xref: /dragonfly/sys/vm/vm_pageout.c (revision 23265324)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.31 2007/02/16 23:11:40 corecode Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
396 	 * mark the pages read-only.
397 	 *
398 	 * We do not have to fixup the clean/dirty bits here... we can
399 	 * allow the pager to do it after the I/O completes.
400 	 */
401 
402 	for (i = 0; i < count; i++) {
403 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404 		vm_page_io_start(mc[i]);
405 		vm_page_protect(mc[i], VM_PROT_READ);
406 	}
407 
408 	object = mc[0]->object;
409 	vm_object_pip_add(object, count);
410 
411 	vm_pager_put_pages(object, mc, count,
412 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413 	    pageout_status);
414 
415 	for (i = 0; i < count; i++) {
416 		vm_page_t mt = mc[i];
417 
418 		switch (pageout_status[i]) {
419 		case VM_PAGER_OK:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_PEND:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_BAD:
426 			/*
427 			 * Page outside of range of object. Right now we
428 			 * essentially lose the changes by pretending it
429 			 * worked.
430 			 */
431 			pmap_clear_modify(mt);
432 			vm_page_undirty(mt);
433 			break;
434 		case VM_PAGER_ERROR:
435 		case VM_PAGER_FAIL:
436 			/*
437 			 * If page couldn't be paged out, then reactivate the
438 			 * page so it doesn't clog the inactive list.  (We
439 			 * will try paging out it again later).
440 			 */
441 			vm_page_activate(mt);
442 			break;
443 		case VM_PAGER_AGAIN:
444 			break;
445 		}
446 
447 		/*
448 		 * If the operation is still going, leave the page busy to
449 		 * block all other accesses. Also, leave the paging in
450 		 * progress indicator set so that we don't attempt an object
451 		 * collapse.
452 		 */
453 		if (pageout_status[i] != VM_PAGER_PEND) {
454 			vm_object_pip_wakeup(object);
455 			vm_page_io_finish(mt);
456 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457 				vm_page_protect(mt, VM_PROT_READ);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  *	vm_pageout_object_deactivate_pages
466  *
467  *	deactivate enough pages to satisfy the inactive target
468  *	requirements or if vm_page_proc_limit is set, then
469  *	deactivate all of the pages in the object and its
470  *	backing_objects.
471  *
472  *	The object and map must be locked.
473  */
474 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
475 
476 static void
477 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
478 	vm_pindex_t desired, int map_remove_only)
479 {
480 	struct rb_vm_page_scan_info info;
481 	int remove_mode;
482 
483 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
484 		return;
485 
486 	while (object) {
487 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
488 			return;
489 		if (object->paging_in_progress)
490 			return;
491 
492 		remove_mode = map_remove_only;
493 		if (object->shadow_count > 1)
494 			remove_mode = 1;
495 
496 		/*
497 		 * scan the objects entire memory queue.  spl protection is
498 		 * required to avoid an interrupt unbusy/free race against
499 		 * our busy check.
500 		 */
501 		crit_enter();
502 		info.limit = remove_mode;
503 		info.map = map;
504 		info.desired = desired;
505 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
506 				vm_pageout_object_deactivate_pages_callback,
507 				&info
508 		);
509 		crit_exit();
510 		object = object->backing_object;
511 	}
512 }
513 
514 static int
515 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
516 {
517 	struct rb_vm_page_scan_info *info = data;
518 	int actcount;
519 
520 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
521 		return(-1);
522 	}
523 	mycpu->gd_cnt.v_pdpages++;
524 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
525 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
526 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
527 		return(0);
528 	}
529 
530 	actcount = pmap_ts_referenced(p);
531 	if (actcount) {
532 		vm_page_flag_set(p, PG_REFERENCED);
533 	} else if (p->flags & PG_REFERENCED) {
534 		actcount = 1;
535 	}
536 
537 	if ((p->queue != PQ_ACTIVE) &&
538 		(p->flags & PG_REFERENCED)) {
539 		vm_page_activate(p);
540 		p->act_count += actcount;
541 		vm_page_flag_clear(p, PG_REFERENCED);
542 	} else if (p->queue == PQ_ACTIVE) {
543 		if ((p->flags & PG_REFERENCED) == 0) {
544 			p->act_count -= min(p->act_count, ACT_DECLINE);
545 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
546 				vm_page_protect(p, VM_PROT_NONE);
547 				vm_page_deactivate(p);
548 			} else {
549 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
551 			}
552 		} else {
553 			vm_page_activate(p);
554 			vm_page_flag_clear(p, PG_REFERENCED);
555 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
556 				p->act_count += ACT_ADVANCE;
557 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
558 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
559 		}
560 	} else if (p->queue == PQ_INACTIVE) {
561 		vm_page_protect(p, VM_PROT_NONE);
562 	}
563 	return(0);
564 }
565 
566 /*
567  * deactivate some number of pages in a map, try to do it fairly, but
568  * that is really hard to do.
