xref: /dragonfly/sys/vm/vm_pageout.c (revision 16b1cc2d)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/conf.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_extern.h>
94 
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_page(vm_page_t m, long *max_launderp,
104 			   long *vnodes_skippedp, struct vnode **vpfailedp,
105 			   int pass, int vmflush_flags);
106 static int vm_pageout_clean_helper (vm_page_t, int);
107 static int vm_pageout_free_page_calc (vm_size_t count);
108 static void vm_pageout_page_free(vm_page_t m) ;
109 struct thread *emergpager;
110 struct thread *pagethread;
111 static int sequence_emerg_pager;
112 
113 #if !defined(NO_SWAPPING)
114 /* the kernel process "vm_daemon"*/
115 static void vm_daemon (void);
116 static struct	thread *vmthread;
117 
118 static struct kproc_desc vm_kp = {
119 	"vmdaemon",
120 	vm_daemon,
121 	&vmthread
122 };
123 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
124 #endif
125 
126 int vm_pages_needed = 0;	/* Event on which pageout daemon sleeps */
127 int vm_pageout_deficit = 0;	/* Estimated number of pages deficit */
128 int vm_pageout_pages_needed = 0;/* pageout daemon needs pages */
129 int vm_page_free_hysteresis = 16;
130 static int vm_pagedaemon_time;
131 
132 #if !defined(NO_SWAPPING)
133 static int vm_pageout_req_swapout;
134 static int vm_daemon_needed;
135 #endif
136 static int vm_max_launder = 4096;
137 static int vm_emerg_launder = 100;
138 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
139 static int vm_pageout_full_stats_interval = 0;
140 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
141 static int defer_swap_pageouts=0;
142 static int disable_swap_pageouts=0;
143 static u_int vm_anonmem_decline = ACT_DECLINE;
144 static u_int vm_filemem_decline = ACT_DECLINE * 2;
145 
146 #if defined(NO_SWAPPING)
147 static int vm_swap_enabled=0;
148 static int vm_swap_idle_enabled=0;
149 #else
150 static int vm_swap_enabled=1;
151 static int vm_swap_idle_enabled=0;
152 #endif
153 int vm_pageout_memuse_mode=1;	/* 0-disable, 1-passive, 2-active swp*/
154 
155 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
156 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
159 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
160 
161 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
162 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
163 	"Free more pages than the minimum required");
164 
165 SYSCTL_INT(_vm, OID_AUTO, max_launder,
166 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
167 SYSCTL_INT(_vm, OID_AUTO, emerg_launder,
168 	CTLFLAG_RW, &vm_emerg_launder, 0, "Emergency pager minimum");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181 SYSCTL_INT(_vm, OID_AUTO, pageout_memuse_mode,
182 	CTLFLAG_RW, &vm_pageout_memuse_mode, 0, "memoryuse resource mode");
183 
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
189 #else
190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194 #endif
195 
196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198 
199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201 
202 static int pageout_lock_miss;
203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205 
206 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207 
208 #if !defined(NO_SWAPPING)
209 static void vm_req_vmdaemon (void);
210 #endif
211 static void vm_pageout_page_stats(int q);
212 
213 /*
214  * Calculate approximately how many pages on each queue to try to
215  * clean.  An exact calculation creates an edge condition when the
216  * queues are unbalanced so add significant slop.  The queue scans
217  * will stop early when targets are reached and will start where they
218  * left off on the next pass.
219  *
220  * We need to be generous here because there are all sorts of loading
221  * conditions that can cause edge cases if try to average over all queues.
222  * In particular, storage subsystems have become so fast that paging
223  * activity can become quite frantic.  Eventually we will probably need
224  * two paging threads, one for dirty pages and one for clean, to deal
225  * with the bandwidth requirements.
226 
227  * So what we do is calculate a value that can be satisfied nominally by
228  * only having to scan half the queues.
229  */
230 static __inline long
231 PQAVERAGE(long n)
232 {
233 	long avg;
234 
235 	if (n >= 0) {
236 		avg = ((n + (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) + 1);
237 	} else {
238 		avg = ((n - (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) - 1);
239 	}
240 	return avg;
241 }
242 
243 /*
244  * vm_pageout_clean_helper:
245  *
246  * Clean the page and remove it from the laundry.  The page must be busied
247  * by the caller and will be disposed of (put away, flushed) by this routine.
248  */
249 static int
250 vm_pageout_clean_helper(vm_page_t m, int vmflush_flags)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[BLIST_MAX_ALLOC];
254 	int error;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * Don't mess with the page if it's held or special.  Theoretically
262 	 * we can pageout held pages but there is no real need to press our
263 	 * luck, so don't.
264 	 */
265 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
266 		vm_page_wakeup(m);
267 		return 0;
268 	}
269 
270 	/*
271 	 * Place page in cluster.  Align cluster for optimal swap space
272 	 * allocation (whether it is swap or not).  This is typically ~16-32
273 	 * pages, which also tends to align the cluster to multiples of the
274 	 * filesystem block size if backed by a filesystem.
275 	 */
276 	page_base = pindex % BLIST_MAX_ALLOC;
277 	mc[page_base] = m;
278 	ib = page_base - 1;
279 	is = page_base + 1;
280 
281 	/*
282 	 * Scan object for clusterable pages.
283 	 *
284 	 * We can cluster ONLY if: ->> the page is NOT
285 	 * clean, wired, busy, held, or mapped into a
286 	 * buffer, and one of the following:
287 	 * 1) The page is inactive, or a seldom used
288 	 *    active page.
289 	 * -or-
290 	 * 2) we force the issue.
291 	 *
292 	 * During heavy mmap/modification loads the pageout
293 	 * daemon can really fragment the underlying file
294 	 * due to flushing pages out of order and not trying
295 	 * align the clusters (which leave sporatic out-of-order
296 	 * holes).  To solve this problem we do the reverse scan
297 	 * first and attempt to align our cluster, then do a
298 	 * forward scan if room remains.
299 	 */
300 	vm_object_hold(object);
301 
302 	while (ib >= 0) {
303 		vm_page_t p;
304 
305 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
306 					    TRUE, &error);
307 		if (error || p == NULL)
308 			break;
309 		if ((p->queue - p->pc) == PQ_CACHE ||
310 		    (p->flags & PG_UNMANAGED)) {
311 			vm_page_wakeup(p);
312 			break;
313 		}
314 		vm_page_test_dirty(p);
315 		if (((p->dirty & p->valid) == 0 &&
316 		     (p->flags & PG_NEED_COMMIT) == 0) ||
317 		    p->wire_count != 0 ||	/* may be held by buf cache */
318 		    p->hold_count != 0) {	/* may be undergoing I/O */
319 			vm_page_wakeup(p);
320 			break;
321 		}
322 		if (p->queue - p->pc != PQ_INACTIVE) {
323 			if (p->queue - p->pc != PQ_ACTIVE ||
324 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
325 				vm_page_wakeup(p);
326 				break;
327 			}
328 		}
329 
330 		/*
331 		 * Try to maintain page groupings in the cluster.
332 		 */
333 		if (m->flags & PG_WINATCFLS)
334 			vm_page_flag_set(p, PG_WINATCFLS);
335 		else
336 			vm_page_flag_clear(p, PG_WINATCFLS);
337 		p->act_count = m->act_count;
338 
339 		mc[ib] = p;
340 		--ib;
341 	}
342 	++ib;	/* fixup */
343 
344 	while (is < BLIST_MAX_ALLOC &&
345 	       pindex - page_base + is < object->size) {
346 		vm_page_t p;
347 
348 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
349 					    TRUE, &error);
350 		if (error || p == NULL)
351 			break;
352 		if (((p->queue - p->pc) == PQ_CACHE) ||
353 		    (p->flags & PG_UNMANAGED)) {
354 			vm_page_wakeup(p);
355 			break;
356 		}
357 		vm_page_test_dirty(p);
358 		if (((p->dirty & p->valid) == 0 &&
359 		     (p->flags & PG_NEED_COMMIT) == 0) ||
360 		    p->wire_count != 0 ||	/* may be held by buf cache */
361 		    p->hold_count != 0) {	/* may be undergoing I/O */
362 			vm_page_wakeup(p);
363 			break;
364 		}
365 		if (p->queue - p->pc != PQ_INACTIVE) {
366 			if (p->queue - p->pc != PQ_ACTIVE ||
367 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
368 				vm_page_wakeup(p);
369 				break;
370 			}
371 		}
372 
373 		/*
374 		 * Try to maintain page groupings in the cluster.
375 		 */
376 		if (m->flags & PG_WINATCFLS)
377 			vm_page_flag_set(p, PG_WINATCFLS);
378 		else
379 			vm_page_flag_clear(p, PG_WINATCFLS);
380 		p->act_count = m->act_count;
381 
382 		mc[is] = p;
383 		++is;
384 	}
385 
386 	vm_object_drop(object);
387 
388 	/*
389 	 * we allow reads during pageouts...
390 	 */
391 	return vm_pageout_flush(&mc[ib], is - ib, vmflush_flags);
392 }
393 
394 /*
395  * vm_pageout_flush() - launder the given pages
396  *
397  *	The given pages are laundered.  Note that we setup for the start of
398  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
399  *	reference count all in here rather then in the parent.  If we want
400  *	the parent to do more sophisticated things we may have to change
401  *	the ordering.
402  *
403  *	The pages in the array must be busied by the caller and will be
404  *	unbusied by this function.
405  */
406 int
407 vm_pageout_flush(vm_page_t *mc, int count, int vmflush_flags)
408 {
409 	vm_object_t object;
410 	int pageout_status[count];
411 	int numpagedout = 0;
412 	int i;
413 
414 	/*
415 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
416 	 */
417 	for (i = 0; i < count; i++) {
418 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
419 			("vm_pageout_flush page %p index %d/%d: partially "
420 			 "invalid page", mc[i], i, count));
421 		vm_page_io_start(mc[i]);
422 	}
423 
424 	/*
425 	 * We must make the pages read-only.  This will also force the
426 	 * modified bit in the related pmaps to be cleared.  The pager
427 	 * cannot clear the bit for us since the I/O completion code
428 	 * typically runs from an interrupt.  The act of making the page
429 	 * read-only handles the case for us.
430 	 *
431 	 * Then we can unbusy the pages, we still hold a reference by virtue
432 	 * of our soft-busy.
