} else {
1156 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1157 	}
1158 	vm_page_wakeup(m);
1159 	vm_page_free_wakeup();
1160 	lwkt_reltoken(&vm_token);
1161 }
1162 
1163 /*
1164  * vm_page_free_fromq_fast()
1165  *
1166  * Remove a non-zero page from one of the free queues; the page is removed for
1167  * zeroing, so do not issue a wakeup.
1168  *
1169  * MPUNSAFE
1170  */
1171 vm_page_t
1172 vm_page_free_fromq_fast(void)
1173 {
1174 	static int qi;
1175 	vm_page_t m;
1176 	int i;
1177 
1178 	lwkt_gettoken(&vm_token);
1179 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1180 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1181 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1182 		if (m && (m->flags & PG_ZERO) == 0) {
1183 			KKASSERT(m->busy == 0 && (m->flags & PG_BUSY) == 0);
1184 			vm_page_unqueue_nowakeup(m);
1185 			vm_page_busy(m);
1186 			break;
1187 		}
1188 		m = NULL;
1189 	}
1190 	lwkt_reltoken(&vm_token);
1191 	return (m);
1192 }
1193 
1194 /*
1195  * vm_page_unmanage()
1196  *
1197  * Prevent PV management from being done on the page.  The page is
1198  * removed from the paging queues as if it were wired, and as a
1199  * consequence of no longer being managed the pageout daemon will not
1200  * touch it (since there is no way to locate the pte mappings for the
1201  * page).  madvise() calls that mess with the pmap will also no longer
1202  * operate on the page.
1203  *
1204  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1205  * will clear the flag.
1206  *
1207  * This routine is used by OBJT_PHYS objects - objects using unswappable
1208  * physical memory as backing store rather then swap-backed memory and
1209  * will eventually be extended to support 4MB unmanaged physical
1210  * mappings.
1211  *
1212  * Must be called with a critical section held.
1213  * Must be called with vm_token held.
1214  */
1215 void
1216 vm_page_unmanage(vm_page_t m)
1217 {
1218 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1219 	if ((m->flags & PG_UNMANAGED) == 0) {
1220 		if (m->wire_count == 0)
1221 			vm_page_unqueue(m);
1222 	}
1223 	vm_page_flag_set(m, PG_UNMANAGED);
1224 }
1225 
1226 /*
1227  * Mark this page as wired down by yet another map, removing it from
1228  * paging queues as necessary.
1229  *
1230  * The page queues must be locked.
1231  * This routine may not block.
1232  */
1233 void
1234 vm_page_wire(vm_page_t m)
1235 {
1236 	/*
1237 	 * Only bump the wire statistics if the page is not already wired,
1238 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1239 	 * it is already off the queues).  Don't do anything with fictitious
1240 	 * pages because they are always wired.
1241 	 */
1242 	lwkt_gettoken(&vm_token);
1243 	if ((m->flags & PG_FICTITIOUS) == 0) {
1244 		if (m->wire_count == 0) {
1245 			if ((m->flags & PG_UNMANAGED) == 0)
1246 				vm_page_unqueue(m);
1247 			vmstats.v_wire_count++;
1248 		}
1249 		m->wire_count++;
1250 		KASSERT(m->wire_count != 0,
1251 			("vm_page_wire: wire_count overflow m=%p", m));
1252 	}
1253 	lwkt_reltoken(&vm_token);
1254 }
1255 
1256 /*
1257  * Release one wiring of this page, potentially enabling it to be paged again.
1258  *
1259  * Many pages placed on the inactive queue should actually go
1260  * into the cache, but it is difficult to figure out which.  What
1261  * we do instead, if the inactive target is well met, is to put
1262  * clean pages at the head of the inactive queue instead of the tail.
1263  * This will cause them to be moved to the cache more quickly and
1264  * if not actively re-referenced, freed more quickly.  If we just
1265  * stick these pages at the end of the inactive queue, heavy filesystem
1266  * meta-data accesses can cause an unnecessary paging load on memory bound
1267  * processes.  This optimization causes one-time-use metadata to be
1268  * reused more quickly.