569  */
570 static void
571 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
572 {
573 	vm_map_entry_t tmpe;
574 	vm_object_t obj, bigobj;
575 	int nothingwired;
576 
577 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
578 		return;
579 	}
580 
581 	bigobj = NULL;
582 	nothingwired = TRUE;
583 
584 	/*
585 	 * first, search out the biggest object, and try to free pages from
586 	 * that.
587 	 */
588 	tmpe = map->header.next;
589 	while (tmpe != &map->header) {
590 		switch(tmpe->maptype) {
591 		case VM_MAPTYPE_NORMAL:
592 		case VM_MAPTYPE_VPAGETABLE:
593 			obj = tmpe->object.vm_object;
594 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
595 				((bigobj == NULL) ||
596 				 (bigobj->resident_page_count < obj->resident_page_count))) {
597 				bigobj = obj;
598 			}
599 			break;
600 		default:
601 			break;
602 		}
603 		if (tmpe->wired_count > 0)
604 			nothingwired = FALSE;
605 		tmpe = tmpe->next;
606 	}
607 
608 	if (bigobj)
609 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
610 
611 	/*
612 	 * Next, hunt around for other pages to deactivate.  We actually
613 	 * do this search sort of wrong -- .text first is not the best idea.
614 	 */
615 	tmpe = map->header.next;
616 	while (tmpe != &map->header) {
617 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
618 			break;
619 		switch(tmpe->maptype) {
620 		case VM_MAPTYPE_NORMAL:
621 		case VM_MAPTYPE_VPAGETABLE:
622 			obj = tmpe->object.vm_object;
623 			if (obj)
624 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
625 			break;
626 		default:
627 			break;
628 		}
629 		tmpe = tmpe->next;
630 	};
631 
632 	/*
633 	 * Remove all mappings if a process is swapped out, this will free page
634 	 * table pages.
635 	 */
636 	if (desired == 0 && nothingwired)
637 		pmap_remove(vm_map_pmap(map),
638 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
639 	vm_map_unlock(map);
640 }
641 #endif
642 
643 /*
644  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
645  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
646  * be trivially freed.
647  */
648 void
649 vm_pageout_page_free(vm_page_t m) {
650 	vm_object_t object = m->object;
651 	int type = object->type;
652 
653 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
654 		vm_object_reference(object);
655 	vm_page_busy(m);
656 	vm_page_protect(m, VM_PROT_NONE);
657 	vm_page_free(m);
658 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
659 		vm_object_deallocate(object);
660 }
661 
662 /*
663  *	vm_pageout_scan does the dirty work for the pageout daemon.
664  */
665 
666 struct vm_pageout_scan_info {
667 	struct proc *bigproc;
668 	vm_offset_t bigsize;
669 };
670 
671 static int vm_pageout_scan_callback(struct proc *p, void *data);
672 
673 static void
674 vm_pageout_scan(int pass)
675 {
676 	struct vm_pageout_scan_info info;
677 	vm_page_t m, next;
678 	struct vm_page marker;
679 	int page_shortage, maxscan, pcount;
680 	int addl_page_shortage, addl_page_shortage_init;
681 	vm_object_t object;
682 	int actcount;
683 	int vnodes_skipped = 0;
684 	int maxlaunder;
685 
686 	/*
687 	 * Do whatever cleanup that the pmap code can.
688 	 */
689 	pmap_collect();
690 
691 	addl_page_shortage_init = vm_pageout_deficit;
692 	vm_pageout_deficit = 0;
693 
694 	/*
695 	 * Calculate the number of pages we want to either free or move
696 	 * to the cache.
697 	 */
698 	page_shortage = vm_paging_target() + addl_page_shortage_init;
699 
700 	/*
701 	 * Initialize our marker
702 	 */
703 	bzero(&marker, sizeof(marker));
704 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
705 	marker.queue = PQ_INACTIVE;
706 	marker.wire_count = 1;
707 
708 	/*
709 	 * Start scanning the inactive queue for pages we can move to the
710 	 * cache or free.  The scan will stop when the target is reached or
711 	 * we have scanned the entire inactive queue.  Note that m->act_count
712 	 * is not used to form decisions for the inactive queue, only for the
713 	 * active queue.