433 	 */
434 	for (i = 0; i < count; i++) {
435 		if (vmflush_flags & VM_PAGER_TRY_TO_CACHE)
436 			vm_page_protect(mc[i], VM_PROT_NONE);
437 		else
438 			vm_page_protect(mc[i], VM_PROT_READ);
439 		vm_page_wakeup(mc[i]);
440 	}
441 
442 	object = mc[0]->object;
443 	vm_object_pip_add(object, count);
444 
445 	vm_pager_put_pages(object, mc, count,
446 			   (vmflush_flags |
447 			    ((object == &kernel_object) ?
448 				VM_PAGER_PUT_SYNC : 0)),
449 			   pageout_status);
450 
451 	for (i = 0; i < count; i++) {
452 		vm_page_t mt = mc[i];
453 
454 		switch (pageout_status[i]) {
455 		case VM_PAGER_OK:
456 			numpagedout++;
457 			break;
458 		case VM_PAGER_PEND:
459 			numpagedout++;
460 			break;
461 		case VM_PAGER_BAD:
462 			/*
463 			 * Page outside of range of object. Right now we
464 			 * essentially lose the changes by pretending it
465 			 * worked.
466 			 */
467 			vm_page_busy_wait(mt, FALSE, "pgbad");
468 			pmap_clear_modify(mt);
469 			vm_page_undirty(mt);
470 			vm_page_wakeup(mt);
471 			break;
472 		case VM_PAGER_ERROR:
473 		case VM_PAGER_FAIL:
474 			/*
475 			 * A page typically cannot be paged out when we
476 			 * have run out of swap.  We leave the page
477 			 * marked inactive and will try to page it out
478 			 * again later.
479 			 *
480 			 * Starvation of the active page list is used to
481 			 * determine when the system is massively memory
482 			 * starved.
483 			 */
484 			break;
485 		case VM_PAGER_AGAIN:
486 			break;
487 		}
488 
489 		/*
490 		 * If not PENDing this was a synchronous operation and we
491 		 * clean up after the I/O.  If it is PENDing the mess is
492 		 * cleaned up asynchronously.
493 		 *
494 		 * Also nominally act on the caller's wishes if the caller
495 		 * wants to try to really clean (cache or free) the page.
496 		 *
497 		 * Also nominally deactivate the page if the system is
498 		 * memory-stressed.
499 		 */
500 		if (pageout_status[i] != VM_PAGER_PEND) {
501 			vm_page_busy_wait(mt, FALSE, "pgouw");
502 			vm_page_io_finish(mt);
503 			if (vmflush_flags & VM_PAGER_TRY_TO_CACHE) {
504 				vm_page_try_to_cache(mt);
505 			} else if (vm_page_count_severe()) {
506 				vm_page_deactivate(mt);
507 				vm_page_wakeup(mt);
508 			} else {
509 				vm_page_wakeup(mt);
510 			}
511 			vm_object_pip_wakeup(object);
512 		}
513 	}
514 	return numpagedout;
515 }
516 
517 #if !defined(NO_SWAPPING)
518 
519 /*
520  * Callback function, page busied for us.  We must dispose of the busy
521  * condition.  Any related pmap pages may be held but will not be locked.
522  */
523 static
524 int
525 vm_pageout_mdp_callback(struct pmap_pgscan_info *info, vm_offset_t va,
526 			vm_page_t p)
527 {
528 	int actcount;
529 	int cleanit = 0;
530 
531 	/*
532 	 * Basic tests - There should never be a marker, and we can stop
533 	 *		 once the RSS is below the required level.
534 	 */
535 	KKASSERT((p->flags & PG_MARKER) == 0);
536 	if (pmap_resident_tlnw_count(info->pmap) <= info->limit) {
537 		vm_page_wakeup(p);
538 		return(-1);
539 	}
540 
541 	mycpu->gd_cnt.v_pdpages++;
542 
543 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
544 		vm_page_wakeup(p);
545 		goto done;
546 	}
547 
548 	++info->actioncount;
549 
550 	/*
551 	 * Check if the page has been referened recently.  If it has,
552 	 * activate it and skip.
553 	 */
554 	actcount = pmap_ts_referenced(p);
555 	if (actcount) {
556 		vm_page_flag_set(p, PG_REFERENCED);
557 	} else if (p->flags & PG_REFERENCED) {
558 		actcount = 1;
559 	}
560 
561 	if (actcount) {
562 		if (p->queue - p->pc != PQ_ACTIVE) {
563 			vm_page_and_queue_spin_lock(p);
564 			if (p->queue - p->pc != PQ_ACTIVE) {
565 				vm_page_and_queue_spin_unlock(p);
566 				vm_page_activate(p);
567 			} else {
568 				vm_page_and_queue_spin_unlock(p);
569 			}
570 		} else {
571 			p->act_count += actcount;
572 			if (p->act_count > ACT_MAX)
573 				p->act_count = ACT_MAX;
574 		}
575 		vm_page_flag_clear(p, PG_REFERENCED);
576 		vm_page_wakeup(p);
577 		goto done;
578 	}
579 
580 	/*
581 	 * Remove the page from this particular pmap.  Once we do this, our
582 	 * pmap scans will not see it again (unless it gets faulted in), so
583 	 * we must actively dispose of or deal with the page.
584 	 */
585 	pmap_remove_specific(info->pmap, p);
586 
587 	/*
588 	 * If the page is not mapped to another process (i.e. as would be
589 	 * typical if this were a shared page from a library) then deactivate
590 	 * the page and clean it in two passes only.
591 	 *
592 	 * If the page hasn't been referenced since the last check, remove it
593 	 * from the pmap.  If it is no longer mapped, deactivate it
594 	 * immediately, accelerating the normal decline.
595 	 *
596 	 * Once the page has been removed from the pmap the RSS code no
597 	 * longer tracks it so we have to make sure that it is staged for
598 	 * potential flush action.
599 	 */
600 	if ((p->flags & PG_MAPPED) == 0) {
601 		if (p->queue - p->pc == PQ_ACTIVE) {
602 			vm_page_deactivate(p);
603 		}
604 		if (p->queue - p->pc == PQ_INACTIVE) {
605 			cleanit = 1;
606 		}
607 	}
608 
609 	/*
610 	 * Ok, try to fully clean the page and any nearby pages such that at
611 	 * least the requested page is freed or moved to the cache queue.
612 	 *
613 	 * We usually do this synchronously to allow us to get the page into
614 	 * the CACHE queue quickly, which will prevent memory exhaustion if
615 	 * a process with a memoryuse limit is running away.  However, the
616 	 * sysadmin may desire to set vm.swap_user_async which relaxes this
617 	 * and improves write performance.
618 	 */
619 	if (cleanit) {
620 		long max_launder = 0x7FFF;
621 		long vnodes_skipped = 0;
622 		int vmflush_flags;
623 		struct vnode *vpfailed = NULL;
624 
625 		info->offset = va;
626 
627 		if (vm_pageout_memuse_mode >= 2) {
628 			vmflush_flags = VM_PAGER_TRY_TO_CACHE |
629 					VM_PAGER_ALLOW_ACTIVE;
630 			if (swap_user_async == 0)
631 				vmflush_flags |= VM_PAGER_PUT_SYNC;
632 			vm_page_flag_set(p, PG_WINATCFLS);
633 			info->cleancount +=
634 				vm_pageout_page(p, &max_launder,
635 						&vnodes_skipped,
636 						&vpfailed, 1, vmflush_flags);
637 		} else {
638 			vm_page_wakeup(p);
639 			++info->cleancount;
640 		}
641 	} else {
642 		vm_page_wakeup(p);
643 	}
644 
645 	/*
646 	 * Must be at end to avoid SMP races.
647 	 */
648 done:
649 	lwkt_user_yield();
650 	return 0;
651 }
652 
653 /*
654  * Deactivate some number of pages in a map due to set RLIMIT_RSS limits.
655  * that is relatively difficult to do.  We try to keep track of where we
656  * left off last time to reduce scan overhead.
657  *
658  * Called when vm_pageout_memuse_mode is >= 1.
659  */
660 void
661 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t limit)
662 {
663 	vm_offset_t pgout_offset;
664 	struct pmap_pgscan_info info;
665 	int retries = 3;
666 
667 	pgout_offset = map->pgout_offset;
668 again:
669 #if 0
670 	kprintf("%016jx ", pgout_offset);
671 #endif
672 	if (pgout_offset < VM_MIN_USER_ADDRESS)
673 		pgout_offset = VM_MIN_USER_ADDRESS;
674 	if (pgout_offset >= VM_MAX_USER_ADDRESS)
675 		pgout_offset = 0;
676 	info.pmap = vm_map_pmap(map);
677 	info.limit = limit;
678 	info.beg_addr = pgout_offset;
679 	info.end_addr = VM_MAX_USER_ADDRESS;
680 	info.callback = vm_pageout_mdp_callback;
681 	info.cleancount = 0;
682 	info.actioncount = 0;
683 	info.busycount = 0;
684 
685 	pmap_pgscan(&info);
686 	pgout_offset = info.offset;
687 #if 0
688 	kprintf("%016jx %08lx %08lx\n", pgout_offset,
689 		info.cleancount, info.actioncount);
690 #endif
691 
692 	if (pgout_offset != VM_MAX_USER_ADDRESS &&
693 	    pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
694 		goto again;
695 	} else if (retries &&
696 		   pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
697 		--retries;
698 		goto again;
699 	}
700 	map->pgout_offset = pgout_offset;
701 }
702 #endif
703 
704 /*
705  * Called when the pageout scan wants to free a page.  We no longer
706  * try to cycle the vm_object here with a reference & dealloc, which can
707  * cause a non-trivial object collapse in a critical path.
708  *
709  * It is unclear why we cycled the ref_count in the past, perhaps to try
710  * to optimize shadow chain collapses but I don't quite see why it would
711  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
712  * synchronously and not have to be kicked-start.
713  */
714 static void
715 vm_pageout_page_free(vm_page_t m)
716 {
717 	vm_page_protect(m, VM_PROT_NONE);
718 	vm_page_free(m);
719 }
720 
721 /*
722  * vm_pageout_scan does the dirty work for the pageout daemon.
723  */
724 struct vm_pageout_scan_info {
725 	struct proc *bigproc;
726 	vm_offset_t bigsize;
727 };
728 
729 static int vm_pageout_scan_callback(struct proc *p, void *data);
730 
731 /*
732  * Scan inactive queue
733  *
734  * WARNING! Can be called from two pagedaemon threads simultaneously.
