xref: /dragonfly/sys/vm/vm_page.h (revision e65bc1c3)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.h	8.2 (Berkeley) 12/13/93
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_page.h,v 1.75.2.8 2002/03/06 01:07:09 dillon Exp $
65  */
66 
67 /*
68  *	Resident memory system definitions.
69  */
70 
71 #ifndef	_VM_VM_PAGE_H_
72 #define	_VM_VM_PAGE_H_
73 
74 #ifndef _SYS_TYPES_H_
75 #include <sys/types.h>
76 #endif
77 #ifndef _SYS_TREE_H_
78 #include <sys/tree.h>
79 #endif
80 #ifndef _MACHINE_PMAP_H_
81 #include <machine/pmap.h>
82 #endif
83 #ifndef _VM_PMAP_H_
84 #include <vm/pmap.h>
85 #endif
86 #include <machine/atomic.h>
87 
88 #ifdef _KERNEL
89 
90 #ifndef _SYS_SYSTM_H_
91 #include <sys/systm.h>
92 #endif
93 #ifndef _SYS_THREAD2_H_
94 #include <sys/thread2.h>
95 #endif
96 
97 #ifdef __x86_64__
98 #include <machine/vmparam.h>
99 #endif
100 
101 #endif
102 
103 typedef enum vm_page_event { VMEVENT_NONE, VMEVENT_COW } vm_page_event_t;
104 
105 struct vm_page_action {
106 	LIST_ENTRY(vm_page_action) entry;
107 	struct vm_page		*m;
108 	vm_page_event_t		event;
109 	void			(*func)(struct vm_page *,
110 					struct vm_page_action *);
111 	void			*data;
112 };
113 
114 typedef struct vm_page_action *vm_page_action_t;
115 
116 /*
117  *	Management of resident (logical) pages.
118  *
119  *	A small structure is kept for each resident
120  *	page, indexed by page number.  Each structure
121  *	is an element of several lists:
122  *
123  *		A hash table bucket used to quickly
124  *		perform object/offset lookups
125  *
126  *		A list of all pages for a given object,
127  *		so they can be quickly deactivated at
128  *		time of deallocation.
129  *
130  *		An ordered list of pages due for pageout.
131  *
132  *	In addition, the structure contains the object
133  *	and offset to which this page belongs (for pageout),
134  *	and sundry status bits.
135  *
136  *	Fields in this structure are locked either by the lock on the
137  *	object that the page belongs to (O) or by the lock on the page
138  *	queues (P).
139  *
140  *	The 'valid' and 'dirty' fields are distinct.  A page may have dirty
141  *	bits set without having associated valid bits set.  This is used by
142  *	NFS to implement piecemeal writes.
143  */
144 
145 TAILQ_HEAD(pglist, vm_page);
146 
147 struct vm_object;
148 
149 int rb_vm_page_compare(struct vm_page *, struct vm_page *);
150 
151 struct vm_page_rb_tree;
152 RB_PROTOTYPE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, vm_pindex_t);
153 
154 struct vm_page {
155 	TAILQ_ENTRY(vm_page) pageq;	/* vm_page_queues[] list (P)	*/
156 	RB_ENTRY(vm_page) rb_entry;	/* Red-Black tree based at object */
157 
158 	struct vm_object *object;	/* which object am I in (O,P)*/
159 	vm_pindex_t pindex;		/* offset into object (O,P) */
160 	vm_paddr_t phys_addr;		/* physical address of page */
161 	struct md_page md;		/* machine dependant stuff */
162 	u_short	queue;			/* page queue index */
163 	u_short	pc;			/* page color */
164 	u_char	act_count;		/* page usage count */
165 	u_char	busy;			/* page busy count */
166 	u_char	pat_mode;		/* hardware page attribute */
167 	u_char	unused02;
168 	u_int32_t flags;		/* see below */
169 	u_int	wire_count;		/* wired down maps refs (P) */
170 	int 	hold_count;		/* page hold count */
171 
172 	/*
173 	 * NOTE that these must support one bit per DEV_BSIZE in a page!!!