714 	 *
715 	 * maxlaunder limits the number of dirty pages we flush per scan.
716 	 * For most systems a smaller value (16 or 32) is more robust under
717 	 * extreme memory and disk pressure because any unnecessary writes
718 	 * to disk can result in extreme performance degredation.  However,
719 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
720 	 * used) will die horribly with limited laundering.  If the pageout
721 	 * daemon cannot clean enough pages in the first pass, we let it go
722 	 * all out in succeeding passes.
723 	 */
724 	if ((maxlaunder = vm_max_launder) <= 1)
725 		maxlaunder = 1;
726 	if (pass)
727 		maxlaunder = 10000;
728 
729 	/*
730 	 * We will generally be in a critical section throughout the
731 	 * scan, but we can release it temporarily when we are sitting on a
732 	 * non-busy page without fear.  this is required to prevent an
733 	 * interrupt from unbusying or freeing a page prior to our busy
734 	 * check, leaving us on the wrong queue or checking the wrong
735 	 * page.
736 	 */
737 	crit_enter();
738 rescan0:
739 	addl_page_shortage = addl_page_shortage_init;
740 	maxscan = vmstats.v_inactive_count;
741 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
742 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
743 	     m = next
744 	 ) {
745 		mycpu->gd_cnt.v_pdpages++;
746 
747 		/*
748 		 * Give interrupts a chance
749 		 */
750 		crit_exit();
751 		crit_enter();
752 
753 		/*
754 		 * It's easier for some of the conditions below to just loop
755 		 * and catch queue changes here rather then check everywhere
756 		 * else.
757 		 */
758 		if (m->queue != PQ_INACTIVE)
759 			goto rescan0;
760 		next = TAILQ_NEXT(m, pageq);
761 
762 		/*
763 		 * skip marker pages
764 		 */
765 		if (m->flags & PG_MARKER)
766 			continue;
767 
768 		/*
769 		 * A held page may be undergoing I/O, so skip it.
770 		 */
771 		if (m->hold_count) {
772 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
773 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
774 			addl_page_shortage++;
775 			continue;
776 		}
777 
778 		/*
779 		 * Dont mess with busy pages, keep in the front of the
780 		 * queue, most likely are being paged out.
781 		 */
782 		if (m->busy || (m->flags & PG_BUSY)) {
783 			addl_page_shortage++;
784 			continue;
785 		}
786 
787 		if (m->object->ref_count == 0) {
788 			/*
789 			 * If the object is not being used, we ignore previous
790 			 * references.
791 			 */
792 			vm_page_flag_clear(m, PG_REFERENCED);
793 			pmap_clear_reference(m);
794 
795 		} else if (((m->flags & PG_REFERENCED) == 0) &&
796 			    (actcount = pmap_ts_referenced(m))) {
797 			/*
798 			 * Otherwise, if the page has been referenced while
799 			 * in the inactive queue, we bump the "activation
800 			 * count" upwards, making it less likely that the
801 			 * page will be added back to the inactive queue
802 			 * prematurely again.  Here we check the page tables
803 			 * (or emulated bits, if any), given the upper level
804 			 * VM system not knowing anything about existing
805 			 * references.
806 			 */
807 			vm_page_activate(m);
808 			m->act_count += (actcount + ACT_ADVANCE);
809 			continue;
810 		}
811 
812 		/*
813 		 * If the upper level VM system knows about any page
814 		 * references, we activate the page.  We also set the
815 		 * "activation count" higher than normal so that we will less
816 		 * likely place pages back onto the inactive queue again.
817 		 */
818 		if ((m->flags & PG_REFERENCED) != 0) {
819 			vm_page_flag_clear(m, PG_REFERENCED);
820 			actcount = pmap_ts_referenced(m);
821 			vm_page_activate(m);
822 			m->act_count += (actcount + ACT_ADVANCE + 1);
823 			continue;
824 		}
825 
826 		/*
827 		 * If the upper level VM system doesn't know anything about
828 		 * the page being dirty, we have to check for it again.  As
829 		 * far as the VM code knows, any partially dirty pages are
830 		 * fully dirty.
831 		 *
832 		 * Pages marked PG_WRITEABLE may be mapped into the user
833 		 * address space of a process running on another cpu.  A
834 		 * user process (without holding the MP lock) running on
835 		 * another cpu may be able to touch the page while we are
836 		 * trying to remove it.  To prevent this from occuring we
837 		 * must call pmap_remove_all() or otherwise make the page
838 		 * read-only.  If the race occured pmap_remove_all() is
839 		 * responsible for setting m->dirty.