735  */
736 static int
737 vm_pageout_scan_inactive(int pass, int q, long avail_shortage,
738 			 long *vnodes_skipped)
739 {
740 	vm_page_t m;
741 	struct vm_page marker;
742 	struct vnode *vpfailed;		/* warning, allowed to be stale */
743 	int maxscan;
744 	long delta = 0;
745 	long max_launder;
746 	int isep;
747 
748 	isep = (curthread == emergpager);
749 
750 	/*
751 	 * Start scanning the inactive queue for pages we can move to the
752 	 * cache or free.  The scan will stop when the target is reached or
753 	 * we have scanned the entire inactive queue.  Note that m->act_count
754 	 * is not used to form decisions for the inactive queue, only for the
755 	 * active queue.
756 	 *
757 	 * max_launder limits the number of dirty pages we flush per scan.
758 	 * For most systems a smaller value (16 or 32) is more robust under
759 	 * extreme memory and disk pressure because any unnecessary writes
760 	 * to disk can result in extreme performance degredation.  However,
761 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
762 	 * used) will die horribly with limited laundering.  If the pageout
763 	 * daemon cannot clean enough pages in the first pass, we let it go
764 	 * all out in succeeding passes.
765 	 *
766 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT LAUNDER VNODE-BACKED
767 	 *	  PAGES.
768 	 */
769 	if ((max_launder = vm_max_launder) <= 1)
770 		max_launder = 1;
771 	if (pass)
772 		max_launder = 10000;
773 
774 	/*
775 	 * Initialize our marker
776 	 */
777 	bzero(&marker, sizeof(marker));
778 	marker.flags = PG_FICTITIOUS | PG_MARKER;
779 	marker.busy_count = PBUSY_LOCKED;
780 	marker.queue = PQ_INACTIVE + q;
781 	marker.pc = q;
782 	marker.wire_count = 1;
783 
784 	/*
785 	 * Inactive queue scan.
786 	 *
787 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
788 	 *	 deadlocks, so it is easiest to simply iterate the loop
789 	 *	 with the queue unlocked at the top.
790 	 */
791 	vpfailed = NULL;
792 
793 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
794 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
795 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
796 
797 	/*
798 	 * Queue locked at top of loop to avoid stack marker issues.
799 	 */
800 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
801 	       maxscan-- > 0 && avail_shortage - delta > 0)
802 	{
803 		int count;
804 
805 		KKASSERT(m->queue == PQ_INACTIVE + q);
806 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
807 			     &marker, pageq);
808 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
809 				   &marker, pageq);
810 		mycpu->gd_cnt.v_pdpages++;
811 
812 		/*
813 		 * Skip marker pages (atomic against other markers to avoid
814 		 * infinite hop-over scans).
815 		 */
816 		if (m->flags & PG_MARKER)
817 			continue;
818 
819 		/*
820 		 * Try to busy the page.  Don't mess with pages which are
821 		 * already busy or reorder them in the queue.
822 		 */
823 		if (vm_page_busy_try(m, TRUE))
824 			continue;
825 
826 		/*
827 		 * Remaining operations run with the page busy and neither
828 		 * the page or the queue will be spin-locked.
829 		 */
830 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
831 		KKASSERT(m->queue == PQ_INACTIVE + q);
832 
833 		/*
834 		 * The emergency pager runs when the primary pager gets
835 		 * stuck, which typically means the primary pager deadlocked
836 		 * on a vnode-backed page.  Therefore, the emergency pager
837 		 * must skip any complex objects.
838 		 *
839 		 * We disallow VNODEs unless they are VCHR whos device ops
840 		 * does not flag D_NOEMERGPGR.
841 		 */
842 		if (isep && m->object) {
843 			struct vnode *vp;
844 
845 			switch(m->object->type) {
846 			case OBJT_DEFAULT:
847 			case OBJT_SWAP:
848 				/*
849 				 * Allow anonymous memory and assume that
850 				 * swap devices are not complex, since its
851 				 * kinda worthless if we can't swap out dirty
852 				 * anonymous pages.
853 				 */
854 				break;
855 			case OBJT_VNODE:
856 				/*
857 				 * Allow VCHR device if the D_NOEMERGPGR
858 				 * flag is not set, deny other vnode types
859 				 * as being too complex.
860 				 */
861 				vp = m->object->handle;
862 				if (vp && vp->v_type == VCHR &&
863 				    vp->v_rdev && vp->v_rdev->si_ops &&
864 				    (vp->v_rdev->si_ops->head.flags &
865 				     D_NOEMERGPGR) == 0) {
866 					break;
867 				}
868 				/* Deny - fall through */
869 			default:
870 				/*
871 				 * Deny
872 				 */
873 				vm_page_wakeup(m);
874 				vm_page_queues_spin_lock(PQ_INACTIVE + q);
875 				lwkt_yield();
876 				continue;
877 			}
878 		}
879 
880 		/*
881 		 * Try to pageout the page and perhaps other nearby pages.
882 		 */
883 		count = vm_pageout_page(m, &max_launder, vnodes_skipped,
884 					&vpfailed, pass, 0);
885 		delta += count;
886 
887 		/*
888 		 * Systems with a ton of memory can wind up with huge
889 		 * deactivation counts.  Because the inactive scan is
890 		 * doing a lot of flushing, the combination can result
891 		 * in excessive paging even in situations where other
892 		 * unrelated threads free up sufficient VM.
893 		 *
894 		 * To deal with this we abort the nominal active->inactive
895 		 * scan before we hit the inactive target when free+cache
896 		 * levels have reached a reasonable target.
897 		 *
898 		 * When deciding to stop early we need to add some slop to
899 		 * the test and we need to return full completion to the caller
900 		 * to prevent the caller from thinking there is something
901 		 * wrong and issuing a low-memory+swap warning or pkill.
902 		 *
903 		 * A deficit forces paging regardless of the state of the
904 		 * VM page queues (used for RSS enforcement).
905 		 */
906 		lwkt_yield();
907 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
908 		if (vm_paging_target() < -vm_max_launder) {
909 			/*
910 			 * Stopping early, return full completion to caller.
911 			 */
912 			if (delta < avail_shortage)
913 				delta = avail_shortage;
914 			break;
915 		}
916 	}
917 
918 	/* page queue still spin-locked */
919 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
920 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
921 
922 	return (delta);
923 }
924 
925 /*
926  * Pageout the specified page, return the total number of pages paged out
927  * (this routine may cluster).
928  *
929  * The page must be busied and soft-busied by the caller and will be disposed
930  * of by this function.
931  */
932 static int
933 vm_pageout_page(vm_page_t m, long *max_launderp, long *vnodes_skippedp,
934 		struct vnode **vpfailedp, int pass, int vmflush_flags)
935 {
936 	vm_object_t object;
937 	int actcount;
938 	int count = 0;
939 
940 	/*
941 	 * It is possible for a page to be busied ad-hoc (e.g. the
942 	 * pmap_collect() code) and wired and race against the
943 	 * allocation of a new page.  vm_page_alloc() may be forced
944 	 * to deactivate the wired page in which case it winds up
945 	 * on the inactive queue and must be handled here.  We
946 	 * correct the problem simply by unqueuing the page.
947 	 */
948 	if (m->wire_count) {
949 		vm_page_unqueue_nowakeup(m);
950 		vm_page_wakeup(m);
951 		kprintf("WARNING: pagedaemon: wired page on "
952 			"inactive queue %p\n", m);
953 		return 0;
954 	}
955 
956 	/*
957 	 * A held page may be undergoing I/O, so skip it.
958 	 */
959 	if (m->hold_count) {
960 		vm_page_and_queue_spin_lock(m);
961 		if (m->queue - m->pc == PQ_INACTIVE) {
962 			TAILQ_REMOVE(
963 				&vm_page_queues[m->queue].pl, m, pageq);
964 			TAILQ_INSERT_TAIL(
965 				&vm_page_queues[m->queue].pl, m, pageq);
966 			++vm_swapcache_inactive_heuristic;
967 		}
968 		vm_page_and_queue_spin_unlock(m);
969 		vm_page_wakeup(m);
970 		return 0;
971 	}
972 
973 	if (m->object == NULL || m->object->ref_count == 0) {
974 		/*
975 		 * If the object is not being used, we ignore previous
976 		 * references.
977 		 */
978 		vm_page_flag_clear(m, PG_REFERENCED);
979 		pmap_clear_reference(m);
980 		/* fall through to end */
981 	} else if (((m->flags & PG_REFERENCED) == 0) &&
982 		    (actcount = pmap_ts_referenced(m))) {
983 		/*
984 		 * Otherwise, if the page has been referenced while
985 		 * in the inactive queue, we bump the "activation
986 		 * count" upwards, making it less likely that the
987 		 * page will be added back to the inactive queue
988 		 * prematurely again.  Here we check the page tables
989 		 * (or emulated bits, if any), given the upper level
990 		 * VM system not knowing anything about existing
991 		 * references.
992 		 */
993 		vm_page_activate(m);
994 		m->act_count += (actcount + ACT_ADVANCE);
995 		vm_page_wakeup(m);
996 		return 0;
997 	}
998 
999 	/*
1000 	 * (m) is still busied.
1001 	 *
1002 	 * If the upper level VM system knows about any page
1003 	 * references, we activate the page.  We also set the
1004 	 * "activation count" higher than normal so that we will less
1005 	 * likely place pages back onto the inactive queue again.
1006 	 */
1007 	if ((m->flags & PG_REFERENCED) != 0) {
1008 		vm_page_flag_clear(m, PG_REFERENCED);
1009 		actcount = pmap_ts_referenced(m);
1010 		vm_page_activate(m);
1011 		m->act_count += (actcount + ACT_ADVANCE + 1);
1012 		vm_page_wakeup(m);
1013 		return 0;
1014 	}
1015 
1016 	/*
1017 	 * If the upper level VM system doesn't know anything about
1018 	 * the page being dirty, we have to check for it again.  As
1019 	 * far as the VM code knows, any partially dirty pages are
1020 	 * fully dirty.
1021 	 *
1022 	 * Pages marked PG_WRITEABLE may be mapped into the user
1023 	 * address space of a process running on another cpu.  A
1024 	 * user process (without holding the MP lock) running on
1025 	 * another cpu may be able to touch the page while we are
1026 	 * trying to remove it.  vm_page_cache() will handle this
1027 	 * case for us.