174 	 * so, on normal X86 kernels, they must be at least 8 bits wide.
175 	 */
176 	u_char	valid;			/* map of valid DEV_BSIZE chunks */
177 	u_char	dirty;			/* map of dirty DEV_BSIZE chunks */
178 
179 	int	ku_pagecnt;		/* kmalloc helper */
180 #ifdef VM_PAGE_DEBUG
181 	const char *busy_func;
182 	int	busy_line;
183 #endif
184 };
185 
186 #ifdef VM_PAGE_DEBUG
187 #define VM_PAGE_DEBUG_EXT(name)	name ## _debug
188 #define VM_PAGE_DEBUG_ARGS	, const char *func, int lineno
189 #else
190 #define VM_PAGE_DEBUG_EXT(name)	name
191 #define VM_PAGE_DEBUG_ARGS
192 #endif
193 
194 #ifndef __VM_PAGE_T_DEFINED__
195 #define __VM_PAGE_T_DEFINED__
196 typedef struct vm_page *vm_page_t;
197 #endif
198 
199 /*
200  * Page coloring parameters.  We use generous parameters designed to
201  * statistically spread pages over available cpu cache space.  This has
202  * become less important over time as cache associativity is higher
203  * in modern times but we still use the core algorithm to help reduce
204  * lock contention between cpus.
205  *
206  * Page coloring cannot be disabled.
207  */
208 
209 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
210 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
211 #define PQ_L2_SIZE 256	/* A number of colors opt for 1M cache */
212 
213 #if 0
214 #define PQ_PRIME1 31	/* Prime number somewhat less than PQ_HASH_SIZE */
215 #define PQ_PRIME2 23	/* Prime number somewhat less than PQ_HASH_SIZE */
216 #define PQ_L2_SIZE 128	/* A number of colors opt for 512K cache */
217 
218 #define PQ_PRIME1 13	/* Prime number somewhat less than PQ_HASH_SIZE */
219 #define PQ_PRIME2 7	/* Prime number somewhat less than PQ_HASH_SIZE */
220 #define PQ_L2_SIZE 64	/* A number of colors opt for 256K cache */
221 
222 #define PQ_PRIME1 9	/* Produces a good PQ_L2_SIZE/3 + PQ_PRIME1 */
223 #define PQ_PRIME2 5	/* Prime number somewhat less than PQ_HASH_SIZE */
224 #define PQ_L2_SIZE 32	/* A number of colors opt for 128k cache */
225 
226 #define PQ_PRIME1 5	/* Prime number somewhat less than PQ_HASH_SIZE */
227 #define PQ_PRIME2 3	/* Prime number somewhat less than PQ_HASH_SIZE */
228 #define PQ_L2_SIZE 16	/* A reasonable number of colors (opt for 64K cache) */
229 #endif
230 
231 #define PQ_L2_MASK	(PQ_L2_SIZE - 1)
232 
233 #define PQ_NONE		0
234 #define PQ_FREE		(1 + 0*PQ_L2_SIZE)
235 #define PQ_INACTIVE	(1 + 1*PQ_L2_SIZE)
236 #define PQ_ACTIVE	(1 + 2*PQ_L2_SIZE)
237 #define PQ_CACHE	(1 + 3*PQ_L2_SIZE)
238 #define PQ_HOLD		(1 + 4*PQ_L2_SIZE)
239 #define PQ_COUNT	(1 + 5*PQ_L2_SIZE)
240 
241 /*
242  * Scan support
243  */
244 struct vm_map;
245 
246 struct rb_vm_page_scan_info {
247 	vm_pindex_t	start_pindex;
248 	vm_pindex_t	end_pindex;
249 	int		limit;
250 	int		desired;
251 	int		error;
252 	int		pagerflags;
253 	vm_offset_t	addr;
254 	vm_pindex_t	backing_offset_index;
255 	struct vm_object *object;
256 	struct vm_object *backing_object;
257 	struct vm_page	*mpte;
258 	struct pmap	*pmap;
259 	struct vm_map	*map;
260 };
261 
262 int rb_vm_page_scancmp(struct vm_page *, void *);
263 
264 struct vpgqueues {
265 	struct pglist pl;
266 	int	*cnt;
267 	int	lcnt;
268 	int	flipflop;	/* probably not the best place */
269 	struct spinlock spin;
270 	char	unused[64 - sizeof(struct pglist) -
271 			sizeof(int *) - sizeof(int) * 2];
272 };
273 
274 extern struct vpgqueues vm_page_queues[PQ_COUNT];
275 
276 #define	PA_LOCKPTR(pa)	&pa_lock[pa_index((pa)) % PA_LOCK_COUNT].data
277 
278 #define	vm_page_lockptr(m)	(PA_LOCKPTR(VM_PAGE_TO_PHYS((m))))
279 
280 /*
281  * These are the flags defined for vm_page.