1269  *
1270  * BUT, if we are in a low-memory situation we have no choice but to
1271  * put clean pages on the cache queue.
1272  *
1273  * A number of routines use vm_page_unwire() to guarantee that the page
1274  * will go into either the inactive or active queues, and will NEVER
1275  * be placed in the cache - for example, just after dirtying a page.
1276  * dirty pages in the cache are not allowed.
1277  *
1278  * The page queues must be locked.
1279  * This routine may not block.
1280  */
1281 void
1282 vm_page_unwire(vm_page_t m, int activate)
1283 {
1284 	lwkt_gettoken(&vm_token);
1285 	if (m->flags & PG_FICTITIOUS) {
1286 		/* do nothing */
1287 	} else if (m->wire_count <= 0) {
1288 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1289 	} else {
1290 		if (--m->wire_count == 0) {
1291 			--vmstats.v_wire_count;
1292 			if (m->flags & PG_UNMANAGED) {
1293 				;
1294 			} else if (activate) {
1295 				TAILQ_INSERT_TAIL(
1296 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1297 				m->queue = PQ_ACTIVE;
1298 				vm_page_queues[PQ_ACTIVE].lcnt++;
1299 				vmstats.v_active_count++;
1300 			} else {
1301 				vm_page_flag_clear(m, PG_WINATCFLS);
1302 				TAILQ_INSERT_TAIL(
1303 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1304 				m->queue = PQ_INACTIVE;
1305 				vm_page_queues[PQ_INACTIVE].lcnt++;
1306 				vmstats.v_inactive_count++;
1307 				++vm_swapcache_inactive_heuristic;
1308 			}
1309 		}
1310 	}
1311 	lwkt_reltoken(&vm_token);
1312 }
1313 
1314 
1315 /*
1316  * Move the specified page to the inactive queue.  If the page has
1317  * any associated swap, the swap is deallocated.
1318  *
1319  * Normally athead is 0 resulting in LRU operation.  athead is set
1320  * to 1 if we want this page to be 'as if it were placed in the cache',
1321  * except without unmapping it from the process address space.
1322  *
1323  * This routine may not block.
1324  * The caller must hold vm_token.
1325  */
1326 static __inline void
1327 _vm_page_deactivate(vm_page_t m, int athead)
1328 {
1329 	/*
1330 	 * Ignore if already inactive.
1331 	 */
1332 	if (m->queue == PQ_INACTIVE)
1333 		return;
1334 
1335 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1336 		if ((m->queue - m->pc) == PQ_CACHE)
1337 			mycpu->gd_cnt.v_reactivated++;
1338 		vm_page_flag_clear(m, PG_WINATCFLS);
1339 		vm_page_unqueue(m);
1340 		if (athead) {
1341 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1342 					  m, pageq);
1343 		} else {
1344 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1345 					  m, pageq);
1346 			++vm_swapcache_inactive_heuristic;
1347 		}
1348 		m->queue = PQ_INACTIVE;
1349 		vm_page_queues[PQ_INACTIVE].lcnt++;
1350 		vmstats.v_inactive_count++;
1351 	}
1352 }
1353 
1354 /*
1355  * Attempt to deactivate a page.
1356  *
1357  * No requirements.
1358  */
1359 void
1360 vm_page_deactivate(vm_page_t m)
1361 {
1362 	lwkt_gettoken(&vm_token);
1363 	_vm_page_deactivate(m, 0);
1364 	lwkt_reltoken(&vm_token);
1365 }
1366 
1367 /*
1368  * Attempt to move a page to PQ_CACHE.
1369  * Returns 0 on failure, 1 on success
1370  *
1371  * No requirements.