1028 	 */
1029 	if (m->dirty == 0) {
1030 		vm_page_test_dirty(m);
1031 	} else {
1032 		vm_page_dirty(m);
1033 	}
1034 
1035 	if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
1036 		/*
1037 		 * Invalid pages can be easily freed
1038 		 */
1039 		vm_pageout_page_free(m);
1040 		mycpu->gd_cnt.v_dfree++;
1041 		++count;
1042 	} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
1043 		/*
1044 		 * Clean pages can be placed onto the cache queue.
1045 		 * This effectively frees them.
1046 		 */
1047 		vm_page_cache(m);
1048 		++count;
1049 	} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1050 		/*
1051 		 * Dirty pages need to be paged out, but flushing
1052 		 * a page is extremely expensive verses freeing
1053 		 * a clean page.  Rather then artificially limiting
1054 		 * the number of pages we can flush, we instead give
1055 		 * dirty pages extra priority on the inactive queue
1056 		 * by forcing them to be cycled through the queue
1057 		 * twice before being flushed, after which the
1058 		 * (now clean) page will cycle through once more
1059 		 * before being freed.  This significantly extends
1060 		 * the thrash point for a heavily loaded machine.
1061 		 */
1062 		vm_page_flag_set(m, PG_WINATCFLS);
1063 		vm_page_and_queue_spin_lock(m);
1064 		if (m->queue - m->pc == PQ_INACTIVE) {
1065 			TAILQ_REMOVE(
1066 				&vm_page_queues[m->queue].pl, m, pageq);
1067 			TAILQ_INSERT_TAIL(
1068 				&vm_page_queues[m->queue].pl, m, pageq);
1069 			++vm_swapcache_inactive_heuristic;
1070 		}
1071 		vm_page_and_queue_spin_unlock(m);
1072 		vm_page_wakeup(m);
1073 	} else if (*max_launderp > 0) {
1074 		/*
1075 		 * We always want to try to flush some dirty pages if
1076 		 * we encounter them, to keep the system stable.
1077 		 * Normally this number is small, but under extreme
1078 		 * pressure where there are insufficient clean pages
1079 		 * on the inactive queue, we may have to go all out.
1080 		 */
1081 		int swap_pageouts_ok;
1082 		struct vnode *vp = NULL;
1083 
1084 		swap_pageouts_ok = 0;
1085 		object = m->object;
1086 		if (object &&
1087 		    (object->type != OBJT_SWAP) &&
1088 		    (object->type != OBJT_DEFAULT)) {
1089 			swap_pageouts_ok = 1;
1090 		} else {
1091 			swap_pageouts_ok = !(defer_swap_pageouts ||
1092 					     disable_swap_pageouts);
1093 			swap_pageouts_ok |= (!disable_swap_pageouts &&
1094 					     defer_swap_pageouts &&
1095 					     vm_page_count_min(0));
1096 		}
1097 
1098 		/*
1099 		 * We don't bother paging objects that are "dead".
1100 		 * Those objects are in a "rundown" state.
1101 		 */
1102 		if (!swap_pageouts_ok ||
1103 		    (object == NULL) ||
1104 		    (object->flags & OBJ_DEAD)) {
1105 			vm_page_and_queue_spin_lock(m);
1106 			if (m->queue - m->pc == PQ_INACTIVE) {
1107 				TAILQ_REMOVE(
1108 				    &vm_page_queues[m->queue].pl,
1109 				    m, pageq);
1110 				TAILQ_INSERT_TAIL(
1111 				    &vm_page_queues[m->queue].pl,
1112 				    m, pageq);
1113 				++vm_swapcache_inactive_heuristic;
1114 			}
1115 			vm_page_and_queue_spin_unlock(m);
1116 			vm_page_wakeup(m);
1117 			return 0;
1118 		}
1119 
1120 		/*
1121 		 * (m) is still busied.
1122 		 *
1123 		 * The object is already known NOT to be dead.   It
1124 		 * is possible for the vget() to block the whole
1125 		 * pageout daemon, but the new low-memory handling
1126 		 * code should prevent it.
1127 		 *
1128 		 * The previous code skipped locked vnodes and, worse,
1129 		 * reordered pages in the queue.  This results in
1130 		 * completely non-deterministic operation because,
1131 		 * quite often, a vm_fault has initiated an I/O and
1132 		 * is holding a locked vnode at just the point where
1133 		 * the pageout daemon is woken up.
1134 		 *
1135 		 * We can't wait forever for the vnode lock, we might
1136 		 * deadlock due to a vn_read() getting stuck in
1137 		 * vm_wait while holding this vnode.  We skip the
1138 		 * vnode if we can't get it in a reasonable amount
1139 		 * of time.
1140 		 *
1141 		 * vpfailed is used to (try to) avoid the case where
1142 		 * a large number of pages are associated with a
1143 		 * locked vnode, which could cause the pageout daemon
1144 		 * to stall for an excessive amount of time.
1145 		 */
1146 		if (object->type == OBJT_VNODE) {
1147 			int flags;
1148 
1149 			vp = object->handle;
1150 			flags = LK_EXCLUSIVE;
1151 			if (vp == *vpfailedp)
1152 				flags |= LK_NOWAIT;
1153 			else
1154 				flags |= LK_TIMELOCK;
1155 			vm_page_hold(m);
1156 			vm_page_wakeup(m);
1157 
1158 			/*
1159 			 * We have unbusied (m) temporarily so we can
1160 			 * acquire the vp lock without deadlocking.
1161 			 * (m) is held to prevent destruction.
1162 			 */
1163 			if (vget(vp, flags) != 0) {
1164 				*vpfailedp = vp;
1165 				++pageout_lock_miss;
1166 				if (object->flags & OBJ_MIGHTBEDIRTY)
1167 					    ++*vnodes_skippedp;
1168 				vm_page_unhold(m);
1169 				return 0;
1170 			}
1171 
1172 			/*
1173 			 * The page might have been moved to another
1174 			 * queue during potential blocking in vget()
1175 			 * above.  The page might have been freed and
1176 			 * reused for another vnode.  The object might
1177 			 * have been reused for another vnode.
1178 			 */
1179 			if (m->queue - m->pc != PQ_INACTIVE ||
1180 			    m->object != object ||
1181 			    object->handle != vp) {
1182 				if (object->flags & OBJ_MIGHTBEDIRTY)
1183 					++*vnodes_skippedp;
1184 				vput(vp);
1185 				vm_page_unhold(m);
1186 				return 0;
1187 			}
1188 
1189 			/*
1190 			 * The page may have been busied during the
1191 			 * blocking in vput();  We don't move the
1192 			 * page back onto the end of the queue so that
1193 			 * statistics are more correct if we don't.
1194 			 */
1195 			if (vm_page_busy_try(m, TRUE)) {
1196 				vput(vp);
1197 				vm_page_unhold(m);
1198 				return 0;
1199 			}
1200 			vm_page_unhold(m);
1201 
1202 			/*
1203 			 * (m) is busied again
1204 			 *
1205 			 * We own the busy bit and remove our hold
1206 			 * bit.  If the page is still held it
1207 			 * might be undergoing I/O, so skip it.
1208 			 */
1209 			if (m->hold_count) {
1210 				vm_page_and_queue_spin_lock(m);
1211 				if (m->queue - m->pc == PQ_INACTIVE) {
1212 					TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1213 					TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1214 					++vm_swapcache_inactive_heuristic;
1215 				}
1216 				vm_page_and_queue_spin_unlock(m);
1217 				if (object->flags & OBJ_MIGHTBEDIRTY)
1218 					++*vnodes_skippedp;
1219 				vm_page_wakeup(m);
1220 				vput(vp);
1221 				return 0;
1222 			}
1223 			/* (m) is left busied as we fall through */
1224 		}
1225 
1226 		/*
1227 		 * page is busy and not held here.
1228 		 *
1229 		 * If a page is dirty, then it is either being washed
1230 		 * (but not yet cleaned) or it is still in the
1231 		 * laundry.  If it is still in the laundry, then we
1232 		 * start the cleaning operation.
1233 		 *
1234 		 * decrement inactive_shortage on success to account
1235 		 * for the (future) cleaned page.  Otherwise we
1236 		 * could wind up laundering or cleaning too many
1237 		 * pages.
1238 		 *
1239 		 * NOTE: Cleaning the page here does not cause
1240 		 *	 force_deficit to be adjusted, because the
1241 		 *	 page is not being freed or moved to the
1242 		 *	 cache.
1243 		 */
1244 		count = vm_pageout_clean_helper(m, vmflush_flags);
1245 		*max_launderp -= count;
1246 
1247 		/*
1248 		 * Clean ate busy, page no longer accessible
1249 		 */
1250 		if (vp != NULL)
1251 			vput(vp);
1252 	} else {
1253 		vm_page_wakeup(m);
1254 	}
1255 	return count;
1256 }
1257 
1258 /*
1259  * Scan active queue
1260  *
1261  * WARNING! Can be called from two pagedaemon threads simultaneously.
1262  */
1263 static int
1264 vm_pageout_scan_active(int pass, int q,
1265 		       long avail_shortage, long inactive_shortage,
1266 		       long *recycle_countp)
1267 {
1268 	struct vm_page marker;
1269 	vm_page_t m;
1270 	int actcount;
1271 	long delta = 0;
1272 	long maxscan;
1273 	int isep;
1274 
1275 	isep = (curthread == emergpager);
1276 
1277 	/*
1278 	 * We want to move pages from the active queue to the inactive
1279 	 * queue to get the inactive queue to the inactive target.  If
1280 	 * we still have a page shortage from above we try to directly free
1281 	 * clean pages instead of moving them.
1282 	 *
1283 	 * If we do still have a shortage we keep track of the number of
1284 	 * pages we free or cache (recycle_count) as a measure of thrashing
1285 	 * between the active and inactive queues.
1286 	 *
1287 	 * If we were able to completely satisfy the free+cache targets
1288 	 * from the inactive pool we limit the number of pages we move
1289 	 * from the active pool to the inactive pool to 2x the pages we
1290 	 * had removed from the inactive pool (with a minimum of 1/5 the
1291 	 * inactive target).  If we were not able to completely satisfy
1292 	 * the free+cache targets we go for the whole target aggressively.
1293 	 *
1294 	 * NOTE: Both variables can end up negative.
1295 	 * NOTE: We are still in a critical section.
1296 	 *
1297 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT LAUNDER VNODE-BACKED
1298 	 *	  PAGES.
