xref: /dragonfly/sys/vm/vm_pageout.c (revision 279dd846)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106 
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct	thread *vmthread;
111 
112 static struct kproc_desc vm_kp = {
113 	"vmdaemon",
114 	vm_daemon,
115 	&vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
118 #endif
119 
120 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;	/* pageout daemon needs pages */
123 int vm_page_free_hysteresis = 16;
124 
125 #if !defined(NO_SWAPPING)
126 static int vm_pageout_req_swapout;	/* XXX */
127 static int vm_daemon_needed;
128 #endif
129 static int vm_max_launder = 4096;
130 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
131 static int vm_pageout_full_stats_interval = 0;
132 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
133 static int defer_swap_pageouts=0;
134 static int disable_swap_pageouts=0;
135 static u_int vm_anonmem_decline = ACT_DECLINE;
136 static u_int vm_filemem_decline = ACT_DECLINE * 2;
137 
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145 
146 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
147 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
148 
149 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
150 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
151 
152 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
153 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
154 	"Free more pages than the minimum required");
155 
156 SYSCTL_INT(_vm, OID_AUTO, max_launder,
157 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
158 
159 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
161 
162 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
167 
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
170 
171 #if defined(NO_SWAPPING)
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176 #else
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
185 
186 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
188 
189 static int pageout_lock_miss;
190 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
191 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
192 
193 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
194 
195 #if !defined(NO_SWAPPING)
196 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
197 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
198 static freeer_fcn_t vm_pageout_object_deactivate_pages;
199 static void vm_req_vmdaemon (void);
200 #endif
201 static void vm_pageout_page_stats(int q);
202 
203 /*
204  * Calculate approximately how many pages on each queue to try to
205  * clean.  An exact calculation creates an edge condition when the
206  * queues are unbalanced so add significant slop.  The queue scans
207  * will stop early when targets are reached and will start where they
208  * left off on the next pass.
209  */
210 static __inline int
211 PQAVERAGE(int n)
212 {
213 	int avg;
214 
215 	if (n >= 0) {
216 		avg = ((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
217 		avg += avg / 2 + 1;
218 	} else {
219 		avg = ((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
220 		avg += avg / 2 - 1;
221 	}
222 	return avg;
223 }
224 
225 /*
226  * vm_pageout_clean:
227  *
228  * Clean the page and remove it from the laundry.  The page must not be
229  * busy on-call.
230  *
231  * We set the busy bit to cause potential page faults on this page to
232  * block.  Note the careful timing, however, the busy bit isn't set till
233  * late and we cannot do anything that will mess with the page.
234  */
235 static int
236 vm_pageout_clean(vm_page_t m)
237 {
238 	vm_object_t object;
239 	vm_page_t mc[BLIST_MAX_ALLOC];
240 	int error;
241 	int ib, is, page_base;
242 	vm_pindex_t pindex = m->pindex;
243 
244 	object = m->object;
245 
246 	/*
247 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
248 	 * with the new swapper, but we could have serious problems paging
249 	 * out other object types if there is insufficient memory.
250 	 *
251 	 * Unfortunately, checking free memory here is far too late, so the
252 	 * check has been moved up a procedural level.
253 	 */
254 
255 	/*
256 	 * Don't mess with the page if it's busy, held, or special
257 	 *
258 	 * XXX do we really need to check hold_count here?  hold_count
259 	 * isn't supposed to mess with vm_page ops except prevent the
260 	 * page from being reused.
261 	 */
262 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
263 		vm_page_wakeup(m);
264 		return 0;
265 	}
266 
267 	/*
268 	 * Place page in cluster.  Align cluster for optimal swap space
269 	 * allocation (whether it is swap or not).  This is typically ~16-32
270 	 * pages, which also tends to align the cluster to multiples of the
271 	 * filesystem block size if backed by a filesystem.
272 	 */
273 	page_base = pindex % BLIST_MAX_ALLOC;
274 	mc[page_base] = m;
275 	ib = page_base - 1;
276 	is = page_base + 1;
277 
278 	/*
279 	 * Scan object for clusterable pages.