1372  */
1373 int
1374 vm_page_try_to_cache(vm_page_t m)
1375 {
1376 	lwkt_gettoken(&vm_token);
1377 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1378 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1379 		lwkt_reltoken(&vm_token);
1380 		return(0);
1381 	}
1382 	vm_page_busy(m);
1383 	vm_page_test_dirty(m);
1384 	if (m->dirty) {
1385 		vm_page_wakeup(m);
1386 		lwkt_reltoken(&vm_token);
1387 		return(0);
1388 	}
1389 	vm_page_cache(m);
1390 	lwkt_reltoken(&vm_token);
1391 	return(1);
1392 }
1393 
1394 /*
1395  * Attempt to free the page.  If we cannot free it, we do nothing.
1396  * 1 is returned on success, 0 on failure.
1397  *
1398  * No requirements.
1399  */
1400 int
1401 vm_page_try_to_free(vm_page_t m)
1402 {
1403 	lwkt_gettoken(&vm_token);
1404 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1405 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1406 		lwkt_reltoken(&vm_token);
1407 		return(0);
1408 	}
1409 	vm_page_test_dirty(m);
1410 	if (m->dirty) {
1411 		lwkt_reltoken(&vm_token);
1412 		return(0);
1413 	}
1414 	vm_page_busy(m);
1415 	vm_page_protect(m, VM_PROT_NONE);
1416 	vm_page_free(m);
1417 	lwkt_reltoken(&vm_token);
1418 	return(1);
1419 }
1420 
1421 /*
1422  * vm_page_cache
1423  *
1424  * Put the specified page onto the page cache queue (if appropriate).
1425  *
1426  * The caller must hold vm_token.
1427  * This routine may not block.
1428  * The page must be busy, and this routine will release the busy and
1429  * possibly even free the page.
1430  */
1431 void
1432 vm_page_cache(vm_page_t m)
1433 {
1434 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1435 
1436 	if ((m->flags & PG_UNMANAGED) || m->busy ||
1437 	    m->wire_count || m->hold_count) {
1438 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1439 		vm_page_wakeup(m);
1440 		return;
1441 	}
1442 
1443 	/*
1444 	 * Already in the cache (and thus not mapped)
1445 	 */
1446 	if ((m->queue - m->pc) == PQ_CACHE) {
1447 		KKASSERT((m->flags & PG_MAPPED) == 0);
1448 		vm_page_wakeup(m);
1449 		return;
1450 	}
1451 
1452 	/*
1453 	 * Caller is required to test m->dirty, but note that the act of
1454 	 * removing the page from its maps can cause it to become dirty
1455 	 * on an SMP system due to another cpu running in usermode.
1456 	 */
1457 	if (m->dirty) {
1458 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1459 			(long)m->pindex);
1460 	}
1461 
1462 	/*
1463 	 * Remove all pmaps and indicate that the page is not
1464 	 * writeable or mapped.  Our vm_page_protect() call may
1465 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1466 	 * everything.
1467 	 */
1468 	vm_page_protect(m, VM_PROT_NONE);
1469 	if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1470 			m->wire_count || m->hold_count) {
1471 		vm_page_wakeup(m);
1472 	} else if (m->dirty) {
1473 		vm_page_deactivate(m);
1474 		vm_page_wakeup(m);
1475 	} else {
1476 		vm_page_unqueue_nowakeup(m);
1477 		m->queue = PQ_CACHE + m->pc;
1478 		vm_page_queues[m->queue].lcnt++;
1479 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1480 		vmstats.v_cache_count++;
1481 		vm_page_wakeup(m);
1482 		vm_page_free_wakeup();
1483 	}
1484 }
1485 
1486 /*
1487  * vm_page_dontneed()
1488  *
1489  * Cache, deactivate, or do nothing as appropriate.  This routine
1490  * is typically used by madvise() MADV_DONTNEED.
1491  *
1492  * Generally speaking we want to move the page into the cache so
1493  * it gets reused quickly.  However, this can result in a silly syndrome
1494  * due to the page recycling too quickly.  Small objects will not be
1495  * fully cached.  On the otherhand, if we move the page to the inactive
1496  * queue we wind up with a problem whereby very large objects
1497  * unnecessarily blow away our inactive and cache queues.