1299 	 */
1300 
1301 	bzero(&marker, sizeof(marker));
1302 	marker.flags = PG_FICTITIOUS | PG_MARKER;
1303 	marker.busy_count = PBUSY_LOCKED;
1304 	marker.queue = PQ_ACTIVE + q;
1305 	marker.pc = q;
1306 	marker.wire_count = 1;
1307 
1308 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1309 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1310 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1311 
1312 	/*
1313 	 * Queue locked at top of loop to avoid stack marker issues.
1314 	 */
1315 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1316 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1317 				inactive_shortage > 0))
1318 	{
1319 		KKASSERT(m->queue == PQ_ACTIVE + q);
1320 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1321 			     &marker, pageq);
1322 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1323 				   &marker, pageq);
1324 
1325 		/*
1326 		 * Skip marker pages (atomic against other markers to avoid
1327 		 * infinite hop-over scans).
1328 		 */
1329 		if (m->flags & PG_MARKER)
1330 			continue;
1331 
1332 		/*
1333 		 * Try to busy the page.  Don't mess with pages which are
1334 		 * already busy or reorder them in the queue.
1335 		 */
1336 		if (vm_page_busy_try(m, TRUE))
1337 			continue;
1338 
1339 		/*
1340 		 * Remaining operations run with the page busy and neither
1341 		 * the page or the queue will be spin-locked.
1342 		 */
1343 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1344 		KKASSERT(m->queue == PQ_ACTIVE + q);
1345 
1346 #if 0
1347 		/*
1348 		 * Don't deactivate pages that are held, even if we can
1349 		 * busy them.  (XXX why not?)
1350 		 */
1351 		if (m->hold_count != 0) {
1352 			vm_page_and_queue_spin_lock(m);
1353 			if (m->queue - m->pc == PQ_ACTIVE) {
1354 				TAILQ_REMOVE(
1355 					&vm_page_queues[PQ_ACTIVE + q].pl,
1356 					m, pageq);
1357 				TAILQ_INSERT_TAIL(
1358 					&vm_page_queues[PQ_ACTIVE + q].pl,
1359 					m, pageq);
1360 			}
1361 			vm_page_and_queue_spin_unlock(m);
1362 			vm_page_wakeup(m);
1363 			goto next;
1364 		}
1365 #endif
1366 
1367 		/*
1368 		 * The emergency pager ignores vnode-backed pages as these
1369 		 * are the pages that probably bricked the main pager.
1370 		 */
1371 		if (isep && m->object && m->object->type == OBJT_VNODE) {
1372 			vm_page_and_queue_spin_lock(m);
1373 			if (m->queue - m->pc == PQ_ACTIVE) {
1374 				TAILQ_REMOVE(
1375 					&vm_page_queues[PQ_ACTIVE + q].pl,
1376 					m, pageq);
1377 				TAILQ_INSERT_TAIL(
1378 					&vm_page_queues[PQ_ACTIVE + q].pl,
1379 					m, pageq);
1380 			}
1381 			vm_page_and_queue_spin_unlock(m);
1382 			vm_page_wakeup(m);
1383 			goto next;
1384 		}
1385 
1386 		/*
1387 		 * The count for pagedaemon pages is done after checking the
1388 		 * page for eligibility...
1389 		 */
1390 		mycpu->gd_cnt.v_pdpages++;
1391 
1392 		/*
1393 		 * Check to see "how much" the page has been used and clear
1394 		 * the tracking access bits.  If the object has no references
1395 		 * don't bother paying the expense.
1396 		 */
1397 		actcount = 0;
1398 		if (m->object && m->object->ref_count != 0) {
1399 			if (m->flags & PG_REFERENCED)
1400 				++actcount;
1401 			actcount += pmap_ts_referenced(m);
1402 			if (actcount) {
1403 				m->act_count += ACT_ADVANCE + actcount;
1404 				if (m->act_count > ACT_MAX)
1405 					m->act_count = ACT_MAX;
1406 			}
1407 		}
1408 		vm_page_flag_clear(m, PG_REFERENCED);
1409 
1410 		/*
1411 		 * actcount is only valid if the object ref_count is non-zero.
1412 		 * If the page does not have an object, actcount will be zero.
1413 		 */
1414 		if (actcount && m->object->ref_count != 0) {
1415 			vm_page_and_queue_spin_lock(m);
1416 			if (m->queue - m->pc == PQ_ACTIVE) {
1417 				TAILQ_REMOVE(
1418 					&vm_page_queues[PQ_ACTIVE + q].pl,
1419 					m, pageq);
1420 				TAILQ_INSERT_TAIL(
1421 					&vm_page_queues[PQ_ACTIVE + q].pl,
1422 					m, pageq);
1423 			}
1424 			vm_page_and_queue_spin_unlock(m);
1425 			vm_page_wakeup(m);
1426 		} else {
1427 			switch(m->object->type) {
1428 			case OBJT_DEFAULT:
1429 			case OBJT_SWAP:
1430 				m->act_count -= min(m->act_count,
1431 						    vm_anonmem_decline);
1432 				break;
1433 			default:
1434 				m->act_count -= min(m->act_count,
1435 						    vm_filemem_decline);
1436 				break;
1437 			}
1438 			if (vm_pageout_algorithm ||
1439 			    (m->object == NULL) ||
1440 			    (m->object && (m->object->ref_count == 0)) ||
1441 			    m->act_count < pass + 1
1442 			) {
1443 				/*
1444 				 * Deactivate the page.  If we had a
1445 				 * shortage from our inactive scan try to
1446 				 * free (cache) the page instead.
1447 				 *
1448 				 * Don't just blindly cache the page if
1449 				 * we do not have a shortage from the
1450 				 * inactive scan, that could lead to
1451 				 * gigabytes being moved.
1452 				 */
1453 				--inactive_shortage;
1454 				if (avail_shortage - delta > 0 ||
1455 				    (m->object && (m->object->ref_count == 0)))
1456 				{
1457 					if (avail_shortage - delta > 0)
1458 						++*recycle_countp;
1459 					vm_page_protect(m, VM_PROT_NONE);
1460 					if (m->dirty == 0 &&
1461 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1462 					    avail_shortage - delta > 0) {
1463 						vm_page_cache(m);
1464 					} else {
1465 						vm_page_deactivate(m);
1466 						vm_page_wakeup(m);
1467 					}
1468 				} else {
1469 					vm_page_deactivate(m);
1470 					vm_page_wakeup(m);
1471 				}
1472 				++delta;
1473 			} else {
1474 				vm_page_and_queue_spin_lock(m);
1475 				if (m->queue - m->pc == PQ_ACTIVE) {
1476 					TAILQ_REMOVE(
1477 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1478 					    m, pageq);
1479 					TAILQ_INSERT_TAIL(
1480 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1481 					    m, pageq);
1482 				}
1483 				vm_page_and_queue_spin_unlock(m);
1484 				vm_page_wakeup(m);
1485 			}
1486 		}
1487 next:
1488 		lwkt_yield();
1489 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1490 	}
1491 
1492 	/*
1493 	 * Clean out our local marker.
1494 	 *
1495 	 * Page queue still spin-locked.
1496 	 */
1497 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1498 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1499 
1500 	return (delta);
1501 }
1502 
1503 /*
1504  * The number of actually free pages can drop down to v_free_reserved,
1505  * we try to build the free count back above v_free_min.  Note that
1506  * vm_paging_needed() also returns TRUE if v_free_count is not at
1507  * least v_free_min so that is the minimum we must build the free
1508  * count to.
1509  *
1510  * We use a slightly higher target to improve hysteresis,
1511  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1512  * is usually the same as v_cache_min this maintains about
1513  * half the pages in the free queue as are in the cache queue,
1514  * providing pretty good pipelining for pageout operation.
1515  *
1516  * The system operator can manipulate vm.v_cache_min and
1517  * vm.v_free_target to tune the pageout demon.  Be sure
1518  * to keep vm.v_free_min < vm.v_free_target.
1519  *
1520  * Note that the original paging target is to get at least
1521  * (free_min + cache_min) into (free + cache).  The slightly
1522  * higher target will shift additional pages from cache to free
1523  * without effecting the original paging target in order to
1524  * maintain better hysteresis and not have the free count always
1525  * be dead-on v_free_min.
1526  *
1527  * NOTE: we are still in a critical section.
1528  *
1529  * Pages moved from PQ_CACHE to totally free are not counted in the
1530  * pages_freed counter.
1531  *
1532  * WARNING! Can be called from two pagedaemon threads simultaneously.
1533  */
1534 static void
1535 vm_pageout_scan_cache(long avail_shortage, int pass,
1536 		      long vnodes_skipped, long recycle_count)
1537 {
1538 	static int lastkillticks;
1539 	struct vm_pageout_scan_info info;
1540 	vm_page_t m;
1541 	int isep;
1542 
1543 	isep = (curthread == emergpager);
1544 
1545 	while (vmstats.v_free_count <
1546 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1547 		/*
1548 		 * This steals some code from vm/vm_page.c
1549 		 *
1550 		 * Create two rovers and adjust the code to reduce
1551 		 * chances of them winding up at the same index (which
1552 		 * can cause a lot of contention).
1553 		 */
1554 		static int cache_rover[2] = { 0, PQ_L2_MASK / 2 };
1555 
1556 		if (((cache_rover[0] ^ cache_rover[1]) & PQ_L2_MASK) == 0)
1557 			goto next_rover;
1558 
1559 		m = vm_page_list_find(PQ_CACHE, cache_rover[isep] & PQ_L2_MASK);
1560 		if (m == NULL)
1561 			break;
1562 		/* page is returned removed from its queue and spinlocked */
1563 		if (vm_page_busy_try(m, TRUE)) {
1564 			vm_page_deactivate_locked(m);
1565 			vm_page_spin_unlock(m);
1566 			continue;
1567 		}
1568 		vm_page_spin_unlock(m);
1569 		pagedaemon_wakeup();
1570 		lwkt_yield();
1571 
1572 		/*
1573 		 * Remaining operations run with the page busy and neither
1574 		 * the page or the queue will be spin-locked.
1575 		 */
1576 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1577 		    m->hold_count ||
1578 		    m->wire_count) {
1579 			vm_page_deactivate(m);
1580 			vm_page_wakeup(m);
1581 			continue;
1582 		}
1583 		KKASSERT((m->flags & PG_MAPPED) == 0);
1584 		KKASSERT(m->dirty == 0);
1585 		vm_pageout_page_free(m);
1586 		mycpu->gd_cnt.v_dfree++;
1587 next_rover:
1588 		if (isep)
1589 			cache_rover[1] -= PQ_PRIME2;
1590 		else
1591 			cache_rover[0] += PQ_PRIME2;
1592 	}
1593 
1594 #if !defined(NO_SWAPPING)
1595 	/*
1596 	 * Idle process swapout -- run once per second.