280 	 *
281 	 * We can cluster ONLY if: ->> the page is NOT
282 	 * clean, wired, busy, held, or mapped into a
283 	 * buffer, and one of the following:
284 	 * 1) The page is inactive, or a seldom used
285 	 *    active page.
286 	 * -or-
287 	 * 2) we force the issue.
288 	 *
289 	 * During heavy mmap/modification loads the pageout
290 	 * daemon can really fragment the underlying file
291 	 * due to flushing pages out of order and not trying
292 	 * align the clusters (which leave sporatic out-of-order
293 	 * holes).  To solve this problem we do the reverse scan
294 	 * first and attempt to align our cluster, then do a
295 	 * forward scan if room remains.
296 	 */
297 
298 	vm_object_hold(object);
299 	while (ib >= 0) {
300 		vm_page_t p;
301 
302 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
303 					    TRUE, &error);
304 		if (error || p == NULL)
305 			break;
306 		if ((p->queue - p->pc) == PQ_CACHE ||
307 		    (p->flags & PG_UNMANAGED)) {
308 			vm_page_wakeup(p);
309 			break;
310 		}
311 		vm_page_test_dirty(p);
312 		if (((p->dirty & p->valid) == 0 &&
313 		     (p->flags & PG_NEED_COMMIT) == 0) ||
314 		    p->queue - p->pc != PQ_INACTIVE ||
315 		    p->wire_count != 0 ||	/* may be held by buf cache */
316 		    p->hold_count != 0) {	/* may be undergoing I/O */
317 			vm_page_wakeup(p);
318 			break;
319 		}
320 		mc[ib] = p;
321 		--ib;
322 	}
323 	++ib;	/* fixup */
324 
325 	while (is < BLIST_MAX_ALLOC &&
326 	       pindex - page_base + is < object->size) {
327 		vm_page_t p;
328 
329 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
330 					    TRUE, &error);
331 		if (error || p == NULL)
332 			break;
333 		if (((p->queue - p->pc) == PQ_CACHE) ||
334 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
335 			vm_page_wakeup(p);
336 			break;
337 		}
338 		vm_page_test_dirty(p);
339 		if (((p->dirty & p->valid) == 0 &&
340 		     (p->flags & PG_NEED_COMMIT) == 0) ||
341 		    p->queue - p->pc != PQ_INACTIVE ||
342 		    p->wire_count != 0 ||	/* may be held by buf cache */
343 		    p->hold_count != 0) {	/* may be undergoing I/O */
344 			vm_page_wakeup(p);
345 			break;
346 		}
347 		mc[is] = p;
348 		++is;
349 	}
350 
351 	vm_object_drop(object);
352 
353 	/*
354 	 * we allow reads during pageouts...
355 	 */
356 	return vm_pageout_flush(&mc[ib], is - ib, 0);
357 }
358 
359 /*
360  * vm_pageout_flush() - launder the given pages
361  *
362  *	The given pages are laundered.  Note that we setup for the start of
363  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
364  *	reference count all in here rather then in the parent.  If we want
365  *	the parent to do more sophisticated things we may have to change
366  *	the ordering.
367  *
368  *	The pages in the array must be busied by the caller and will be
369  *	unbusied by this function.
370  */
371 int
372 vm_pageout_flush(vm_page_t *mc, int count, int flags)
373 {
374 	vm_object_t object;
375 	int pageout_status[count];
376 	int numpagedout = 0;
377 	int i;
378 
379 	/*
380 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
381 	 */
382 	for (i = 0; i < count; i++) {
383 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
384 			("vm_pageout_flush page %p index %d/%d: partially "
385 			 "invalid page", mc[i], i, count));
386 		vm_page_io_start(mc[i]);
387 	}
388 
389 	/*
390 	 * We must make the pages read-only.  This will also force the
391 	 * modified bit in the related pmaps to be cleared.  The pager
392 	 * cannot clear the bit for us since the I/O completion code
393 	 * typically runs from an interrupt.  The act of making the page
394 	 * read-only handles the case for us.