1498  *
1499  * The solution is to move the pages based on a fixed weighting.  We
1500  * either leave them alone, deactivate them, or move them to the cache,
1501  * where moving them to the cache has the highest weighting.
1502  * By forcing some pages into other queues we eventually force the
1503  * system to balance the queues, potentially recovering other unrelated
1504  * space from active.  The idea is to not force this to happen too
1505  * often.
1506  *
1507  * No requirements.
1508  */
1509 void
1510 vm_page_dontneed(vm_page_t m)
1511 {
1512 	static int dnweight;
1513 	int dnw;
1514 	int head;
1515 
1516 	dnw = ++dnweight;
1517 
1518 	/*
1519 	 * occassionally leave the page alone
1520 	 */
1521 	lwkt_gettoken(&vm_token);
1522 	if ((dnw & 0x01F0) == 0 ||
1523 	    m->queue == PQ_INACTIVE ||
1524 	    m->queue - m->pc == PQ_CACHE
1525 	) {
1526 		if (m->act_count >= ACT_INIT)
1527 			--m->act_count;
1528 		lwkt_reltoken(&vm_token);
1529 		return;
1530 	}
1531 
1532 	if (m->dirty == 0)
1533 		vm_page_test_dirty(m);
1534 
1535 	if (m->dirty || (dnw & 0x0070) == 0) {
1536 		/*
1537 		 * Deactivate the page 3 times out of 32.
1538 		 */
1539 		head = 0;
1540 	} else {
1541 		/*
1542 		 * Cache the page 28 times out of every 32.  Note that
1543 		 * the page is deactivated instead of cached, but placed
1544 		 * at the head of the queue instead of the tail.
1545 		 */
1546 		head = 1;
1547 	}
1548 	_vm_page_deactivate(m, head);
1549 	lwkt_reltoken(&vm_token);
1550 }
1551 
1552 /*
1553  * Grab a page, blocking if it is busy and allocating a page if necessary.
1554  * A busy page is returned or NULL.
1555  *
1556  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1557  * If VM_ALLOC_RETRY is not specified
1558  *
1559  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1560  * always returned if we had blocked.
1561  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1562  * This routine may not be called from an interrupt.
1563  * The returned page may not be entirely valid.
1564  *
1565  * This routine may be called from mainline code without spl protection and
1566  * be guarenteed a busied page associated with the object at the specified
1567  * index.
1568  *
1569  * No requirements.
1570  */
1571 vm_page_t
1572 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1573 {
1574 	vm_page_t m;
1575 	int generation;
1576 
1577 	KKASSERT(allocflags &
1578 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1579 	lwkt_gettoken(&vm_token);
1580 	vm_object_hold(object);
1581 retrylookup:
1582 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1583 		if (m->busy || (m->flags & PG_BUSY)) {
1584 			generation = object->generation;
1585 
1586 			while ((object->generation == generation) &&
1587 					(m->busy || (m->flags & PG_BUSY))) {
1588 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1589 				tsleep(m, 0, "pgrbwt", 0);
1590 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1591 					m = NULL;
1592 					goto done;
1593 				}
1594 			}
1595 			goto retrylookup;
1596 		} else {
1597 			vm_page_busy(m);
1598 			goto done;
1599 		}
1600 	}
1601 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1602 	if (m == NULL) {
1603 		vm_wait(0);
1604 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1605 			goto done;
1606 		goto retrylookup;
1607 	}
1608 done:
1609 	vm_object_drop(object);
1610 	lwkt_reltoken(&vm_token);
1611 	return(m);
1612 }
1613 
1614 /*
1615  * Mapping function for valid bits or for dirty bits in
1616  * a page.  May not block.
1617  *
1618  * Inputs are required to range within a page.
1619  *
1620  * No requirements.
1621  * Non blocking.
