xref: /dragonfly/sys/vm/vm_page.h (revision 92fc8b5c)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_VM_PAGE_H_
72 #define	_VM_VM_PAGE_H_
73 
74 #if !defined(KLD_MODULE) && defined(_KERNEL)
75 #include "opt_vmpage.h"
76 #endif
77 
78 #ifndef _SYS_TYPES_H_
79 #include <sys/types.h>
80 #endif
81 #ifndef _SYS_TREE_H_
82 #include <sys/tree.h>
83 #endif
84 #ifndef _MACHINE_PMAP_H_
85 #include <machine/pmap.h>
86 #endif
87 #ifndef _VM_PMAP_H_
88 #include <vm/pmap.h>
89 #endif
90 #include <machine/atomic.h>
91 
92 #ifdef _KERNEL
93 
94 #ifndef _SYS_SYSTM_H_
95 #include <sys/systm.h>
96 #endif
97 #ifndef _SYS_THREAD2_H_
98 #include <sys/thread2.h>
99 #endif
100 
101 #ifdef __x86_64__
102 #include <machine/vmparam.h>
103 #endif
104 
105 #endif
106 
107 typedef enum vm_page_event { VMEVENT_NONE, VMEVENT_COW } vm_page_event_t;
108 
109 struct vm_page_action {
110 	LIST_ENTRY(vm_page_action) entry;
111 	struct vm_page		*m;
112 	vm_page_event_t		event;
113 	void			(*func)(struct vm_page *,
114 					struct vm_page_action *);
115 	void			*data;
116 };
117 
118 typedef struct vm_page_action *vm_page_action_t;
119 
120 /*
121  *	Management of resident (logical) pages.
122  *
123  *	A small structure is kept for each resident
124  *	page, indexed by page number.  Each structure
125  *	is an element of several lists:
126  *
127  *		A hash table bucket used to quickly
128  *		perform object/offset lookups
129  *
130  *		A list of all pages for a given object,
131  *		so they can be quickly deactivated at
132  *		time of deallocation.
133  *
134  *		An ordered list of pages due for pageout.
135  *
136  *	In addition, the structure contains the object
137  *	and offset to which this page belongs (for pageout),
138  *	and sundry status bits.
139  *
140  *	Fields in this structure are locked either by the lock on the
141  *	object that the page belongs to (O) or by the lock on the page
142  *	queues (P).
143  *
144  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
145  *	bits set without having associated valid bits set.  This is used by
146  *	NFS to implement piecemeal writes.
147  */
148 
149 TAILQ_HEAD(pglist, vm_page);
150 
151 struct vm_object;
152 
153 int rb_vm_page_compare(struct vm_page *, struct vm_page *);
154 
155 struct vm_page_rb_tree;
156 RB_PROTOTYPE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, vm_pindex_t);
157 
158 struct vm_page {
159 	TAILQ_ENTRY(vm_page) pageq;	/* vm_page_queues[] list (P)	*/
160 	RB_ENTRY(vm_page) rb_entry;	/* Red-Black tree based at object */
161 
162 	struct vm_object *object;	/* which object am I in (O,P)*/
163 	vm_pindex_t pindex;		/* offset into object (O,P) */
164 	vm_paddr_t phys_addr;		/* physical address of page */
165 	struct md_page md;		/* machine dependant stuff */
166 	u_short	queue;			/* page queue index */
167 	u_short	pc;			/* page color */
168 	u_char	act_count;		/* page usage count */
169 	u_char	busy;			/* page busy count */
170 	u_char	unused01;
171 	u_char	unused02;
172 	u_int32_t flags;		/* see below */
173 	u_int	wire_count;		/* wired down maps refs (P) */
174 	int 	hold_count;		/* page hold count */
175 
176 	/*
177 	 * NOTE that these must support one bit per DEV_BSIZE in a page!!!
178 	 * so, on normal X86 kernels, they must be at least 8 bits wide.
179 	 */
180 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
181 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
182 
183 	int	ku_pagecnt;		/* kmalloc helper */
184 #ifdef VM_PAGE_DEBUG
185 	const char *busy_func;
186 	int	busy_line;
187 #endif
188 };
189 
190 #ifndef __VM_PAGE_T_DEFINED__
191 #define __VM_PAGE_T_DEFINED__
192 typedef struct vm_page *vm_page_t;
193 #endif
194 
195 /*
196  * Page coloring parameters.  We default to a middle of the road optimization.
197  * Larger selections would not really hurt us but if a machine does not have
198  * a lot of memory it could cause vm_page_alloc() to eat more cpu cycles
199  * looking for free pages.