395 	 *
396 	 * Then we can unbusy the pages, we still hold a reference by virtue
397 	 * of our soft-busy.
398 	 */
399 	for (i = 0; i < count; i++) {
400 		vm_page_protect(mc[i], VM_PROT_READ);
401 		vm_page_wakeup(mc[i]);
402 	}
403 
404 	object = mc[0]->object;
405 	vm_object_pip_add(object, count);
406 
407 	vm_pager_put_pages(object, mc, count,
408 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
409 	    pageout_status);
410 
411 	for (i = 0; i < count; i++) {
412 		vm_page_t mt = mc[i];
413 
414 		switch (pageout_status[i]) {
415 		case VM_PAGER_OK:
416 			numpagedout++;
417 			break;
418 		case VM_PAGER_PEND:
419 			numpagedout++;
420 			break;
421 		case VM_PAGER_BAD:
422 			/*
423 			 * Page outside of range of object. Right now we
424 			 * essentially lose the changes by pretending it
425 			 * worked.
426 			 */
427 			vm_page_busy_wait(mt, FALSE, "pgbad");
428 			pmap_clear_modify(mt);
429 			vm_page_undirty(mt);
430 			vm_page_wakeup(mt);
431 			break;
432 		case VM_PAGER_ERROR:
433 		case VM_PAGER_FAIL:
434 			/*
435 			 * A page typically cannot be paged out when we
436 			 * have run out of swap.  We leave the page
437 			 * marked inactive and will try to page it out
438 			 * again later.
439 			 *
440 			 * Starvation of the active page list is used to
441 			 * determine when the system is massively memory
442 			 * starved.
443 			 */
444 			break;
445 		case VM_PAGER_AGAIN:
446 			break;
447 		}
448 
449 		/*
450 		 * If the operation is still going, leave the page busy to
451 		 * block all other accesses. Also, leave the paging in
452 		 * progress indicator set so that we don't attempt an object
453 		 * collapse.
454 		 *
455 		 * For any pages which have completed synchronously,
456 		 * deactivate the page if we are under a severe deficit.
457 		 * Do not try to enter them into the cache, though, they
458 		 * might still be read-heavy.
459 		 */
460 		if (pageout_status[i] != VM_PAGER_PEND) {
461 			vm_page_busy_wait(mt, FALSE, "pgouw");
462 			if (vm_page_count_severe())
463 				vm_page_deactivate(mt);
464 #if 0
465 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
466 				vm_page_protect(mt, VM_PROT_READ);
467 #endif
468 			vm_page_io_finish(mt);
469 			vm_page_wakeup(mt);
470 			vm_object_pip_wakeup(object);
471 		}
472 	}
473 	return numpagedout;
474 }
475 
476 #if !defined(NO_SWAPPING)
477 /*
478  * deactivate enough pages to satisfy the inactive target
479  * requirements or if vm_page_proc_limit is set, then
480  * deactivate all of the pages in the object and its
481  * backing_objects.
482  *
483  * The map must be locked.
484  * The caller must hold the vm_object.
485  */
486 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
487 
488 static void
489 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
490 				   vm_pindex_t desired, int map_remove_only)
491 {
492 	struct rb_vm_page_scan_info info;
493 	vm_object_t lobject;
494 	vm_object_t tobject;
495 	int remove_mode;
496 
497 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
498 	lobject = object;
499 
500 	while (lobject) {
501 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
502 			break;
503 		if (lobject->type == OBJT_DEVICE ||
504 		    lobject->type == OBJT_MGTDEVICE ||
505 		    lobject->type == OBJT_PHYS)
506 			break;
507 		if (lobject->paging_in_progress)
508 			break;
509 
510 		remove_mode = map_remove_only;
511 		if (lobject->shadow_count > 1)
512 			remove_mode = 1;
513 
514 		/*
515 		 * scan the objects entire memory queue.  We hold the
516 		 * object's token so the scan should not race anything.