840 		 */
841 		if (m->dirty == 0) {
842 			vm_page_test_dirty(m);
843 #if 0
844 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
845 				pmap_remove_all(m);
846 #endif
847 		} else {
848 			vm_page_dirty(m);
849 		}
850 
851 		if (m->valid == 0) {
852 			/*
853 			 * Invalid pages can be easily freed
854 			 */
855 			vm_pageout_page_free(m);
856 			mycpu->gd_cnt.v_dfree++;
857 			--page_shortage;
858 		} else if (m->dirty == 0) {
859 			/*
860 			 * Clean pages can be placed onto the cache queue.
861 			 * This effectively frees them.
862 			 */
863 			vm_page_cache(m);
864 			--page_shortage;
865 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
866 			/*
867 			 * Dirty pages need to be paged out, but flushing
868 			 * a page is extremely expensive verses freeing
869 			 * a clean page.  Rather then artificially limiting
870 			 * the number of pages we can flush, we instead give
871 			 * dirty pages extra priority on the inactive queue
872 			 * by forcing them to be cycled through the queue
873 			 * twice before being flushed, after which the
874 			 * (now clean) page will cycle through once more
875 			 * before being freed.  This significantly extends
876 			 * the thrash point for a heavily loaded machine.
877 			 */
878 			vm_page_flag_set(m, PG_WINATCFLS);
879 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
880 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
881 		} else if (maxlaunder > 0) {
882 			/*
883 			 * We always want to try to flush some dirty pages if
884 			 * we encounter them, to keep the system stable.
885 			 * Normally this number is small, but under extreme
886 			 * pressure where there are insufficient clean pages
887 			 * on the inactive queue, we may have to go all out.
888 			 */
889 			int swap_pageouts_ok;
890 			struct vnode *vp = NULL;
891 
892 			object = m->object;
893 
894 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
895 				swap_pageouts_ok = 1;
896 			} else {
897 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
898 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
899 				vm_page_count_min());
900 
901 			}
902 
903 			/*
904 			 * We don't bother paging objects that are "dead".
905 			 * Those objects are in a "rundown" state.
906 			 */
907 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
908 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
909 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
910 				continue;
911 			}
912 
913 			/*
914 			 * The object is already known NOT to be dead.   It
915 			 * is possible for the vget() to block the whole
916 			 * pageout daemon, but the new low-memory handling
917 			 * code should prevent it.
918 			 *
919 			 * The previous code skipped locked vnodes and, worse,
920 			 * reordered pages in the queue.  This results in
921 			 * completely non-deterministic operation because,
922 			 * quite often, a vm_fault has initiated an I/O and
923 			 * is holding a locked vnode at just the point where
924 			 * the pageout daemon is woken up.
925 			 *
926 			 * We can't wait forever for the vnode lock, we might
927 			 * deadlock due to a vn_read() getting stuck in
928 			 * vm_wait while holding this vnode.  We skip the
929 			 * vnode if we can't get it in a reasonable amount
930 			 * of time.
931 			 */
932 
933 			if (object->type == OBJT_VNODE) {
934 				vp = object->handle;
935 
936 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
937 					++pageout_lock_miss;
938 					if (object->flags & OBJ_MIGHTBEDIRTY)
939 						    vnodes_skipped++;
940 					continue;
941 				}
942 
943 				/*
944 				 * The page might have been moved to another
945 				 * queue during potential blocking in vget()
946 				 * above.  The page might have been freed and
947 				 * reused for another vnode.  The object might
948 				 * have been reused for another vnode.
949 				 */
950 				if (m->queue != PQ_INACTIVE ||
951 				    m->object != object ||
952 				    object->handle != vp) {
953 					if (object->flags & OBJ_MIGHTBEDIRTY)
954 						vnodes_skipped++;
955 					vput(vp);
956 					continue;
957 				}
958 
959 				/*
960 				 * The page may have been busied during the
961 				 * blocking in vput();  We don't move the
962 				 * page back onto the end of the queue so that
963 				 * statistics are more correct if we don't.
964 				 */
965 				if (m->busy || (m->flags & PG_BUSY)) {
966 					vput(vp);
967 					continue;
968 				}
969 
970 				/*
971 				 * If the page has become held it might
972 				 * be undergoing I/O, so skip it
973 				 */
974 				if (m->hold_count) {
975 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
976 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
977 					if (object->flags & OBJ_MIGHTBEDIRTY)
978 						vnodes_skipped++;
979 					vput(vp);
980 					continue;
981 				}
982 			}
983 
984 			/*
985 			 * If a page is dirty, then it is either being washed
986 			 * (but not yet cleaned) or it is still in the
987 			 * laundry.  If it is still in the laundry, then we
988 			 * start the cleaning operation.