282  *
283  *  PG_UNMANAGED (used by OBJT_PHYS) indicates that the page is
284  *  not under PV management but otherwise should be treated as a
285  *  normal page.  Pages not under PV management cannot be paged out
286  *  via the object/vm_page_t because there is no knowledge of their
287  *  pte mappings, nor can they be removed from their objects via
288  *  the object, and such pages are also not on any PQ queue.  The
289  *  PG_MAPPED and PG_WRITEABLE flags are not applicable.
290  *
291  *  PG_MAPPED only applies to managed pages, indicating whether the page
292  *  is mapped onto one or more pmaps.  A page might still be mapped to
293  *  special pmaps in an unmanaged fashion, for example when mapped into a
294  *  buffer cache buffer, without setting PG_MAPPED.
295  *
296  *  PG_WRITEABLE indicates that there may be a writeable managed pmap entry
297  *  somewhere, and that the page can be dirtied by hardware at any time
298  *  and may have to be tested for that.  The modified bit in unmanaged
299  *  mappings or in the special clean map is not tested.
300  *
301  *  PG_SWAPPED indicates that the page is backed by a swap block.  Any
302  *  VM object type other than OBJT_DEFAULT can have swap-backed pages now.
303  *
304  *  PG_SBUSY is set when m->busy != 0.  PG_SBUSY and m->busy are only modified
305  *  when the page is PG_BUSY.
306  */
307 #define	PG_BUSY		0x00000001	/* page is in transit (O) */
308 #define	PG_WANTED	0x00000002	/* someone is waiting for page (O) */
309 #define PG_WINATCFLS	0x00000004	/* flush dirty page on inactive q */
310 #define	PG_FICTITIOUS	0x00000008	/* physical page doesn't exist (O) */
311 #define	PG_WRITEABLE	0x00000010	/* page is writeable */
312 #define PG_MAPPED	0x00000020	/* page is mapped (managed) */
313 #define	PG_ZERO		0x00000040	/* page is zeroed */
314 #define PG_REFERENCED	0x00000080	/* page has been referenced */
315 #define PG_CLEANCHK	0x00000100	/* page will be checked for cleaning */
316 #define PG_SWAPINPROG	0x00000200	/* swap I/O in progress on page	     */
317 #define PG_NOSYNC	0x00000400	/* do not collect for syncer */
318 #define PG_UNMANAGED	0x00000800	/* No PV management for page */
319 #define PG_MARKER	0x00001000	/* special queue marker page */
320 #define PG_RAM		0x00002000	/* read ahead mark */
321 #define PG_SWAPPED	0x00004000	/* backed by swap */
322 #define PG_NOTMETA	0x00008000	/* do not back with swap */
323 #define PG_ACTIONLIST	0x00010000	/* lookaside action list present */
324 #define PG_SBUSY	0x00020000	/* soft-busy also set */
325 #define PG_NEED_COMMIT	0x00040000	/* clean page requires commit */
326 
327 /*
328  * Misc constants.
329  */
330 
331 #define ACT_DECLINE		1
332 #define ACT_ADVANCE		3
333 #define ACT_INIT		5
334 #define ACT_MAX			64
335 
336 #ifdef _KERNEL
337 /*
338  * Each pageable resident page falls into one of four lists:
339  *
340  *	free
341  *		Available for allocation now.