200  *
201  * Page coloring cannot be disabled.  Modules do not have access to most PQ
202  * constants because they can change between builds.
203  */
204 #if defined(_KERNEL) && !defined(KLD_MODULE)
205 
206 #if !defined(PQ_CACHESIZE)
207 #define PQ_CACHESIZE 256	/* max is 1024 (MB) */
208 #endif
209 
210 #if PQ_CACHESIZE >= 1024
211 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
212 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
213 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
214 
215 #elif PQ_CACHESIZE >= 512
216 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
217 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
218 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
219 
220 #elif PQ_CACHESIZE >= 256
221 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
222 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
223 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
224 
225 #elif PQ_CACHESIZE >= 128
226 #define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
227 #define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
228 #define PQ_L2_SIZE 32	/* A number of colors opt for 128k cache */
229 
230 #else
231 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
232 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
233 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
234 
235 #endif
236 
237 #define PQ_L2_MASK	(PQ_L2_SIZE - 1)
238 
239 #endif /* KERNEL && !KLD_MODULE */
240 
241 /*
242  *
243  * The queue array is always based on PQ_MAXL2_SIZE regardless of the actual
244  * cache size chosen in order to present a uniform interface for modules.
245  */
246 #define PQ_MAXL2_SIZE	256	/* fixed maximum (in pages) / module compat */
247 
248 #if PQ_L2_SIZE > PQ_MAXL2_SIZE
249 #error "Illegal PQ_L2_SIZE"
250 #endif
251 
252 #define PQ_NONE		0
253 #define PQ_FREE		1
254 #define PQ_INACTIVE	(1 + 1*PQ_MAXL2_SIZE)
255 #define PQ_ACTIVE	(2 + 1*PQ_MAXL2_SIZE)
256 #define PQ_CACHE	(3 + 1*PQ_MAXL2_SIZE)
257 #define PQ_HOLD		(3 + 2*PQ_MAXL2_SIZE)
258 #define PQ_COUNT	(4 + 2*PQ_MAXL2_SIZE)
259 
260 /*
261  * Scan support
262  */
263 struct vm_map;
264 
265 struct rb_vm_page_scan_info {
266 	vm_pindex_t	start_pindex;
267 	vm_pindex_t	end_pindex;
268 	int		limit;
269 	int		desired;
270 	int		error;
271 	int		pagerflags;
272 	vm_offset_t	addr;
273 	vm_pindex_t	backing_offset_index;
274 	struct vm_object *object;
275 	struct vm_object *backing_object;
276 	struct vm_page	*mpte;
277 	struct pmap	*pmap;
278 	struct vm_map	*map;
279 };
280 
281 int rb_vm_page_scancmp(struct vm_page *, void *);
282 
283 struct vpgqueues {
284 	struct pglist pl;
285 	int	*cnt;
286 	int	lcnt;
287 	int	flipflop;	/* probably not the best place */
288 };
289 
290 extern struct vpgqueues vm_page_queues[PQ_COUNT];
291 
292 /*
293  * These are the flags defined for vm_page.
294  *
295  *  PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
296  *  not under PV management but otherwise should be treated as a
297  *  normal page.  Pages not under PV management cannot be paged out
298  *  via the object/vm_page_t because there is no knowledge of their
299  *  pte mappings, nor can they be removed from their objects via
300  *  the object, and such pages are also not on any PQ queue.  The
301  *  PG_MAPPED and PG_WRITEABLE flags are not applicable.
302  *
303  *  PG_MAPPED only applies to managed pages, indicating whether the page
304  *  is mapped onto one or more pmaps.  A page might still be mapped to
305  *  special pmaps in an unmanaged fashion, for example when mapped into a
306  *  buffer cache buffer, without setting PG_MAPPED.
307  *
308  *  PG_WRITEABLE indicates that there may be a writeable managed pmap entry
309  *  somewhere, and that the page can be dirtied by hardware at any time
310  *  and may have to be tested for that.  The modified bit in unmanaged
311  *  mappings or in the special clean map is not tested.
312  *
313  *  PG_SWAPPED indicates that the page is backed by a swap block.  Any
314  *  VM object type other than OBJT_DEFAULT can have swap-backed pages now.