989 			 *
990 			 * This operation may cluster, invalidating the 'next'
991 			 * pointer.  To prevent an inordinate number of
992 			 * restarts we use our marker to remember our place.
993 			 *
994 			 * decrement page_shortage on success to account for
995 			 * the (future) cleaned page.  Otherwise we could wind
996 			 * up laundering or cleaning too many pages.
997 			 */
998 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
999 			if (vm_pageout_clean(m) != 0) {
1000 				--page_shortage;
1001 				--maxlaunder;
1002 			}
1003 			next = TAILQ_NEXT(&marker, pageq);
1004 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1005 			if (vp != NULL)
1006 				vput(vp);
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Compute the number of pages we want to try to move from the
1012 	 * active queue to the inactive queue.
1013 	 */
1014 	page_shortage = vm_paging_target() +
1015 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
1016 	page_shortage += addl_page_shortage;
1017 
1018 	/*
1019 	 * Scan the active queue for things we can deactivate. We nominally
1020 	 * track the per-page activity counter and use it to locate
1021 	 * deactivation candidates.
1022 	 *
1023 	 * NOTE: we are still in a critical section.
1024 	 */
1025 	pcount = vmstats.v_active_count;
1026 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1027 
1028 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1029 		/*
1030 		 * Give interrupts a chance.
1031 		 */
1032 		crit_exit();
1033 		crit_enter();
1034 
1035 		/*
1036 		 * If the page was ripped out from under us, just stop.
1037 		 */
1038 		if (m->queue != PQ_ACTIVE)
1039 			break;
1040 		next = TAILQ_NEXT(m, pageq);
1041 
1042 		/*
1043 		 * Don't deactivate pages that are busy.
1044 		 */
1045 		if ((m->busy != 0) ||
1046 		    (m->flags & PG_BUSY) ||
1047 		    (m->hold_count != 0)) {
1048 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1049 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1050 			m = next;
1051 			continue;
1052 		}
1053 
1054 		/*
1055 		 * The count for pagedaemon pages is done after checking the
1056 		 * page for eligibility...
1057 		 */
1058 		mycpu->gd_cnt.v_pdpages++;
1059 
1060 		/*
1061 		 * Check to see "how much" the page has been used.
1062 		 */
1063 		actcount = 0;
1064 		if (m->object->ref_count != 0) {
1065 			if (m->flags & PG_REFERENCED) {
1066 				actcount += 1;
1067 			}
1068 			actcount += pmap_ts_referenced(m);
1069 			if (actcount) {
1070 				m->act_count += ACT_ADVANCE + actcount;
1071 				if (m->act_count > ACT_MAX)
1072 					m->act_count = ACT_MAX;
1073 			}
1074 		}
1075 
1076 		/*
1077 		 * Since we have "tested" this bit, we need to clear it now.
1078 		 */
1079 		vm_page_flag_clear(m, PG_REFERENCED);
1080 
1081 		/*
1082 		 * Only if an object is currently being used, do we use the
1083 		 * page activation count stats.
1084 		 */
1085 		if (actcount && (m->object->ref_count != 0)) {
1086 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1087 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1088 		} else {
1089 			m->act_count -= min(m->act_count, ACT_DECLINE);
1090 			if (vm_pageout_algorithm ||
1091 			    m->object->ref_count == 0 ||
1092 			    m->act_count < pass) {
1093 				page_shortage--;
1094 				if (m->object->ref_count == 0) {
1095 					vm_page_protect(m, VM_PROT_NONE);
1096 					if (m->dirty == 0)
1097 						vm_page_cache(m);
1098 					else
1099 						vm_page_deactivate(m);
1100 				} else {
1101 					vm_page_deactivate(m);
1102 				}
1103 			} else {
1104 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1105 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106 			}
1107 		}
1108 		m = next;
1109 	}
1110 
1111 	/*
1112 	 * We try to maintain some *really* free pages, this allows interrupt
1113 	 * code to be guaranteed space.  Since both cache and free queues
1114 	 * are considered basically 'free', moving pages from cache to free
1115 	 * does not effect other calculations.
1116 	 *
1117 	 * NOTE: we are still in a critical section.