342  *
343  * The following are all LRU sorted:
344  *
345  *	cache
346  *		Almost available for allocation. Still in an
347  *		object, but clean and immediately freeable at
348  *		non-interrupt times.
349  *
350  *	inactive
351  *		Low activity, candidates for reclamation.
352  *		This is the list of pages that should be
353  *		paged out next.
354  *
355  *	active
356  *		Pages that are "active" i.e. they have been
357  *		recently referenced.
358  *
359  *	zero
360  *		Pages that are really free and have been pre-zeroed
361  *
362  */
363 
364 extern int vm_page_zero_count;
365 extern struct vm_page *vm_page_array;	/* First resident page in table */
366 extern int vm_page_array_size;		/* number of vm_page_t's */
367 extern long first_page;			/* first physical page number */
368 
369 #define VM_PAGE_TO_PHYS(entry)	\
370 		((entry)->phys_addr)
371 
372 #define PHYS_TO_VM_PAGE(pa)	\
373 		(&vm_page_array[atop(pa) - first_page])
374 
375 /*
376  *	Functions implemented as macros
377  */
378 
379 static __inline void
380 vm_page_flag_set(vm_page_t m, unsigned int bits)
381 {
382 	atomic_set_int(&(m)->flags, bits);
383 }
384 
385 static __inline void
386 vm_page_flag_clear(vm_page_t m, unsigned int bits)
387 {
388 	atomic_clear_int(&(m)->flags, bits);
389 }
390 
391 /*
392  * Wakeup anyone waiting for the page after potentially unbusying
393  * (hard or soft) or doing other work on a page that might make a
394  * waiter ready.  The setting of PG_WANTED is integrated into the
395  * related flags and it can't be set once the flags are already
396  * clear, so there should be no races here.
397  */
398 
399 static __inline void
400 vm_page_flash(vm_page_t m)
401 {
402 	if (m->flags & PG_WANTED) {
403 		vm_page_flag_clear(m, PG_WANTED);
404 		wakeup(m);
405 	}
406 }
407 
408 #if PAGE_SIZE == 4096
409 #define VM_PAGE_BITS_ALL 0xff
410 #endif
411 
412 /*
413  * Note: the code will always use nominally free pages from the free list
414  * before trying other flag-specified sources.
415  *
416  * At least one of VM_ALLOC_NORMAL|VM_ALLOC_SYSTEM|VM_ALLOC_INTERRUPT
417  * must be specified.  VM_ALLOC_RETRY may only be specified if VM_ALLOC_NORMAL
418  * is also specified.
419  */
420 #define VM_ALLOC_NORMAL		0x0001	/* ok to use cache pages */
421 #define VM_ALLOC_SYSTEM		0x0002	/* ok to exhaust most of free list */
422 #define VM_ALLOC_INTERRUPT	0x0004	/* ok to exhaust entire free list */
423 #define	VM_ALLOC_ZERO		0x0008	/* req pre-zero'd memory if avail */
424 #define	VM_ALLOC_QUICK		0x0010	/* like NORMAL but do not use cache */
425 #define VM_ALLOC_FORCE_ZERO	0x0020	/* zero page even if already valid */
426 #define VM_ALLOC_NULL_OK	0x0040	/* ok to return NULL on collision */
427 #define	VM_ALLOC_RETRY		0x0080	/* indefinite block (vm_page_grab()) */
428 #define VM_ALLOC_USE_GD		0x0100	/* use per-gd cache */
429 
430 void vm_page_queue_spin_lock(vm_page_t);
431 void vm_page_queues_spin_lock(u_short);
432 void vm_page_and_queue_spin_lock(vm_page_t);
433 
434 void vm_page_queue_spin_unlock(vm_page_t);
435 void vm_page_queues_spin_unlock(u_short);
436 void vm_page_and_queue_spin_unlock(vm_page_t m);
437 
438 void vm_page_io_finish(vm_page_t m);
439 void vm_page_io_start(vm_page_t m);
440 void vm_page_need_commit(vm_page_t m);
441 void vm_page_clear_commit(vm_page_t m);
442 void vm_page_wakeup(vm_page_t m);
443 void vm_page_hold(vm_page_t);
444 void vm_page_unhold(vm_page_t);
445 void vm_page_activate (vm_page_t);
446 void vm_page_pcpu_cache(void);