315  */
316 #define	PG_BUSY		0x00000001	/* page is in transit (O) */
317 #define	PG_WANTED	0x00000002	/* someone is waiting for page (O) */
318 #define PG_WINATCFLS	0x00000004	/* flush dirty page on inactive q */
319 #define	PG_FICTITIOUS	0x00000008	/* physical page doesn't exist (O) */
320 #define	PG_WRITEABLE	0x00000010	/* page is writeable */
321 #define PG_MAPPED	0x00000020	/* page is mapped (managed) */
322 #define	PG_ZERO		0x00000040	/* page is zeroed */
323 #define PG_REFERENCED	0x00000080	/* page has been referenced */
324 #define PG_CLEANCHK	0x00000100	/* page will be checked for cleaning */
325 #define PG_SWAPINPROG	0x00000200	/* swap I/O in progress on page	     */
326 #define PG_NOSYNC	0x00000400	/* do not collect for syncer */
327 #define PG_UNMANAGED	0x00000800	/* No PV management for page */
328 #define PG_MARKER	0x00001000	/* special queue marker page */
329 #define PG_RAM		0x00002000	/* read ahead mark */
330 #define PG_SWAPPED	0x00004000	/* backed by swap */
331 #define PG_NOTMETA	0x00008000	/* do not back with swap */
332 #define PG_ACTIONLIST	0x00010000	/* lookaside action list present */
333 	/* u_short, only 16 flag bits */
334 
335 /*
336  * Misc constants.
337  */
338 
339 #define ACT_DECLINE		1
340 #define ACT_ADVANCE		3
341 #define ACT_INIT		5
342 #define ACT_MAX			64
343 
344 #ifdef _KERNEL
345 /*
346  * Each pageable resident page falls into one of four lists:
347  *
348  *	free
349  *		Available for allocation now.
350  *
351  * The following are all LRU sorted:
352  *
353  *	cache
354  *		Almost available for allocation. Still in an
355  *		object, but clean and immediately freeable at
356  *		non-interrupt times.
357  *
358  *	inactive
359  *		Low activity, candidates for reclamation.
360  *		This is the list of pages that should be
361  *		paged out next.
362  *
363  *	active
364  *		Pages that are "active" i.e. they have been
365  *		recently referenced.
366  *
367  *	zero
368  *		Pages that are really free and have been pre-zeroed
369  *
370  */
371 
372 extern int vm_page_zero_count;
373 extern struct vm_page *vm_page_array;	/* First resident page in table */
374 extern int vm_page_array_size;		/* number of vm_page_t's */
375 extern long first_page;			/* first physical page number */
376 
377 #define VM_PAGE_TO_PHYS(entry)	\
378 		((entry)->phys_addr)
379 
380 #define PHYS_TO_VM_PAGE(pa)	\
381 		(&vm_page_array[atop(pa) - first_page])
382 
383 /*
384  *	Functions implemented as macros
385  */
386 
387 static __inline void
388 vm_page_flag_set(vm_page_t m, unsigned int bits)
389 {
390 	atomic_set_int(&(m)->flags, bits);
391 }
392 
393 static __inline void
394 vm_page_flag_clear(vm_page_t m, unsigned int bits)
395 {
396 	atomic_clear_int(&(m)->flags, bits);
397 }
398 
399 #ifdef VM_PAGE_DEBUG
400 
401 static __inline void
402 _vm_page_busy(vm_page_t m, const char *func, int lineno)
403 {
404 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
405 	KASSERT((m->flags & PG_BUSY) == 0,
406 		("vm_page_busy: page already busy!!!"));
407 	vm_page_flag_set(m, PG_BUSY);
408 	m->busy_func = func;
409 	m->busy_line = lineno;
410 }
411 
412 #define vm_page_busy(m)	_vm_page_busy(m, __func__, __LINE__)
413 
414 #else
415 
416 static __inline void
417 vm_page_busy(vm_page_t m)
418 {
419 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
420 	KASSERT((m->flags & PG_BUSY) == 0,
421 		("vm_page_busy: page already busy!!!"));
422 	vm_page_flag_set(m, PG_BUSY);
423 }
424 
425 #endif
426 
427 /*
428  *	vm_page_flash:
429  *
430  *	wakeup anyone waiting for the page.
431  */
432 
433 static __inline void
434 vm_page_flash(vm_page_t m)
435 {
436 	lwkt_gettoken(&vm_token);
437 	if (m->flags & PG_WANTED) {
438 		vm_page_flag_clear(m, PG_WANTED);
439 		wakeup(m);
440 	}
441 	lwkt_reltoken(&vm_token);
442 }
443 
444 /*
445  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
446  * is typically the last call you make on a page before moving onto
447  * other things.