1118 	 */
1119 
1120 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1121 		static int cache_rover = 0;
1122 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1123 		if (!m)
1124 			break;
1125 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1126 		    m->busy ||
1127 		    m->hold_count ||
1128 		    m->wire_count) {
1129 #ifdef INVARIANTS
1130 			kprintf("Warning: busy page %p found in cache\n", m);
1131 #endif
1132 			vm_page_deactivate(m);
1133 			continue;
1134 		}
1135 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1136 		vm_pageout_page_free(m);
1137 		mycpu->gd_cnt.v_dfree++;
1138 	}
1139 
1140 	crit_exit();
1141 
1142 #if !defined(NO_SWAPPING)
1143 	/*
1144 	 * Idle process swapout -- run once per second.
1145 	 */
1146 	if (vm_swap_idle_enabled) {
1147 		static long lsec;
1148 		if (time_second != lsec) {
1149 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1150 			vm_req_vmdaemon();
1151 			lsec = time_second;
1152 		}
1153 	}
1154 #endif
1155 
1156 	/*
1157 	 * If we didn't get enough free pages, and we have skipped a vnode
1158 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1159 	 * if we did not get enough free pages.
1160 	 */
1161 	if (vm_paging_target() > 0) {
1162 		if (vnodes_skipped && vm_page_count_min())
1163 			speedup_syncer();
1164 #if !defined(NO_SWAPPING)
1165 		if (vm_swap_enabled && vm_page_count_target()) {
1166 			vm_req_vmdaemon();
1167 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1168 		}
1169 #endif
1170 	}
1171 
1172 	/*
1173 	 * If we are out of swap and were not able to reach our paging
1174 	 * target, kill the largest process.
1175 	 */
1176 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1177 	    (swap_pager_full && vm_paging_target() > 0)) {
1178 #if 0
1179 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1180 #endif
1181 		info.bigproc = NULL;
1182 		info.bigsize = 0;
1183 		allproc_scan(vm_pageout_scan_callback, &info);
1184 		if (info.bigproc != NULL) {
1185 			killproc(info.bigproc, "out of swap space");
1186 			info.bigproc->p_nice = PRIO_MIN;
1187 			info.bigproc->p_usched->resetpriority(
1188 				FIRST_LWP_IN_PROC(info.bigproc));
1189 			wakeup(&vmstats.v_free_count);
1190 			PRELE(info.bigproc);
1191 		}
1192 	}
1193 }
1194 
1195 static int
1196 vm_pageout_scan_callback(struct proc *p, void *data)
1197 {
1198 	struct vm_pageout_scan_info *info = data;
1199 	vm_offset_t size;
1200 
1201 	/*
1202 	 * if this is a system process, skip it
1203 	 */
1204 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1205 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1206 		return (0);
1207 	}
1208 
1209 	/*
1210 	 * if the process is in a non-running type state,
1211 	 * don't touch it.
1212 	 */
1213 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1214 		return (0);
1215 	}
1216 
1217 	/*
1218 	 * get the process size
1219 	 */
1220 	size = vmspace_resident_count(p->p_vmspace) +
1221 		vmspace_swap_count(p->p_vmspace);
1222 
1223 	/*
1224 	 * If the this process is bigger than the biggest one
1225 	 * remember it.
1226 	 */
1227 	if (size > info->bigsize) {
1228 		if (info->bigproc)
1229 			PRELE(info->bigproc);
1230 		PHOLD(p);
1231 		info->bigproc = p;
1232 		info->bigsize = size;
1233 	}
1234 	return(0);
1235 }
1236 
1237 /*
1238  * This routine tries to maintain the pseudo LRU active queue,
1239  * so that during long periods of time where there is no paging,
1240  * that some statistic accumulation still occurs.  This code
1241  * helps the situation where paging just starts to occur.
1242  */
1243 static void
1244 vm_pageout_page_stats(void)
1245 {
1246 	vm_page_t m,next;
1247 	int pcount,tpcount;		/* Number of pages to check */
1248 	static int fullintervalcount = 0;
1249 	int page_shortage;
1250 
1251 	page_shortage =
1252 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1253 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1254 
1255 	if (page_shortage <= 0)
1256 		return;
1257 
1258 	crit_enter();
1259 
1260 	pcount = vmstats.v_active_count;
1261 	fullintervalcount += vm_pageout_stats_interval;
1262 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1263 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1264 		if (pcount > tpcount)
1265 			pcount = tpcount;
1266 	} else {
1267 		fullintervalcount = 0;
1268 	}
1269 
1270 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1271 	while ((m != NULL) && (pcount-- > 0)) {
1272 		int actcount;
1273 
1274 		if (m->queue != PQ_ACTIVE) {
1275 			break;
1276 		}
1277 
1278 		next = TAILQ_NEXT(m, pageq);
1279 		/*
1280 		 * Don't deactivate pages that are busy.