517 		 */
518 		info.limit = remove_mode;
519 		info.map = map;
520 		info.desired = desired;
521 		vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
522 				vm_pageout_object_deactivate_pages_callback,
523 				&info
524 		);
525 		while ((tobject = lobject->backing_object) != NULL) {
526 			KKASSERT(tobject != object);
527 			vm_object_hold(tobject);
528 			if (tobject == lobject->backing_object)
529 				break;
530 			vm_object_drop(tobject);
531 		}
532 		if (lobject != object) {
533 			if (tobject)
534 				vm_object_lock_swap();
535 			vm_object_drop(lobject);
536 			/* leaves tobject locked & at top */
537 		}
538 		lobject = tobject;
539 	}
540 	if (lobject != object)
541 		vm_object_drop(lobject);	/* NULL ok */
542 }
543 
544 /*
545  * The caller must hold the vm_object.
546  */
547 static int
548 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
549 {
550 	struct rb_vm_page_scan_info *info = data;
551 	int actcount;
552 
553 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
554 		return(-1);
555 	}
556 	mycpu->gd_cnt.v_pdpages++;
557 
558 	if (vm_page_busy_try(p, TRUE))
559 		return(0);
560 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
561 		vm_page_wakeup(p);
562 		return(0);
563 	}
564 	if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
565 		vm_page_wakeup(p);
566 		return(0);
567 	}
568 
569 	actcount = pmap_ts_referenced(p);
570 	if (actcount) {
571 		vm_page_flag_set(p, PG_REFERENCED);
572 	} else if (p->flags & PG_REFERENCED) {
573 		actcount = 1;
574 	}
575 
576 	vm_page_and_queue_spin_lock(p);
577 	if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
578 		vm_page_and_queue_spin_unlock(p);
579 		vm_page_activate(p);
580 		p->act_count += actcount;
581 		vm_page_flag_clear(p, PG_REFERENCED);
582 	} else if (p->queue - p->pc == PQ_ACTIVE) {
583 		if ((p->flags & PG_REFERENCED) == 0) {
584 			p->act_count -= min(p->act_count, ACT_DECLINE);
585 			if (!info->limit &&
586 			    (vm_pageout_algorithm || (p->act_count == 0))) {
587 				vm_page_and_queue_spin_unlock(p);
588 				vm_page_protect(p, VM_PROT_NONE);
589 				vm_page_deactivate(p);
590 			} else {
591 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
592 					     p, pageq);
593 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
594 						  p, pageq);
595 				vm_page_and_queue_spin_unlock(p);
596 			}
597 		} else {
598 			vm_page_and_queue_spin_unlock(p);
599 			vm_page_activate(p);
600 			vm_page_flag_clear(p, PG_REFERENCED);
601 
602 			vm_page_and_queue_spin_lock(p);
603 			if (p->queue - p->pc == PQ_ACTIVE) {
604 				if (p->act_count < (ACT_MAX - ACT_ADVANCE))
605 					p->act_count += ACT_ADVANCE;
606 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
607 					     p, pageq);
608 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
609 						  p, pageq);
610 			}
611 			vm_page_and_queue_spin_unlock(p);
612 		}
613 	} else if (p->queue - p->pc == PQ_INACTIVE) {
614 		vm_page_and_queue_spin_unlock(p);
615 		vm_page_protect(p, VM_PROT_NONE);
616 	} else {
617 		vm_page_and_queue_spin_unlock(p);
618 	}
619 	vm_page_wakeup(p);
620 	return(0);
621 }
622 
623 /*
624  * Deactivate some number of pages in a map, try to do it fairly, but
625  * that is really hard to do.
626  */
627 static void
628 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
629 {
630 	vm_map_entry_t tmpe;
631 	vm_object_t obj, bigobj;
632 	int nothingwired;
633 
634 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
635 		return;
636 	}
637 
638 	bigobj = NULL;
639 	nothingwired = TRUE;
640 
641 	/*
642 	 * first, search out the biggest object, and try to free pages from
643 	 * that.