1622  */
1623 int
1624 vm_page_bits(int base, int size)
1625 {
1626 	int first_bit;
1627 	int last_bit;
1628 
1629 	KASSERT(
1630 	    base + size <= PAGE_SIZE,
1631 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1632 	);
1633 
1634 	if (size == 0)		/* handle degenerate case */
1635 		return(0);
1636 
1637 	first_bit = base >> DEV_BSHIFT;
1638 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1639 
1640 	return ((2 << last_bit) - (1 << first_bit));
1641 }
1642 
1643 /*
1644  * Sets portions of a page valid and clean.  The arguments are expected
1645  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1646  * of any partial chunks touched by the range.  The invalid portion of
1647  * such chunks will be zero'd.
1648  *
1649  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1650  *	 align base to DEV_BSIZE so as not to mark clean a partially
1651  *	 truncated device block.  Otherwise the dirty page status might be
1652  *	 lost.
1653  *
1654  * This routine may not block.
1655  *
1656  * (base + size) must be less then or equal to PAGE_SIZE.
1657  */
1658 static void
1659 _vm_page_zero_valid(vm_page_t m, int base, int size)
1660 {
1661 	int frag;
1662 	int endoff;
1663 
1664 	if (size == 0)	/* handle degenerate case */
1665 		return;
1666 
1667 	/*
1668 	 * If the base is not DEV_BSIZE aligned and the valid
1669 	 * bit is clear, we have to zero out a portion of the
1670 	 * first block.
1671 	 */
1672 
1673 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1674 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1675 	) {
1676 		pmap_zero_page_area(
1677 		    VM_PAGE_TO_PHYS(m),
1678 		    frag,
1679 		    base - frag
1680 		);
1681 	}
1682 
1683 	/*
1684 	 * If the ending offset is not DEV_BSIZE aligned and the
1685 	 * valid bit is clear, we have to zero out a portion of
1686 	 * the last block.
1687 	 */
1688 
1689 	endoff = base + size;
1690 
1691 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1692 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1693 	) {
1694 		pmap_zero_page_area(
1695 		    VM_PAGE_TO_PHYS(m),
1696 		    endoff,
1697 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1698 		);
1699 	}
1700 }
1701 
1702 /*
1703  * Set valid, clear dirty bits.  If validating the entire
1704  * page we can safely clear the pmap modify bit.  We also
1705  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1706  * takes a write fault on a MAP_NOSYNC memory area the flag will
1707  * be set again.
1708  *
1709  * We set valid bits inclusive of any overlap, but we can only
1710  * clear dirty bits for DEV_BSIZE chunks that are fully within
1711  * the range.
1712  *
1713  * Page must be busied?
1714  * No other requirements.
1715  */
1716 void
1717 vm_page_set_valid(vm_page_t m, int base, int size)
1718 {
1719 	_vm_page_zero_valid(m, base, size);
1720 	m->valid |= vm_page_bits(base, size);
1721 }
1722 
1723 
1724 /*
1725  * Set valid bits and clear dirty bits.
1726  *
1727  * NOTE: This function does not clear the pmap modified bit.
1728  *	 Also note that e.g. NFS may use a byte-granular base
1729  *	 and size.
1730  *
1731  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
1732  *	    this without necessarily busying the page (via bdwrite()).
1733  *	    So for now vm_token must also be held.
1734  *
1735  * No other requirements.
1736  */
1737 void
1738 vm_page_set_validclean(vm_page_t m, int base, int size)
1739 {
1740 	int pagebits;
1741 
1742 	_vm_page_zero_valid(m, base, size);
1743 	pagebits = vm_page_bits(base, size);
1744 	m->valid |= pagebits;
1745 	m->dirty &= ~pagebits;
1746 	if (base == 0 && size == PAGE_SIZE) {
1747 		/*pmap_clear_modify(m);*/
1748 		vm_page_flag_clear(m, PG_NOSYNC);
1749 	}
1750 }
1751 
1752 /*
1753  * Set valid & dirty.  Used by buwrite()
1754  *
1755  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
1756  *	    call this function in buwrite() so for now vm_token must
1757  * 	    be held.
1758  *
1759  * No other requirements.