1281 		 */
1282 		if ((m->busy != 0) ||
1283 		    (m->flags & PG_BUSY) ||
1284 		    (m->hold_count != 0)) {
1285 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1286 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1287 			m = next;
1288 			continue;
1289 		}
1290 
1291 		actcount = 0;
1292 		if (m->flags & PG_REFERENCED) {
1293 			vm_page_flag_clear(m, PG_REFERENCED);
1294 			actcount += 1;
1295 		}
1296 
1297 		actcount += pmap_ts_referenced(m);
1298 		if (actcount) {
1299 			m->act_count += ACT_ADVANCE + actcount;
1300 			if (m->act_count > ACT_MAX)
1301 				m->act_count = ACT_MAX;
1302 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1303 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1304 		} else {
1305 			if (m->act_count == 0) {
1306 				/*
1307 				 * We turn off page access, so that we have
1308 				 * more accurate RSS stats.  We don't do this
1309 				 * in the normal page deactivation when the
1310 				 * system is loaded VM wise, because the
1311 				 * cost of the large number of page protect
1312 				 * operations would be higher than the value
1313 				 * of doing the operation.
1314 				 */
1315 				vm_page_protect(m, VM_PROT_NONE);
1316 				vm_page_deactivate(m);
1317 			} else {
1318 				m->act_count -= min(m->act_count, ACT_DECLINE);
1319 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1320 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1321 			}
1322 		}
1323 
1324 		m = next;
1325 	}
1326 	crit_exit();
1327 }
1328 
1329 static int
1330 vm_pageout_free_page_calc(vm_size_t count)
1331 {
1332 	if (count < vmstats.v_page_count)
1333 		 return 0;
1334 	/*
1335 	 * free_reserved needs to include enough for the largest swap pager
1336 	 * structures plus enough for any pv_entry structs when paging.
1337 	 */
1338 	if (vmstats.v_page_count > 1024)
1339 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1340 	else
1341 		vmstats.v_free_min = 4;
1342 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1343 		vmstats.v_interrupt_free_min;
1344 	vmstats.v_free_reserved = vm_pageout_page_count +
1345 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1346 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1347 	vmstats.v_free_min += vmstats.v_free_reserved;
1348 	vmstats.v_free_severe += vmstats.v_free_reserved;
1349 	return 1;
1350 }
1351 
1352 
1353 /*
1354  *	vm_pageout is the high level pageout daemon.
1355  */
1356 static void
1357 vm_pageout(void)
1358 {
1359 	int pass;
1360 
1361 	/*
1362 	 * Initialize some paging parameters.
1363 	 */
1364 
1365 	vmstats.v_interrupt_free_min = 2;
1366 	if (vmstats.v_page_count < 2000)
1367 		vm_pageout_page_count = 8;
1368 
1369 	vm_pageout_free_page_calc(vmstats.v_page_count);
1370 	/*
1371 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1372 	 * that these are more a measure of the VM cache queue hysteresis
1373 	 * then the VM free queue.  Specifically, v_free_target is the
1374 	 * high water mark (free+cache pages).
1375 	 *
1376 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1377 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1378 	 * be big enough to handle memory needs while the pageout daemon
1379 	 * is signalled and run to free more pages.
1380 	 */
1381 	if (vmstats.v_free_count > 6144)
1382 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1383 	else
1384 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1385 
1386 	if (vmstats.v_free_count > 2048) {
1387 		vmstats.v_cache_min = vmstats.v_free_target;
1388 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1389 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1390 	} else {
1391 		vmstats.v_cache_min = 0;
1392 		vmstats.v_cache_max = 0;
1393 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1394 	}
1395 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1396 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1397 
1398 	/* XXX does not really belong here */
1399 	if (vm_page_max_wired == 0)
1400 		vm_page_max_wired = vmstats.v_free_count / 3;
1401 
1402 	if (vm_pageout_stats_max == 0)
1403 		vm_pageout_stats_max = vmstats.v_free_target;
1404 
1405 	/*
1406 	 * Set interval in seconds for stats scan.