644 	 */
645 	tmpe = map->header.next;
646 	while (tmpe != &map->header) {
647 		switch(tmpe->maptype) {
648 		case VM_MAPTYPE_NORMAL:
649 		case VM_MAPTYPE_VPAGETABLE:
650 			obj = tmpe->object.vm_object;
651 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
652 				((bigobj == NULL) ||
653 				 (bigobj->resident_page_count < obj->resident_page_count))) {
654 				bigobj = obj;
655 			}
656 			break;
657 		default:
658 			break;
659 		}
660 		if (tmpe->wired_count > 0)
661 			nothingwired = FALSE;
662 		tmpe = tmpe->next;
663 	}
664 
665 	if (bigobj)  {
666 		vm_object_hold(bigobj);
667 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
668 		vm_object_drop(bigobj);
669 	}
670 
671 	/*
672 	 * Next, hunt around for other pages to deactivate.  We actually
673 	 * do this search sort of wrong -- .text first is not the best idea.
674 	 */
675 	tmpe = map->header.next;
676 	while (tmpe != &map->header) {
677 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
678 			break;
679 		switch(tmpe->maptype) {
680 		case VM_MAPTYPE_NORMAL:
681 		case VM_MAPTYPE_VPAGETABLE:
682 			obj = tmpe->object.vm_object;
683 			if (obj) {
684 				vm_object_hold(obj);
685 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
686 				vm_object_drop(obj);
687 			}
688 			break;
689 		default:
690 			break;
691 		}
692 		tmpe = tmpe->next;
693 	}
694 
695 	/*
696 	 * Remove all mappings if a process is swapped out, this will free page
697 	 * table pages.
698 	 */
699 	if (desired == 0 && nothingwired)
700 		pmap_remove(vm_map_pmap(map),
701 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
702 	vm_map_unlock(map);
703 }
704 #endif
705 
706 /*
707  * Called when the pageout scan wants to free a page.  We no longer
708  * try to cycle the vm_object here with a reference & dealloc, which can
709  * cause a non-trivial object collapse in a critical path.
710  *
711  * It is unclear why we cycled the ref_count in the past, perhaps to try
712  * to optimize shadow chain collapses but I don't quite see why it would
713  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
714  * synchronously and not have to be kicked-start.
715  */
716 static void
717 vm_pageout_page_free(vm_page_t m)
718 {
719 	vm_page_protect(m, VM_PROT_NONE);
720 	vm_page_free(m);
721 }
722 
723 /*
724  * vm_pageout_scan does the dirty work for the pageout daemon.
725  */
726 struct vm_pageout_scan_info {
727 	struct proc *bigproc;
728 	vm_offset_t bigsize;
729 };
730 
731 static int vm_pageout_scan_callback(struct proc *p, void *data);
732 
733 static int
734 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
735 			 int *vnodes_skippedp)
736 {
737 	vm_page_t m;
738 	struct vm_page marker;
739 	struct vnode *vpfailed;		/* warning, allowed to be stale */
740 	int maxscan;
741 	int count;
742 	int delta = 0;
743 	vm_object_t object;
744 	int actcount;
745 	int maxlaunder;
746 
747 	/*
748 	 * Start scanning the inactive queue for pages we can move to the
749 	 * cache or free.  The scan will stop when the target is reached or
750 	 * we have scanned the entire inactive queue.  Note that m->act_count
751 	 * is not used to form decisions for the inactive queue, only for the
752 	 * active queue.
753 	 *
754 	 * maxlaunder limits the number of dirty pages we flush per scan.
755 	 * For most systems a smaller value (16 or 32) is more robust under
756 	 * extreme memory and disk pressure because any unnecessary writes
757 	 * to disk can result in extreme performance degredation.  However,
758 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
759 	 * used) will die horribly with limited laundering.  If the pageout
760 	 * daemon cannot clean enough pages in the first pass, we let it go
761 	 * all out in succeeding passes.