1597 	 */
1598 	if (vm_swap_idle_enabled) {
1599 		static time_t lsec;
1600 		if (time_uptime != lsec) {
1601 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_IDLE);
1602 			vm_req_vmdaemon();
1603 			lsec = time_uptime;
1604 		}
1605 	}
1606 #endif
1607 
1608 	/*
1609 	 * If we didn't get enough free pages, and we have skipped a vnode
1610 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1611 	 * if we did not get enough free pages.
1612 	 */
1613 	if (vm_paging_target() > 0) {
1614 		if (vnodes_skipped && vm_page_count_min(0))
1615 			speedup_syncer(NULL);
1616 #if !defined(NO_SWAPPING)
1617 		if (vm_swap_enabled && vm_page_count_target()) {
1618 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_NORMAL);
1619 			vm_req_vmdaemon();
1620 		}
1621 #endif
1622 	}
1623 
1624 	/*
1625 	 * Handle catastrophic conditions.  Under good conditions we should
1626 	 * be at the target, well beyond our minimum.  If we could not even
1627 	 * reach our minimum the system is under heavy stress.  But just being
1628 	 * under heavy stress does not trigger process killing.
1629 	 *
1630 	 * We consider ourselves to have run out of memory if the swap pager
1631 	 * is full and avail_shortage is still positive.  The secondary check
1632 	 * ensures that we do not kill processes if the instantanious
1633 	 * availability is good, even if the pageout demon pass says it
1634 	 * couldn't get to the target.
1635 	 *
1636 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT HANDLE SWAP FULL
1637 	 *	  SITUATIONS.
1638 	 */
1639 	if (swap_pager_almost_full &&
1640 	    pass > 0 &&
1641 	    isep == 0 &&
1642 	    (vm_page_count_min(recycle_count) || avail_shortage > 0)) {
1643 		kprintf("Warning: system low on memory+swap "
1644 			"shortage %ld for %d ticks!\n",
1645 			avail_shortage, ticks - swap_fail_ticks);
1646 		if (bootverbose)
1647 		kprintf("Metrics: spaf=%d spf=%d pass=%d "
1648 			"avail=%ld target=%ld last=%u\n",
1649 			swap_pager_almost_full,
1650 			swap_pager_full,
1651 			pass,
1652 			avail_shortage,
1653 			vm_paging_target(),
1654 			(unsigned int)(ticks - lastkillticks));
1655 	}
1656 	if (swap_pager_full &&
1657 	    pass > 1 &&
1658 	    isep == 0 &&
1659 	    avail_shortage > 0 &&
1660 	    vm_paging_target() > 0 &&
1661 	    (unsigned int)(ticks - lastkillticks) >= hz) {
1662 		/*
1663 		 * Kill something, maximum rate once per second to give
1664 		 * the process time to free up sufficient memory.
1665 		 */
1666 		lastkillticks = ticks;
1667 		info.bigproc = NULL;
1668 		info.bigsize = 0;
1669 		allproc_scan(vm_pageout_scan_callback, &info, 0);
1670 		if (info.bigproc != NULL) {
1671 			kprintf("Try to kill process %d %s\n",
1672 				info.bigproc->p_pid, info.bigproc->p_comm);
1673 			info.bigproc->p_nice = PRIO_MIN;
1674 			info.bigproc->p_usched->resetpriority(
1675 				FIRST_LWP_IN_PROC(info.bigproc));
1676 			atomic_set_int(&info.bigproc->p_flags, P_LOWMEMKILL);
1677 			killproc(info.bigproc, "out of swap space");
1678 			wakeup(&vmstats.v_free_count);
1679 			PRELE(info.bigproc);
1680 		}
1681 	}
1682 }
1683 
1684 static int
1685 vm_pageout_scan_callback(struct proc *p, void *data)
1686 {
1687 	struct vm_pageout_scan_info *info = data;
1688 	vm_offset_t size;
1689 
1690 	/*
1691 	 * Never kill system processes or init.  If we have configured swap
1692 	 * then try to avoid killing low-numbered pids.
1693 	 */
1694 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1695 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1696 		return (0);
1697 	}
1698 
1699 	lwkt_gettoken(&p->p_token);
1700 
1701 	/*
1702 	 * if the process is in a non-running type state,
1703 	 * don't touch it.
1704 	 */
1705 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
1706 		lwkt_reltoken(&p->p_token);
1707 		return (0);
1708 	}
1709 
1710 	/*
1711 	 * Get the approximate process size.  Note that anonymous pages
1712 	 * with backing swap will be counted twice, but there should not
1713 	 * be too many such pages due to the stress the VM system is
1714 	 * under at this point.
1715 	 */
1716 	size = vmspace_anonymous_count(p->p_vmspace) +
1717 		vmspace_swap_count(p->p_vmspace);
1718 
1719 	/*
1720 	 * If the this process is bigger than the biggest one
1721 	 * remember it.
1722 	 */
1723 	if (info->bigsize < size) {
1724 		if (info->bigproc)
1725 			PRELE(info->bigproc);
1726 		PHOLD(p);
1727 		info->bigproc = p;
1728 		info->bigsize = size;
1729 	}
1730 	lwkt_reltoken(&p->p_token);
1731 	lwkt_yield();
1732 
1733 	return(0);
1734 }
1735 
1736 /*
1737  * This routine tries to maintain the pseudo LRU active queue,
1738  * so that during long periods of time where there is no paging,
1739  * that some statistic accumulation still occurs.  This code
1740  * helps the situation where paging just starts to occur.
1741  */
1742 static void
1743 vm_pageout_page_stats(int q)
1744 {
1745 	static int fullintervalcount = 0;
1746 	struct vm_page marker;
1747 	vm_page_t m;
1748 	long pcount, tpcount;		/* Number of pages to check */
1749 	long page_shortage;
1750 
1751 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1752 			 vmstats.v_free_min) -
1753 			(vmstats.v_free_count + vmstats.v_inactive_count +
1754 			 vmstats.v_cache_count);
1755 
1756 	if (page_shortage <= 0)
1757 		return;
1758 
1759 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1760 	fullintervalcount += vm_pageout_stats_interval;
1761 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1762 		tpcount = (vm_pageout_stats_max * pcount) /
1763 			  vmstats.v_page_count + 1;
1764 		if (pcount > tpcount)
1765 			pcount = tpcount;
1766 	} else {
1767 		fullintervalcount = 0;
1768 	}
1769 
1770 	bzero(&marker, sizeof(marker));
1771 	marker.flags = PG_FICTITIOUS | PG_MARKER;
1772 	marker.busy_count = PBUSY_LOCKED;
1773 	marker.queue = PQ_ACTIVE + q;
1774 	marker.pc = q;
1775 	marker.wire_count = 1;
1776 
1777 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1778 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1779 
1780 	/*
1781 	 * Queue locked at top of loop to avoid stack marker issues.
1782 	 */
1783 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1784 	       pcount-- > 0)
1785 	{
1786 		int actcount;
1787 
1788 		KKASSERT(m->queue == PQ_ACTIVE + q);
1789 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1790 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1791 				   &marker, pageq);
1792 
1793 		/*
1794 		 * Skip marker pages (atomic against other markers to avoid
1795 		 * infinite hop-over scans).
1796 		 */
1797 		if (m->flags & PG_MARKER)
1798 			continue;
1799 
1800 		/*
1801 		 * Ignore pages we can't busy
1802 		 */
1803 		if (vm_page_busy_try(m, TRUE))
1804 			continue;
1805 
1806 		/*
1807 		 * Remaining operations run with the page busy and neither
1808 		 * the page or the queue will be spin-locked.
1809 		 */
1810 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1811 		KKASSERT(m->queue == PQ_ACTIVE + q);
1812 
1813 		/*
1814 		 * We now have a safely busied page, the page and queue
1815 		 * spinlocks have been released.
1816 		 *
1817 		 * Ignore held pages
1818 		 */
1819 		if (m->hold_count) {
1820 			vm_page_wakeup(m);
1821 			goto next;
1822 		}
1823 
1824 		/*
1825 		 * Calculate activity
1826 		 */
1827 		actcount = 0;
1828 		if (m->flags & PG_REFERENCED) {
1829 			vm_page_flag_clear(m, PG_REFERENCED);
1830 			actcount += 1;
1831 		}
1832 		actcount += pmap_ts_referenced(m);
1833 
1834 		/*
1835 		 * Update act_count and move page to end of queue.
1836 		 */
1837 		if (actcount) {
1838 			m->act_count += ACT_ADVANCE + actcount;
1839 			if (m->act_count > ACT_MAX)
1840 				m->act_count = ACT_MAX;
1841 			vm_page_and_queue_spin_lock(m);
1842 			if (m->queue - m->pc == PQ_ACTIVE) {
1843 				TAILQ_REMOVE(
1844 					&vm_page_queues[PQ_ACTIVE + q].pl,
1845 					m, pageq);
1846 				TAILQ_INSERT_TAIL(
1847 					&vm_page_queues[PQ_ACTIVE + q].pl,
1848 					m, pageq);
1849 			}
1850 			vm_page_and_queue_spin_unlock(m);
1851 			vm_page_wakeup(m);
1852 			goto next;
1853 		}
1854 
1855 		if (m->act_count == 0) {
1856 			/*
1857 			 * We turn off page access, so that we have
1858 			 * more accurate RSS stats.  We don't do this
1859 			 * in the normal page deactivation when the
1860 			 * system is loaded VM wise, because the
1861 			 * cost of the large number of page protect
1862 			 * operations would be higher than the value
1863 			 * of doing the operation.
1864 			 *
1865 			 * We use the marker to save our place so
1866 			 * we can release the spin lock.  both (m)
1867 			 * and (next) will be invalid.
1868 			 */
1869 			vm_page_protect(m, VM_PROT_NONE);
1870 			vm_page_deactivate(m);
1871 		} else {
1872 			m->act_count -= min(m->act_count, ACT_DECLINE);
1873 			vm_page_and_queue_spin_lock(m);
1874 			if (m->queue - m->pc == PQ_ACTIVE) {
1875 				TAILQ_REMOVE(
1876 					&vm_page_queues[PQ_ACTIVE + q].pl,
1877 					m, pageq);
1878 				TAILQ_INSERT_TAIL(
1879 					&vm_page_queues[PQ_ACTIVE + q].pl,
1880 					m, pageq);
1881 			}
1882 			vm_page_and_queue_spin_unlock(m);
1883 		}
1884 		vm_page_wakeup(m);
1885 next:
1886 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1887 	}
1888 
1889 	/*
1890 	 * Remove our local marker
1891 	 *
1892 	 * Page queue still spin-locked.