1760  */
1761 void
1762 vm_page_set_validdirty(vm_page_t m, int base, int size)
1763 {
1764 	int pagebits;
1765 
1766 	pagebits = vm_page_bits(base, size);
1767 	m->valid |= pagebits;
1768 	m->dirty |= pagebits;
1769 	if (m->object)
1770 		vm_object_set_writeable_dirty(m->object);
1771 }
1772 
1773 /*
1774  * Clear dirty bits.
1775  *
1776  * NOTE: This function does not clear the pmap modified bit.
1777  *	 Also note that e.g. NFS may use a byte-granular base
1778  *	 and size.
1779  *
1780  * Page must be busied?
1781  * No other requirements.
1782  */
1783 void
1784 vm_page_clear_dirty(vm_page_t m, int base, int size)
1785 {
1786 	m->dirty &= ~vm_page_bits(base, size);
1787 	if (base == 0 && size == PAGE_SIZE) {
1788 		/*pmap_clear_modify(m);*/
1789 		vm_page_flag_clear(m, PG_NOSYNC);
1790 	}
1791 }
1792 
1793 /*
1794  * Make the page all-dirty.
1795  *
1796  * Also make sure the related object and vnode reflect the fact that the
1797  * object may now contain a dirty page.
1798  *
1799  * Page must be busied?
1800  * No other requirements.
1801  */
1802 void
1803 vm_page_dirty(vm_page_t m)
1804 {
1805 #ifdef INVARIANTS
1806         int pqtype = m->queue - m->pc;
1807 #endif
1808         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1809                 ("vm_page_dirty: page in free/cache queue!"));
1810 	if (m->dirty != VM_PAGE_BITS_ALL) {
1811 		m->dirty = VM_PAGE_BITS_ALL;
1812 		if (m->object)
1813 			vm_object_set_writeable_dirty(m->object);
1814 	}
1815 }
1816 
1817 /*
1818  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1819  * valid and dirty bits for the effected areas are cleared.
1820  *
1821  * Page must be busied?
1822  * Does not block.
1823  * No other requirements.
1824  */
1825 void
1826 vm_page_set_invalid(vm_page_t m, int base, int size)
1827 {
1828 	int bits;
1829 
1830 	bits = vm_page_bits(base, size);
1831 	m->valid &= ~bits;
1832 	m->dirty &= ~bits;
1833 	m->object->generation++;
1834 }
1835 
1836 /*
1837  * The kernel assumes that the invalid portions of a page contain
1838  * garbage, but such pages can be mapped into memory by user code.
1839  * When this occurs, we must zero out the non-valid portions of the
1840  * page so user code sees what it expects.
1841  *
1842  * Pages are most often semi-valid when the end of a file is mapped
1843  * into memory and the file's size is not page aligned.
1844  *
1845  * Page must be busied?
1846  * No other requirements.
1847  */
1848 void
1849 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1850 {
1851 	int b;
1852 	int i;
1853 
1854 	/*
1855 	 * Scan the valid bits looking for invalid sections that
1856 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1857 	 * valid bit may be set ) have already been zerod by
1858 	 * vm_page_set_validclean().
1859 	 */
1860 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1861 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1862 		    (m->valid & (1 << i))
1863 		) {
1864 			if (i > b) {
1865 				pmap_zero_page_area(
1866 				    VM_PAGE_TO_PHYS(m),
1867 				    b << DEV_BSHIFT,
1868 				    (i - b) << DEV_BSHIFT
1869 				);
1870 			}
1871 			b = i + 1;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * setvalid is TRUE when we can safely set the zero'd areas
1877 	 * as being valid.  We can do this if there are no cache consistency
1878 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1879 	 */
1880 	if (setvalid)
1881 		m->valid = VM_PAGE_BITS_ALL;
1882 }
1883 
1884 /*
1885  * Is a (partial) page valid?  Note that the case where size == 0
1886  * will return FALSE in the degenerate case where the page is entirely
1887  * invalid, and TRUE otherwise.
1888  *
1889  * Does not block.
1890  * No other requirements.