762 	 */
763 	if ((maxlaunder = vm_max_launder) <= 1)
764 		maxlaunder = 1;
765 	if (pass)
766 		maxlaunder = 10000;
767 
768 	/*
769 	 * Initialize our marker
770 	 */
771 	bzero(&marker, sizeof(marker));
772 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
773 	marker.queue = PQ_INACTIVE + q;
774 	marker.pc = q;
775 	marker.wire_count = 1;
776 
777 	/*
778 	 * Inactive queue scan.
779 	 *
780 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
781 	 *	 deadlocks, so it is easiest to simply iterate the loop
782 	 *	 with the queue unlocked at the top.
783 	 */
784 	vpfailed = NULL;
785 
786 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
787 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
788 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
789 
790 	/*
791 	 * Queue locked at top of loop to avoid stack marker issues.
792 	 */
793 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
794 	       maxscan-- > 0 && avail_shortage - delta > 0)
795 	{
796 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
797 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
798 			     &marker, pageq);
799 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
800 				   &marker, pageq);
801 		mycpu->gd_cnt.v_pdpages++;
802 
803 		/*
804 		 * Skip marker pages (atomic against other markers to avoid
805 		 * infinite hop-over scans).
806 		 */
807 		if (m->flags & PG_MARKER)
808 			continue;
809 
810 		/*
811 		 * Try to busy the page.  Don't mess with pages which are
812 		 * already busy or reorder them in the queue.
813 		 */
814 		if (vm_page_busy_try(m, TRUE))
815 			continue;
816 
817 		/*
818 		 * Remaining operations run with the page busy and neither
819 		 * the page or the queue will be spin-locked.
820 		 */
821 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
822 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
823 		lwkt_yield();
824 
825 		/*
826 		 * It is possible for a page to be busied ad-hoc (e.g. the
827 		 * pmap_collect() code) and wired and race against the
828 		 * allocation of a new page.  vm_page_alloc() may be forced
829 		 * to deactivate the wired page in which case it winds up
830 		 * on the inactive queue and must be handled here.  We
831 		 * correct the problem simply by unqueuing the page.
832 		 */
833 		if (m->wire_count) {
834 			vm_page_unqueue_nowakeup(m);
835 			vm_page_wakeup(m);
836 			kprintf("WARNING: pagedaemon: wired page on "
837 				"inactive queue %p\n", m);
838 			goto next;
839 		}
840 
841 		/*
842 		 * A held page may be undergoing I/O, so skip it.
843 		 */
844 		if (m->hold_count) {
845 			vm_page_and_queue_spin_lock(m);
846 			if (m->queue - m->pc == PQ_INACTIVE) {
847 				TAILQ_REMOVE(
848 					&vm_page_queues[PQ_INACTIVE + q].pl,
849 					m, pageq);
850 				TAILQ_INSERT_TAIL(
851 					&vm_page_queues[PQ_INACTIVE + q].pl,
852 					m, pageq);
853 				++vm_swapcache_inactive_heuristic;
854 			}
855 			vm_page_and_queue_spin_unlock(m);
856 			vm_page_wakeup(m);
857 			goto next;
858 		}
859 
860 		if (m->object == NULL || m->object->ref_count == 0) {
861 			/*
862 			 * If the object is not being used, we ignore previous
863 			 * references.
864 			 */
865 			vm_page_flag_clear(m, PG_REFERENCED);
866 			pmap_clear_reference(m);
867 			/* fall through to end */
868 		} else if (((m->flags & PG_REFERENCED) == 0) &&
869 			    (actcount = pmap_ts_referenced(m))) {
870 			/*
871 			 * Otherwise, if the page has been referenced while
872 			 * in the inactive queue, we bump the "activation
873 			 * count" upwards, making it less likely that the
874 			 * page will be added back to the inactive queue
875 			 * prematurely again.  Here we check the page tables
876 			 * (or emulated bits, if any), given the upper level
877 			 * VM system not knowing anything about existing
878 			 * references.