448  */
449 static __inline void
450 vm_page_wakeup(vm_page_t m)
451 {
452 	KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
453 	vm_page_flag_clear(m, PG_BUSY);
454 	vm_page_flash(m);
455 }
456 
457 /*
458  * These routines manipulate the 'soft busy' count for a page.  A soft busy
459  * is almost like PG_BUSY except that it allows certain compatible operations
460  * to occur on the page while it is busy.  For example, a page undergoing a
461  * write can still be mapped read-only.
462  */
463 static __inline void
464 vm_page_io_start(vm_page_t m)
465 {
466 	atomic_add_char(&(m)->busy, 1);
467 }
468 
469 static __inline void
470 vm_page_io_finish(vm_page_t m)
471 {
472 	atomic_subtract_char(&m->busy, 1);
473 	if (m->busy == 0)
474 		vm_page_flash(m);
475 }
476 
477 
478 #if PAGE_SIZE == 4096
479 #define VM_PAGE_BITS_ALL 0xff
480 #endif
481 
482 /*
483  * Note: the code will always use nominally free pages from the free list
484  * before trying other flag-specified sources.
485  *
486  * At least one of VM_ALLOC_NORMAL|VM_ALLOC_SYSTEM|VM_ALLOC_INTERRUPT
487  * must be specified.  VM_ALLOC_RETRY may only be specified if VM_ALLOC_NORMAL
488  * is also specified.
489  */
490 #define VM_ALLOC_NORMAL		0x01	/* ok to use cache pages */
491 #define VM_ALLOC_SYSTEM		0x02	/* ok to exhaust most of free list */
492 #define VM_ALLOC_INTERRUPT	0x04	/* ok to exhaust entire free list */
493 #define	VM_ALLOC_ZERO		0x08	/* req pre-zero'd memory if avail */
494 #define	VM_ALLOC_QUICK		0x10	/* like NORMAL but do not use cache */
495 #define	VM_ALLOC_RETRY		0x80	/* indefinite block (vm_page_grab()) */
496 
497 void vm_page_hold(vm_page_t);
498 void vm_page_unhold(vm_page_t);
499 void vm_page_activate (vm_page_t);
500 vm_page_t vm_page_alloc (struct vm_object *, vm_pindex_t, int);
501 vm_page_t vm_page_grab (struct vm_object *, vm_pindex_t, int);
502 void vm_page_cache (vm_page_t);
503 int vm_page_try_to_cache (vm_page_t);
504 int vm_page_try_to_free (vm_page_t);
505 void vm_page_dontneed (vm_page_t);
506 void vm_page_deactivate (vm_page_t);
507 void vm_page_insert (vm_page_t, struct vm_object *, vm_pindex_t);
508 vm_page_t vm_page_lookup (struct vm_object *, vm_pindex_t);
509 void vm_page_remove (vm_page_t);
510 void vm_page_rename (vm_page_t, struct vm_object *, vm_pindex_t);
511 void vm_page_startup (void);
512 vm_page_t vm_add_new_page (vm_paddr_t pa);
513 void vm_page_unmanage (vm_page_t);
514 void vm_page_unwire (vm_page_t, int);
515 void vm_page_wire (vm_page_t);
516 void vm_page_unqueue (vm_page_t);
517 void vm_page_unqueue_nowakeup (vm_page_t);
518 void vm_page_set_validclean (vm_page_t, int, int);
519 void vm_page_set_validdirty (vm_page_t, int, int);
520 void vm_page_set_valid (vm_page_t, int, int);
521 void vm_page_set_dirty (vm_page_t, int, int);
522 void vm_page_clear_dirty (vm_page_t, int, int);
523 void vm_page_set_invalid (vm_page_t, int, int);
524 int vm_page_is_valid (vm_page_t, int, int);
525 void vm_page_test_dirty (vm_page_t);
526 int vm_page_bits (int, int);
527 vm_page_t vm_page_list_find(int basequeue, int index, boolean_t prefer_zero);
528 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
529 void vm_page_free_toq(vm_page_t m);
530 vm_page_t vm_page_free_fromq_fast(void);
531 vm_offset_t vm_contig_pg_kmap(int, u_long, vm_map_t, int);
532 void vm_contig_pg_free(int, u_long);
533 void vm_page_event_internal(vm_page_t, vm_page_event_t);
534 void vm_page_dirty(vm_page_t m);
535 void vm_page_register_action(vm_page_action_t action, vm_page_event_t event);
536 void vm_page_unregister_action(vm_page_action_t action);
537 
538 /*
539  * Reduce the protection of a page.  This routine never raises the
540  * protection and therefore can be safely called if the page is already
541  * at VM_PROT_NONE (it will be a NOP effectively ).