1893 	 */
1894 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1895 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1896 }
1897 
1898 static int
1899 vm_pageout_free_page_calc(vm_size_t count)
1900 {
1901 	if (count < vmstats.v_page_count)
1902 		 return 0;
1903 	/*
1904 	 * free_reserved needs to include enough for the largest swap pager
1905 	 * structures plus enough for any pv_entry structs when paging.
1906 	 *
1907 	 * v_free_min		normal allocations
1908 	 * v_free_reserved	system allocations
1909 	 * v_pageout_free_min	allocations by pageout daemon
1910 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1911 	 */
1912 	if (vmstats.v_page_count > 1024)
1913 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1914 	else
1915 		vmstats.v_free_min = 64;
1916 
1917 	/*
1918 	 * Make sure the vmmeter slop can't blow out our global minimums.
1919 	 *
1920 	 * However, to accomodate weird configurations (vkernels with many
1921 	 * cpus and little memory, or artifically reduced hw.physmem), do
1922 	 * not allow v_free_min to exceed 1/20 of ram or the pageout demon
1923 	 * will go out of control.
1924 	 */
1925 	if (vmstats.v_free_min < VMMETER_SLOP_COUNT * ncpus * 10)
1926 		vmstats.v_free_min = VMMETER_SLOP_COUNT * ncpus * 10;
1927 	if (vmstats.v_free_min > vmstats.v_page_count / 20)
1928 		vmstats.v_free_min = vmstats.v_page_count / 20;
1929 
1930 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1931 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1932 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1933 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1934 
1935 	return 1;
1936 }
1937 
1938 
1939 /*
1940  * vm_pageout is the high level pageout daemon.  TWO kernel threads run
1941  * this daemon, the primary pageout daemon and the emergency pageout daemon.
1942  *
1943  * The emergency pageout daemon takes over when the primary pageout daemon
1944  * deadlocks.  The emergency pageout daemon ONLY pages out to swap, thus
1945  * avoiding the many low-memory deadlocks which can occur when paging out
1946  * to VFS's.
1947  */
1948 static void
1949 vm_pageout_thread(void)
1950 {
1951 	int pass;
1952 	int q;
1953 	int q1iterator = 0;
1954 	int q2iterator = 0;
1955 	int isep;
1956 
1957 	curthread->td_flags |= TDF_SYSTHREAD;
1958 
1959 	/*
1960 	 * We only need to setup once.
1961 	 */
1962 	isep = 0;
1963 	if (curthread == emergpager) {
1964 		isep = 1;
1965 		goto skip_setup;
1966 	}
1967 
1968 	/*
1969 	 * Initialize some paging parameters.
1970 	 */
1971 	vm_pageout_free_page_calc(vmstats.v_page_count);
1972 
1973 	/*
1974 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1975 	 * that these are more a measure of the VM cache queue hysteresis
1976 	 * then the VM free queue.  Specifically, v_free_target is the
1977 	 * high water mark (free+cache pages).
1978 	 *
1979 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1980 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1981 	 * be big enough to handle memory needs while the pageout daemon
1982 	 * is signalled and run to free more pages.
1983 	 */
1984 	if (vmstats.v_free_count > 6144)
1985 		vmstats.v_free_target = 4 * vmstats.v_free_min +
1986 					vmstats.v_free_reserved;
1987 	else
1988 		vmstats.v_free_target = 2 * vmstats.v_free_min +
1989 					vmstats.v_free_reserved;
1990 
1991 	/*
1992 	 * NOTE: With the new buffer cache b_act_count we want the default
1993 	 *	 inactive target to be a percentage of available memory.
1994 	 *
1995 	 *	 The inactive target essentially determines the minimum
1996 	 *	 number of 'temporary' pages capable of caching one-time-use
1997 	 *	 files when the VM system is otherwise full of pages
1998 	 *	 belonging to multi-time-use files or active program data.
1999 	 *
2000 	 * NOTE: The inactive target is aggressively persued only if the
2001 	 *	 inactive queue becomes too small.  If the inactive queue
2002 	 *	 is large enough to satisfy page movement to free+cache
2003 	 *	 then it is repopulated more slowly from the active queue.
2004 	 *	 This allows a general inactive_target default to be set.
2005 	 *
2006 	 *	 There is an issue here for processes which sit mostly idle
2007 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
2008 	 *	 the active queue will eventually cause such pages to
2009 	 *	 recycle eventually causing a lot of paging in the morning.
2010 	 *	 To reduce the incidence of this pages cycled out of the
2011 	 *	 buffer cache are moved directly to the inactive queue if
2012 	 *	 they were only used once or twice.
2013 	 *
2014 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
2015 	 *	 Increasing the value (up to 64) increases the number of
2016 	 *	 buffer recyclements which go directly to the inactive queue.
2017 	 */
2018 	if (vmstats.v_free_count > 2048) {
2019 		vmstats.v_cache_min = vmstats.v_free_target;
2020 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
2021 	} else {
2022 		vmstats.v_cache_min = 0;
2023 		vmstats.v_cache_max = 0;
2024 	}
2025 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
2026 
2027 	/* XXX does not really belong here */
2028 	if (vm_page_max_wired == 0)
2029 		vm_page_max_wired = vmstats.v_free_count / 3;
2030 
2031 	if (vm_pageout_stats_max == 0)
2032 		vm_pageout_stats_max = vmstats.v_free_target;
2033 
2034 	/*
2035 	 * Set interval in seconds for stats scan.
2036 	 */
2037 	if (vm_pageout_stats_interval == 0)
2038 		vm_pageout_stats_interval = 5;
2039 	if (vm_pageout_full_stats_interval == 0)
2040 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
2041 
2042 
2043 	/*
2044 	 * Set maximum free per pass
2045 	 */
2046 	if (vm_pageout_stats_free_max == 0)
2047 		vm_pageout_stats_free_max = 5;
2048 
2049 	swap_pager_swap_init();
2050 	pass = 0;
2051 
2052 	atomic_swap_int(&sequence_emerg_pager, 1);
2053 	wakeup(&sequence_emerg_pager);
2054 
2055 skip_setup:
2056 	/*
2057 	 * Sequence emergency pager startup
2058 	 */
2059 	if (isep) {
2060 		while (sequence_emerg_pager == 0)
2061 			tsleep(&sequence_emerg_pager, 0, "pstartup", hz);
2062 	}
2063 
2064 	/*
2065 	 * The pageout daemon is never done, so loop forever.
2066 	 *
2067 	 * WARNING!  This code is being executed by two kernel threads
2068 	 *	     potentially simultaneously.
2069 	 */
2070 	while (TRUE) {
2071 		int error;
2072 		long avail_shortage;
2073 		long inactive_shortage;
2074 		long vnodes_skipped = 0;
2075 		long recycle_count = 0;
2076 		long tmp;
2077 
2078 		/*
2079 		 * Wait for an action request.  If we timeout check to
2080 		 * see if paging is needed (in case the normal wakeup
2081 		 * code raced us).
2082 		 */
2083 		if (isep) {
2084 			/*
2085 			 * Emergency pagedaemon monitors the primary
2086 			 * pagedaemon while vm_pages_needed != 0.
2087 			 *
2088 			 * The emergency pagedaemon only runs if VM paging
2089 			 * is needed and the primary pagedaemon has not
2090 			 * updated vm_pagedaemon_time for more than 2 seconds.
2091 			 */
2092 			if (vm_pages_needed)
2093 				tsleep(&vm_pagedaemon_time, 0, "psleep", hz);
2094 			else
2095 				tsleep(&vm_pagedaemon_time, 0, "psleep", hz*10);
2096 			if (vm_pages_needed == 0) {
2097 				pass = 0;
2098 				continue;
2099 			}
2100 			if ((int)(ticks - vm_pagedaemon_time) < hz * 2) {
2101 				pass = 0;
2102 				continue;
2103 			}
2104 		} else {
2105 			/*
2106 			 * Primary pagedaemon
2107 			 */
2108 			if (vm_pages_needed == 0) {
2109 				error = tsleep(&vm_pages_needed,
2110 					       0, "psleep",
2111 					       vm_pageout_stats_interval * hz);
2112 				if (error &&
2113 				    vm_paging_needed() == 0 &&
2114 				    vm_pages_needed == 0) {
2115 					for (q = 0; q < PQ_L2_SIZE; ++q)
2116 						vm_pageout_page_stats(q);
2117 					continue;
2118 				}
2119 				vm_pagedaemon_time = ticks;
2120 				vm_pages_needed = 1;
2121 
2122 				/*
2123 				 * Wake the emergency pagedaemon up so it
2124 				 * can monitor us.  It will automatically
2125 				 * go back into a long sleep when
2126 				 * vm_pages_needed returns to 0.
2127 				 */
2128 				wakeup(&vm_pagedaemon_time);
2129 			}
2130 		}
2131 
2132 		mycpu->gd_cnt.v_pdwakeups++;
2133 
2134 		/*
2135 		 * Scan for INACTIVE->CLEAN/PAGEOUT
2136 		 *
2137 		 * This routine tries to avoid thrashing the system with
2138 		 * unnecessary activity.
2139 		 *
2140 		 * Calculate our target for the number of free+cache pages we
2141 		 * want to get to.  This is higher then the number that causes
2142 		 * allocations to stall (severe) in order to provide hysteresis,
2143 		 * and if we don't make it all the way but get to the minimum
2144 		 * we're happy.  Goose it a bit if there are multiple requests
2145 		 * for memory.
2146 		 *
2147 		 * Don't reduce avail_shortage inside the loop or the
2148 		 * PQAVERAGE() calculation will break.
2149 		 *
2150 		 * NOTE! deficit is differentiated from avail_shortage as
2151 		 *	 REQUIRING at least (deficit) pages to be cleaned,
2152 		 *	 even if the page queues are in good shape.  This
2153 		 *	 is used primarily for handling per-process
2154 		 *	 RLIMIT_RSS and may also see small values when
2155 		 *	 processes block due to low memory.