879 			 */
880 			vm_page_activate(m);
881 			m->act_count += (actcount + ACT_ADVANCE);
882 			vm_page_wakeup(m);
883 			goto next;
884 		}
885 
886 		/*
887 		 * (m) is still busied.
888 		 *
889 		 * If the upper level VM system knows about any page
890 		 * references, we activate the page.  We also set the
891 		 * "activation count" higher than normal so that we will less
892 		 * likely place pages back onto the inactive queue again.
893 		 */
894 		if ((m->flags & PG_REFERENCED) != 0) {
895 			vm_page_flag_clear(m, PG_REFERENCED);
896 			actcount = pmap_ts_referenced(m);
897 			vm_page_activate(m);
898 			m->act_count += (actcount + ACT_ADVANCE + 1);
899 			vm_page_wakeup(m);
900 			goto next;
901 		}
902 
903 		/*
904 		 * If the upper level VM system doesn't know anything about
905 		 * the page being dirty, we have to check for it again.  As
906 		 * far as the VM code knows, any partially dirty pages are
907 		 * fully dirty.
908 		 *
909 		 * Pages marked PG_WRITEABLE may be mapped into the user
910 		 * address space of a process running on another cpu.  A
911 		 * user process (without holding the MP lock) running on
912 		 * another cpu may be able to touch the page while we are
913 		 * trying to remove it.  vm_page_cache() will handle this
914 		 * case for us.
915 		 */
916 		if (m->dirty == 0) {
917 			vm_page_test_dirty(m);
918 		} else {
919 			vm_page_dirty(m);
920 		}
921 
922 		if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
923 			/*
924 			 * Invalid pages can be easily freed
925 			 */
926 			vm_pageout_page_free(m);
927 			mycpu->gd_cnt.v_dfree++;
928 			++delta;
929 		} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
930 			/*
931 			 * Clean pages can be placed onto the cache queue.
932 			 * This effectively frees them.
933 			 */
934 			vm_page_cache(m);
935 			++delta;
936 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
937 			/*
938 			 * Dirty pages need to be paged out, but flushing
939 			 * a page is extremely expensive verses freeing
940 			 * a clean page.  Rather then artificially limiting
941 			 * the number of pages we can flush, we instead give
942 			 * dirty pages extra priority on the inactive queue
943 			 * by forcing them to be cycled through the queue
944 			 * twice before being flushed, after which the
945 			 * (now clean) page will cycle through once more
946 			 * before being freed.  This significantly extends
947 			 * the thrash point for a heavily loaded machine.
948 			 */
949 			vm_page_flag_set(m, PG_WINATCFLS);
950 			vm_page_and_queue_spin_lock(m);
951 			if (m->queue - m->pc == PQ_INACTIVE) {
952 				TAILQ_REMOVE(
953 					&vm_page_queues[PQ_INACTIVE + q].pl,
954 					m, pageq);
955 				TAILQ_INSERT_TAIL(
956 					&vm_page_queues[PQ_INACTIVE + q].pl,
957 					m, pageq);
958 				++vm_swapcache_inactive_heuristic;
959 			}
960 			vm_page_and_queue_spin_unlock(m);
961 			vm_page_wakeup(m);
962 		} else if (maxlaunder > 0) {
963 			/*
964 			 * We always want to try to flush some dirty pages if
965 			 * we encounter them, to keep the system stable.
966 			 * Normally this number is small, but under extreme
967 			 * pressure where there are insufficient clean pages
968 			 * on the inactive queue, we may have to go all out.
969 			 */
970 			int swap_pageouts_ok;
971 			struct vnode *vp = NULL;
972 
973 			swap_pageouts_ok = 0;
974 			object = m->object;
975 			if (object &&
976 			    (object->type != OBJT_SWAP) &&
977 			    (object->type != OBJT_DEFAULT)) {
978 				swap_pageouts_ok = 1;
979 			} else {
980 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
981 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
982 				vm_page_count_min(0));
983 
984 			}
985 
986 			/*
987 			 * We don't bother paging objects that are "dead".
988 			 * Those objects are in a "rundown" state.