447 vm_page_t vm_page_alloc (struct vm_object *, vm_pindex_t, int);
448 vm_page_t vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
449                      unsigned long alignment, unsigned long boundary,
450 		     unsigned long size);
451 vm_page_t vm_page_grab (struct vm_object *, vm_pindex_t, int);
452 void vm_page_cache (vm_page_t);
453 int vm_page_try_to_cache (vm_page_t);
454 int vm_page_try_to_free (vm_page_t);
455 void vm_page_dontneed (vm_page_t);
456 void vm_page_deactivate (vm_page_t);
457 void vm_page_deactivate_locked (vm_page_t);
458 int vm_page_insert (vm_page_t, struct vm_object *, vm_pindex_t);
459 vm_page_t vm_page_lookup (struct vm_object *, vm_pindex_t);
460 vm_page_t VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(
461 		struct vm_object *, vm_pindex_t, int, const char *
462 		VM_PAGE_DEBUG_ARGS);
463 vm_page_t VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(
464 		struct vm_object *, vm_pindex_t, int, int *
465 		VM_PAGE_DEBUG_ARGS);
466 void vm_page_remove (vm_page_t);
467 void vm_page_rename (vm_page_t, struct vm_object *, vm_pindex_t);
468 void vm_page_startup (void);
469 void vm_page_unmanage (vm_page_t);
470 void vm_page_unhold_pages(vm_page_t *ma, int count);
471 void vm_page_unwire (vm_page_t, int);
472 void vm_page_wire (vm_page_t);
473 void vm_page_unqueue (vm_page_t);
474 void vm_page_unqueue_nowakeup (vm_page_t);
475 vm_page_t vm_page_next (vm_page_t);
476 void vm_page_set_validclean (vm_page_t, int, int);
477 void vm_page_set_validdirty (vm_page_t, int, int);
478 void vm_page_set_valid (vm_page_t, int, int);
479 void vm_page_set_dirty (vm_page_t, int, int);
480 void vm_page_clear_dirty (vm_page_t, int, int);
481 void vm_page_set_invalid (vm_page_t, int, int);
482 int vm_page_is_valid (vm_page_t, int, int);
483 void vm_page_test_dirty (vm_page_t);
484 int vm_page_bits (int, int);
485 vm_page_t vm_page_list_find(int basequeue, int index, boolean_t prefer_zero);
486 void vm_page_zero_invalid(vm_page_t m, boolean_t setvalid);
487 void vm_page_free_toq(vm_page_t m);
488 void vm_page_free_contig(vm_page_t m, unsigned long size);
489 vm_page_t vm_page_free_fromq_fast(void);
490 void vm_page_event_internal(vm_page_t, vm_page_event_t);
491 void vm_page_dirty(vm_page_t m);
492 void vm_page_register_action(vm_page_action_t action, vm_page_event_t event);
493 void vm_page_unregister_action(vm_page_action_t action);
494 void vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg);
495 void VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, int also_m_busy, const char *wmsg VM_PAGE_DEBUG_ARGS);
496 int VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy VM_PAGE_DEBUG_ARGS);
497 
498 #ifdef VM_PAGE_DEBUG
499 
500 #define vm_page_lookup_busy_wait(object, pindex, alsob, msg)		\
501 	vm_page_lookup_busy_wait_debug(object, pindex, alsob, msg,	\
502 					__func__, __LINE__)
503 
504 #define vm_page_lookup_busy_try(object, pindex, alsob, errorp)		\
505 	vm_page_lookup_busy_try_debug(object, pindex, alsob, errorp,	\
506 					__func__, __LINE__)
507 
508 #define vm_page_busy_wait(m, alsob, msg)				\
509 	vm_page_busy_wait_debug(m, alsob, msg, __func__, __LINE__)
510 
511 #define vm_page_busy_try(m, alsob)					\
512 	vm_page_busy_try_debug(m, alsob, __func__, __LINE__)
513 
514 #endif
515 
516 /*
517  * Reduce the protection of a page.  This routine never raises the
518  * protection and therefore can be safely called if the page is already
519  * at VM_PROT_NONE (it will be a NOP effectively ).