2156 		 */
2157 		vmstats_rollup();
2158 		if (isep == 0)
2159 			vm_pagedaemon_time = ticks;
2160 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
2161 		vm_pageout_deficit = 0;
2162 
2163 		if (avail_shortage > 0) {
2164 			long delta = 0;
2165 			int qq;
2166 
2167 			qq = q1iterator;
2168 			for (q = 0; q < PQ_L2_SIZE; ++q) {
2169 				delta += vm_pageout_scan_inactive(
2170 					    pass,
2171 					    qq & PQ_L2_MASK,
2172 					    PQAVERAGE(avail_shortage),
2173 					    &vnodes_skipped);
2174 				if (isep)
2175 					--qq;
2176 				else
2177 					++qq;
2178 				if (avail_shortage - delta <= 0)
2179 					break;
2180 			}
2181 			avail_shortage -= delta;
2182 			q1iterator = qq;
2183 		}
2184 
2185 		/*
2186 		 * Figure out how many active pages we must deactivate.  If
2187 		 * we were able to reach our target with just the inactive
2188 		 * scan above we limit the number of active pages we
2189 		 * deactivate to reduce unnecessary work.
2190 		 */
2191 		vmstats_rollup();
2192 		if (isep == 0)
2193 			vm_pagedaemon_time = ticks;
2194 		inactive_shortage = vmstats.v_inactive_target -
2195 				    vmstats.v_inactive_count;
2196 
2197 		/*
2198 		 * If we were unable to free sufficient inactive pages to
2199 		 * satisfy the free/cache queue requirements then simply
2200 		 * reaching the inactive target may not be good enough.
2201 		 * Try to deactivate pages in excess of the target based
2202 		 * on the shortfall.
2203 		 *
2204 		 * However to prevent thrashing the VM system do not
2205 		 * deactivate more than an additional 1/10 the inactive
2206 		 * target's worth of active pages.
2207 		 */
2208 		if (avail_shortage > 0) {
2209 			tmp = avail_shortage * 2;
2210 			if (tmp > vmstats.v_inactive_target / 10)
2211 				tmp = vmstats.v_inactive_target / 10;
2212 			inactive_shortage += tmp;
2213 		}
2214 
2215 		/*
2216 		 * Only trigger a pmap cleanup on inactive shortage.
2217 		 */
2218 		if (isep == 0 && inactive_shortage > 0) {
2219 			pmap_collect();
2220 		}
2221 
2222 		/*
2223 		 * Scan for ACTIVE->INACTIVE
2224 		 *
2225 		 * Only trigger on inactive shortage.  Triggering on
2226 		 * avail_shortage can starve the active queue with
2227 		 * unnecessary active->inactive transitions and destroy
2228 		 * performance.
2229 		 *
2230 		 * If this is the emergency pager, always try to move
2231 		 * a few pages from active to inactive because the inactive
2232 		 * queue might have enough pages, but not enough anonymous
2233 		 * pages.
2234 		 */
2235 		if (isep && inactive_shortage < vm_emerg_launder)
2236 			inactive_shortage = vm_emerg_launder;
2237 
2238 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
2239 			long delta = 0;
2240 			int qq;
2241 
2242 			qq = q2iterator;
2243 			for (q = 0; q < PQ_L2_SIZE; ++q) {
2244 				delta += vm_pageout_scan_active(
2245 						pass,
2246 						qq & PQ_L2_MASK,
2247 						PQAVERAGE(avail_shortage),
2248 						PQAVERAGE(inactive_shortage),
2249 						&recycle_count);
2250 				if (isep)
2251 					--qq;
2252 				else
2253 					++qq;
2254 				if (inactive_shortage - delta <= 0 &&
2255 				    avail_shortage - delta <= 0) {
2256 					break;
2257 				}
2258 			}
2259 			inactive_shortage -= delta;
2260 			avail_shortage -= delta;
2261 			q2iterator = qq;
2262 		}
2263 
2264 		/*
2265 		 * Scan for CACHE->FREE
2266 		 *
2267 		 * Finally free enough cache pages to meet our free page
2268 		 * requirement and take more drastic measures if we are
2269 		 * still in trouble.
2270 		 */
2271 		vmstats_rollup();
2272 		if (isep == 0)
2273 			vm_pagedaemon_time = ticks;
2274 		vm_pageout_scan_cache(avail_shortage, pass,
2275 				      vnodes_skipped, recycle_count);
2276 
2277 		/*
2278 		 * Wait for more work.
2279 		 */
2280 		if (avail_shortage > 0) {
2281 			++pass;
2282 			if (pass < 10 && vm_pages_needed > 1) {
2283 				/*
2284 				 * Normal operation, additional processes
2285 				 * have already kicked us.  Retry immediately
2286 				 * unless swap space is completely full in
2287 				 * which case delay a bit.
2288 				 */
2289 				if (swap_pager_full) {
2290 					tsleep(&vm_pages_needed, 0, "pdelay",
2291 						hz / 5);
2292 				} /* else immediate retry */
2293 			} else if (pass < 10) {
2294 				/*
2295 				 * Normal operation, fewer processes.  Delay
2296 				 * a bit but allow wakeups.  vm_pages_needed
2297 				 * is only adjusted against the primary
2298 				 * pagedaemon here.
2299 				 */
2300 				if (isep == 0)
2301 					vm_pages_needed = 0;
2302 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2303 				if (isep == 0)
2304 					vm_pages_needed = 1;
2305 			} else if (swap_pager_full == 0) {
2306 				/*
2307 				 * We've taken too many passes, forced delay.
2308 				 */
2309 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2310 			} else {
2311 				/*
2312 				 * Running out of memory, catastrophic
2313 				 * back-off to one-second intervals.
2314 				 */
2315 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
2316 			}
2317 		} else if (vm_pages_needed) {
2318 			/*
2319 			 * Interlocked wakeup of waiters (non-optional).
2320 			 *
2321 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2322 			 * wake
2323 			 */
2324 			pass = 0;
2325 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2326 			    !vm_page_count_target()) {
2327 				vm_pages_needed = 0;
2328 				wakeup(&vmstats.v_free_count);
2329 			}
2330 		} else {
2331 			pass = 0;
2332 		}
2333 	}
2334 }
2335 
2336 static struct kproc_desc pg1_kp = {
2337 	"pagedaemon",
2338 	vm_pageout_thread,
2339 	&pagethread
2340 };
2341 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &pg1_kp);
2342 
2343 static struct kproc_desc pg2_kp = {
2344 	"emergpager",
2345 	vm_pageout_thread,
2346 	&emergpager
2347 };
2348 SYSINIT(emergpager, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY, kproc_start, &pg2_kp);
2349 
2350 
2351 /*
2352  * Called after allocating a page out of the cache or free queue
2353  * to possibly wake the pagedaemon up to replentish our supply.
2354  *
2355  * We try to generate some hysteresis by waking the pagedaemon up
2356  * when our free+cache pages go below the free_min+cache_min level.
2357  * The pagedaemon tries to get the count back up to at least the
2358  * minimum, and through to the target level if possible.
2359  *
2360  * If the pagedaemon is already active bump vm_pages_needed as a hint
2361  * that there are even more requests pending.
2362  *
2363  * SMP races ok?
2364  * No requirements.
2365  */
2366 void
2367 pagedaemon_wakeup(void)
2368 {
2369 	if (vm_paging_needed() && curthread != pagethread) {
2370 		if (vm_pages_needed == 0) {
2371 			vm_pages_needed = 1;	/* SMP race ok */
2372 			wakeup(&vm_pages_needed);
2373 		} else if (vm_page_count_min(0)) {
2374 			++vm_pages_needed;	/* SMP race ok */
2375 		}
2376 	}
2377 }
2378 
2379 #if !defined(NO_SWAPPING)
2380 
2381 /*
2382  * SMP races ok?
2383  * No requirements.
2384  */
2385 static void
2386 vm_req_vmdaemon(void)
2387 {
2388 	static int lastrun = 0;
2389 
2390 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2391 		wakeup(&vm_daemon_needed);
2392 		lastrun = ticks;
2393 	}
2394 }
2395 
2396 static int vm_daemon_callback(struct proc *p, void *data __unused);
2397 
2398 /*
2399  * No requirements.
2400  */
2401 static void
2402 vm_daemon(void)
2403 {
2404 	int req_swapout;
2405 
2406 	while (TRUE) {
2407 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2408 		req_swapout = atomic_swap_int(&vm_pageout_req_swapout, 0);
2409 
2410 		/*
2411 		 * forced swapouts
2412 		 */
2413 		if (req_swapout)
2414 			swapout_procs(vm_pageout_req_swapout);
2415 
2416 		/*
2417 		 * scan the processes for exceeding their rlimits or if
2418 		 * process is swapped out -- deactivate pages
2419 		 */
2420 		allproc_scan(vm_daemon_callback, NULL, 0);
2421 	}
2422 }
2423 
2424 static int
2425 vm_daemon_callback(struct proc *p, void *data __unused)
2426 {
2427 	struct vmspace *vm;
2428 	vm_pindex_t limit, size;
2429 
2430 	/*
2431 	 * if this is a system process or if we have already
2432 	 * looked at this process, skip it.
2433 	 */
2434 	lwkt_gettoken(&p->p_token);
2435 
2436 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2437 		lwkt_reltoken(&p->p_token);
2438 		return (0);
2439 	}
2440 
2441 	/*
2442 	 * if the process is in a non-running type state,
2443 	 * don't touch it.
2444 	 */
2445 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
2446 		lwkt_reltoken(&p->p_token);
2447 		return (0);
2448 	}
2449 
2450 	/*
2451 	 * get a limit
2452 	 */
2453 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2454 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2455 
2456 	/*
2457 	 * let processes that are swapped out really be
2458 	 * swapped out.  Set the limit to nothing to get as
2459 	 * many pages out to swap as possible.
2460 	 */
2461 	if (p->p_flags & P_SWAPPEDOUT)
2462 		limit = 0;
2463 
2464 	vm = p->p_vmspace;
2465 	vmspace_hold(vm);
2466 	size = pmap_resident_tlnw_count(&vm->vm_pmap);
2467 	if (limit >= 0 && size > 4096 &&
2468 	    size - 4096 >= limit && vm_pageout_memuse_mode >= 1) {
2469 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2470 	}
2471 	vmspace_drop(vm);
2472 
2473 	lwkt_reltoken(&p->p_token);
2474 
2475 	return (0);
2476 }
2477 
2478 #endif
2479