1407 	 */
1408 	if (vm_pageout_stats_interval == 0)
1409 		vm_pageout_stats_interval = 5;
1410 	if (vm_pageout_full_stats_interval == 0)
1411 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1412 
1413 
1414 	/*
1415 	 * Set maximum free per pass
1416 	 */
1417 	if (vm_pageout_stats_free_max == 0)
1418 		vm_pageout_stats_free_max = 5;
1419 
1420 	swap_pager_swap_init();
1421 	pass = 0;
1422 	/*
1423 	 * The pageout daemon is never done, so loop forever.
1424 	 */
1425 	while (TRUE) {
1426 		int error;
1427 
1428 		/*
1429 		 * If we have enough free memory, wakeup waiters.  Do
1430 		 * not clear vm_pages_needed until we reach our target,
1431 		 * otherwise we may be woken up over and over again and
1432 		 * waste a lot of cpu.
1433 		 */
1434 		crit_enter();
1435 		if (vm_pages_needed && !vm_page_count_min()) {
1436 			if (vm_paging_needed() <= 0)
1437 				vm_pages_needed = 0;
1438 			wakeup(&vmstats.v_free_count);
1439 		}
1440 		if (vm_pages_needed) {
1441 			/*
1442 			 * Still not done, take a second pass without waiting
1443 			 * (unlimited dirty cleaning), otherwise sleep a bit
1444 			 * and try again.
1445 			 */
1446 			++pass;
1447 			if (pass > 1)
1448 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1449 		} else {
1450 			/*
1451 			 * Good enough, sleep & handle stats.  Prime the pass
1452 			 * for the next run.
1453 			 */
1454 			if (pass > 1)
1455 				pass = 1;
1456 			else
1457 				pass = 0;
1458 			error = tsleep(&vm_pages_needed,
1459 				0, "psleep", vm_pageout_stats_interval * hz);
1460 			if (error && !vm_pages_needed) {
1461 				crit_exit();
1462 				pass = 0;
1463 				vm_pageout_page_stats();
1464 				continue;
1465 			}
1466 		}
1467 
1468 		if (vm_pages_needed)
1469 			mycpu->gd_cnt.v_pdwakeups++;
1470 		crit_exit();
1471 		vm_pageout_scan(pass);
1472 		vm_pageout_deficit = 0;
1473 	}
1474 }
1475 
1476 void
1477 pagedaemon_wakeup(void)
1478 {
1479 	if (!vm_pages_needed && curthread != pagethread) {
1480 		vm_pages_needed++;
1481 		wakeup(&vm_pages_needed);
1482 	}
1483 }
1484 
1485 #if !defined(NO_SWAPPING)
1486 static void
1487 vm_req_vmdaemon(void)
1488 {
1489 	static int lastrun = 0;
1490 
1491 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1492 		wakeup(&vm_daemon_needed);
1493 		lastrun = ticks;
1494 	}
1495 }
1496 
1497 static int vm_daemon_callback(struct proc *p, void *data __unused);
1498 
1499 static void
1500 vm_daemon(void)
1501 {
1502 	while (TRUE) {
1503 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1504 		if (vm_pageout_req_swapout) {
1505 			swapout_procs(vm_pageout_req_swapout);
1506 			vm_pageout_req_swapout = 0;
1507 		}
1508 		/*
1509 		 * scan the processes for exceeding their rlimits or if
1510 		 * process is swapped out -- deactivate pages
1511 		 */
1512 		allproc_scan(vm_daemon_callback, NULL);
1513 	}
1514 }
1515 
1516 static int
1517 vm_daemon_callback(struct proc *p, void *data __unused)
1518 {
1519 	vm_pindex_t limit, size;
1520 
1521 	/*
1522 	 * if this is a system process or if we have already
1523 	 * looked at this process, skip it.
1524 	 */
1525 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1526 		return (0);
1527 
1528 	/*
1529 	 * if the process is in a non-running type state,
1530 	 * don't touch it.
1531 	 */
1532 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1533 		return (0);
1534 
1535 	/*
1536 	 * get a limit
1537 	 */
1538 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1539 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1540 
1541 	/*
1542 	 * let processes that are swapped out really be
1543 	 * swapped out.  Set the limit to nothing to get as
1544 	 * many pages out to swap as possible.
1545 	 */
1546 	if (p->p_flag & P_SWAPPEDOUT)
1547 		limit = 0;
1548 
1549 	size = vmspace_resident_count(p->p_vmspace);
1550 	if (limit >= 0 && size >= limit) {
1551 		vm_pageout_map_deactivate_pages(
1552 		    &p->p_vmspace->vm_map, limit);
1553 	}
1554 	return (0);
1555 }
1556 
1557 #endif
1558