1891  */
1892 int
1893 vm_page_is_valid(vm_page_t m, int base, int size)
1894 {
1895 	int bits = vm_page_bits(base, size);
1896 
1897 	if (m->valid && ((m->valid & bits) == bits))
1898 		return 1;
1899 	else
1900 		return 0;
1901 }
1902 
1903 /*
1904  * update dirty bits from pmap/mmu.  May not block.
1905  *
1906  * Caller must hold vm_token if non-blocking operation desired.
1907  * No other requirements.
1908  */
1909 void
1910 vm_page_test_dirty(vm_page_t m)
1911 {
1912 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1913 		vm_page_dirty(m);
1914 	}
1915 }
1916 
1917 /*
1918  * Register an action, associating it with its vm_page
1919  */
1920 void
1921 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
1922 {
1923 	struct vm_page_action_list *list;
1924 	int hv;
1925 
1926 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1927 	list = &action_list[hv];
1928 
1929 	lwkt_gettoken(&vm_token);
1930 	vm_page_flag_set(action->m, PG_ACTIONLIST);
1931 	action->event = event;
1932 	LIST_INSERT_HEAD(list, action, entry);
1933 	lwkt_reltoken(&vm_token);
1934 }
1935 
1936 /*
1937  * Unregister an action, disassociating it from its related vm_page
1938  */
1939 void
1940 vm_page_unregister_action(vm_page_action_t action)
1941 {
1942 	struct vm_page_action_list *list;
1943 	int hv;
1944 
1945 	lwkt_gettoken(&vm_token);
1946 	if (action->event != VMEVENT_NONE) {
1947 		action->event = VMEVENT_NONE;
1948 		LIST_REMOVE(action, entry);
1949 
1950 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1951 		list = &action_list[hv];
1952 		if (LIST_EMPTY(list))
1953 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
1954 	}
1955 	lwkt_reltoken(&vm_token);
1956 }
1957 
1958 /*
1959  * Issue an event on a VM page.  Corresponding action structures are
1960  * removed from the page's list and called.
1961  *
1962  * If the vm_page has no more pending action events we clear its
1963  * PG_ACTIONLIST flag.
1964  */
1965 void
1966 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1967 {
1968 	struct vm_page_action_list *list;
1969 	struct vm_page_action *scan;
1970 	struct vm_page_action *next;
1971 	int hv;
1972 	int all;
1973 
1974 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
1975 	list = &action_list[hv];
1976 	all = 1;
1977 
1978 	lwkt_gettoken(&vm_token);
1979 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
1980 		if (scan->m == m) {
1981 			if (scan->event == event) {
1982 				scan->event = VMEVENT_NONE;
1983 				LIST_REMOVE(scan, entry);
1984 				scan->func(m, scan);
1985 				/* XXX */
1986 			} else {
1987 				all = 0;
1988 			}
1989 		}
1990 	}
1991 	if (all)
1992 		vm_page_flag_clear(m, PG_ACTIONLIST);
1993 	lwkt_reltoken(&vm_token);
1994 }
1995 
1996 #include "opt_ddb.h"
1997 #ifdef DDB
1998 #include <sys/kernel.h>
1999 
2000 #include <ddb/ddb.h>
2001 
2002 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2003 {
2004 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2005 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2006 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2007 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2008 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2009 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2010 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2011 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2012 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2013 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2014 }
2015 
2016 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2017 {
2018 	int i;
2019 	db_printf("PQ_FREE:");
2020 	for(i=0;i<PQ_L2_SIZE;i++) {
2021 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2022 	}
2023 	db_printf("\n");
2024 
2025 	db_printf("PQ_CACHE:");
2026 	for(i=0;i<PQ_L2_SIZE;i++) {
2027 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2028 	}
2029 	db_printf("\n");
2030 
2031 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2032 		vm_page_queues[PQ_ACTIVE].lcnt,
2033 		vm_page_queues[PQ_INACTIVE].lcnt);
2034 }
2035 #endif /* DDB */
2036