542  *
543  * VM_PROT_NONE will remove all user mappings of a page.  This is often
544  * necessary when a page changes state (for example, turns into a copy-on-write
545  * page or needs to be frozen for write I/O) in order to force a fault, or
546  * to force a page's dirty bits to be synchronized and avoid hardware
547  * (modified/accessed) bit update races with pmap changes.
548  *
549  * Since 'prot' is usually a constant, this inline usually winds up optimizing
550  * out the primary conditional.
551  *
552  * WARNING: VM_PROT_NONE can block, but will loop until all mappings have
553  * been cleared.  Callers should be aware that other page related elements
554  * might have changed, however.
555  */
556 static __inline void
557 vm_page_protect(vm_page_t mem, int prot)
558 {
559 	if (prot == VM_PROT_NONE) {
560 		if (mem->flags & (PG_WRITEABLE|PG_MAPPED)) {
561 			pmap_page_protect(mem, VM_PROT_NONE);
562 			/* PG_WRITEABLE & PG_MAPPED cleared by call */
563 		}
564 	} else if ((prot == VM_PROT_READ) && (mem->flags & PG_WRITEABLE)) {
565 		pmap_page_protect(mem, VM_PROT_READ);
566 		/* PG_WRITEABLE cleared by call */
567 	}
568 }
569 
570 /*
571  * Zero-fill the specified page.  The entire contents of the page will be
572  * zero'd out.
573  */
574 static __inline boolean_t
575 vm_page_zero_fill(vm_page_t m)
576 {
577 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
578 	return (TRUE);
579 }
580 
581 /*
582  * Copy the contents of src_m to dest_m.  The pages must be stable but spl
583  * and other protections depend on context.
584  */
585 static __inline void
586 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
587 {
588 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
589 	dest_m->valid = VM_PAGE_BITS_ALL;
590 	dest_m->dirty = VM_PAGE_BITS_ALL;
591 }
592 
593 /*
594  * Free a page.  The page must be marked BUSY.
595  *
596  * The clearing of PG_ZERO is a temporary safety until the code can be
597  * reviewed to determine that PG_ZERO is being properly cleared on
598  * write faults or maps.  PG_ZERO was previously cleared in
599  * vm_page_alloc().
600  */
601 static __inline void
602 vm_page_free(vm_page_t m)
603 {
604 	vm_page_flag_clear(m, PG_ZERO);
605 	vm_page_free_toq(m);
606 }
607 
608 /*
609  * Free a page to the zerod-pages queue
610  */
611 static __inline void
612 vm_page_free_zero(vm_page_t m)
613 {
614 #ifdef __x86_64__
615 	/* JG DEBUG64 We check if the page is really zeroed. */
616 	char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
617 	int i;
618 
619 	for (i = 0; i < PAGE_SIZE; i++) {
620 		if (p[i] != 0) {
621 			panic("non-zero page in vm_page_free_zero()");
622 		}
623 	}
624 
625 #endif
626 	vm_page_flag_set(m, PG_ZERO);
627 	vm_page_free_toq(m);
628 }
629 
630 /*
631  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
632  * m->busy is zero.  Returns TRUE if it had to sleep ( including if
633  * it almost had to sleep and made temporary spl*() mods), FALSE
634  * otherwise.
635  *
636  * This routine assumes that interrupts can only remove the busy
637  * status from a page, not set the busy status or change it from
638  * PG_BUSY to m->busy or vise versa (which would create a timing
639  * window).
640  *
641  * Note: as an inline, 'also_m_busy' is usually a constant and well
642  * optimized.
643  */
644 static __inline int
645 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
646 {
647 	if ((m->flags & PG_BUSY) || (also_m_busy && m->busy))  {
648 		lwkt_gettoken(&vm_token);
649 		if ((m->flags & PG_BUSY) || (also_m_busy && m->busy)) {
650 			/*
651 			 * Page is busy. Wait and retry.
652 			 */
653 			vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
654 			tsleep(m, 0, msg, 0);
655 		}
656 		lwkt_reltoken(&vm_token);
657 		return(TRUE);
658 		/* not reached */
659 	}
660 	return(FALSE);
661 }
662 
663 /*
664  * Set page to not be dirty.  Note: does not clear pmap modify bits .
665  */
666 static __inline void
667 vm_page_undirty(vm_page_t m)
668 {
669 	m->dirty = 0;
670 }
671 
672 #endif				/* _KERNEL */
673 #endif				/* !_VM_VM_PAGE_H_ */
674