520  *
521  * VM_PROT_NONE will remove all user mappings of a page.  This is often
522  * necessary when a page changes state (for example, turns into a copy-on-write
523  * page or needs to be frozen for write I/O) in order to force a fault, or
524  * to force a page's dirty bits to be synchronized and avoid hardware
525  * (modified/accessed) bit update races with pmap changes.
526  *
527  * Since 'prot' is usually a constant, this inline usually winds up optimizing
528  * out the primary conditional.
529  *
530  * WARNING: VM_PROT_NONE can block, but will loop until all mappings have
531  * been cleared.  Callers should be aware that other page related elements
532  * might have changed, however.
533  */
534 static __inline void
535 vm_page_protect(vm_page_t m, int prot)
536 {
537 	KKASSERT(m->flags & PG_BUSY);
538 	if (prot == VM_PROT_NONE) {
539 		if (m->flags & (PG_WRITEABLE|PG_MAPPED)) {
540 			pmap_page_protect(m, VM_PROT_NONE);
541 			/* PG_WRITEABLE & PG_MAPPED cleared by call */
542 		}
543 	} else if ((prot == VM_PROT_READ) && (m->flags & PG_WRITEABLE)) {
544 		pmap_page_protect(m, VM_PROT_READ);
545 		/* PG_WRITEABLE cleared by call */
546 	}
547 }
548 
549 /*
550  * Zero-fill the specified page.  The entire contents of the page will be
551  * zero'd out.
552  */
553 static __inline boolean_t
554 vm_page_zero_fill(vm_page_t m)
555 {
556 	pmap_zero_page(VM_PAGE_TO_PHYS(m));
557 	return (TRUE);
558 }
559 
560 /*
561  * Copy the contents of src_m to dest_m.  The pages must be stable but spl
562  * and other protections depend on context.
563  */
564 static __inline void
565 vm_page_copy(vm_page_t src_m, vm_page_t dest_m)
566 {
567 	pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
568 	dest_m->valid = VM_PAGE_BITS_ALL;
569 	dest_m->dirty = VM_PAGE_BITS_ALL;
570 }
571 
572 /*
573  * Free a page.  The page must be marked BUSY.
574  *
575  * Always clear PG_ZERO when freeing a page, which ensures the flag is not
576  * set unless we are absolutely certain the page is zerod.  This is
577  * particularly important when the vm_page_alloc*() code moves pages from
578  * PQ_CACHE to PQ_FREE.
579  */
580 static __inline void
581 vm_page_free(vm_page_t m)
582 {
583 	vm_page_flag_clear(m, PG_ZERO);
584 	vm_page_free_toq(m);
585 }
586 
587 /*
588  * Free a page to the zerod-pages queue.  The caller must ensure that the
589  * page has been zerod.
590  */
591 static __inline void
592 vm_page_free_zero(vm_page_t m)
593 {
594 #ifdef PMAP_DEBUG
595 #ifdef PHYS_TO_DMAP
596 	char *p = (char *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
597 	int i;
598 
599 	for (i = 0; i < PAGE_SIZE; i++) {
600 		if (p[i] != 0) {
601 			panic("non-zero page in vm_page_free_zero()");
602 		}
603 	}
604 #endif
605 #endif
606 	vm_page_flag_set(m, PG_ZERO);
607 	vm_page_free_toq(m);
608 }
609 
610 /*
611  * Set page to not be dirty.  Note: does not clear pmap modify bits .
612  */
613 static __inline void
614 vm_page_undirty(vm_page_t m)
615 {
616 	m->dirty = 0;
617 }
618 
619 #endif				/* _KERNEL */
620 #endif				/* !_VM_VM_PAGE_H_ */
621