989 			 */
990 			if (!swap_pageouts_ok ||
991 			    (object == NULL) ||
992 			    (object->flags & OBJ_DEAD)) {
993 				vm_page_and_queue_spin_lock(m);
994 				if (m->queue - m->pc == PQ_INACTIVE) {
995 					TAILQ_REMOVE(
996 					    &vm_page_queues[PQ_INACTIVE + q].pl,
997 					    m, pageq);
998 					TAILQ_INSERT_TAIL(
999 					    &vm_page_queues[PQ_INACTIVE + q].pl,
1000 					    m, pageq);
1001 					++vm_swapcache_inactive_heuristic;
1002 				}
1003 				vm_page_and_queue_spin_unlock(m);
1004 				vm_page_wakeup(m);
1005 				goto next;
1006 			}
1007 
1008 			/*
1009 			 * (m) is still busied.
1010 			 *
1011 			 * The object is already known NOT to be dead.   It
1012 			 * is possible for the vget() to block the whole
1013 			 * pageout daemon, but the new low-memory handling
1014 			 * code should prevent it.
1015 			 *
1016 			 * The previous code skipped locked vnodes and, worse,
1017 			 * reordered pages in the queue.  This results in
1018 			 * completely non-deterministic operation because,
1019 			 * quite often, a vm_fault has initiated an I/O and
1020 			 * is holding a locked vnode at just the point where
1021 			 * the pageout daemon is woken up.
1022 			 *
1023 			 * We can't wait forever for the vnode lock, we might
1024 			 * deadlock due to a vn_read() getting stuck in
1025 			 * vm_wait while holding this vnode.  We skip the
1026 			 * vnode if we can't get it in a reasonable amount
1027 			 * of time.
1028 			 *
1029 			 * vpfailed is used to (try to) avoid the case where
1030 			 * a large number of pages are associated with a
1031 			 * locked vnode, which could cause the pageout daemon
1032 			 * to stall for an excessive amount of time.
1033 			 */
1034 			if (object->type == OBJT_VNODE) {
1035 				int flags;
1036 
1037 				vp = object->handle;
1038 				flags = LK_EXCLUSIVE;
1039 				if (vp == vpfailed)
1040 					flags |= LK_NOWAIT;
1041 				else
1042 					flags |= LK_TIMELOCK;
1043 				vm_page_hold(m);
1044 				vm_page_wakeup(m);
1045 
1046 				/*
1047 				 * We have unbusied (m) temporarily so we can
1048 				 * acquire the vp lock without deadlocking.
1049 				 * (m) is held to prevent destruction.
1050 				 */
1051 				if (vget(vp, flags) != 0) {
1052 					vpfailed = vp;
1053 					++pageout_lock_miss;
1054 					if (object->flags & OBJ_MIGHTBEDIRTY)
1055 						    ++*vnodes_skippedp;
1056 					vm_page_unhold(m);
1057 					goto next;
1058 				}
1059 
1060 				/*
1061 				 * The page might have been moved to another
1062 				 * queue during potential blocking in vget()
1063 				 * above.  The page might have been freed and
1064 				 * reused for another vnode.  The object might
1065 				 * have been reused for another vnode.
1066 				 */
1067 				if (m->queue - m->pc != PQ_INACTIVE ||
1068 				    m->object != object ||
1069 				    object->handle != vp) {
1070 					if (object->flags & OBJ_MIGHTBEDIRTY)
1071 						++*vnodes_skippedp;
1072 					vput(vp);
1073 					vm_page_unhold(m);
1074 					goto next;
1075 				}
1076 
1077 				/*
1078 				 * The page may have been busied during the
1079 				 * blocking in vput();  We don't move the
1080 				 * page back onto the end of the queue so that
1081 				 * statistics are more correct if we don't.
1082 				 */
1083 				if (vm_page_busy_try(m, TRUE)) {
1084 					vput(vp);
1085 					vm_page_unhold(m);
1086 					goto next;
1087 				}
1088 				vm_page_unhold(m);
1089 
1090 				/*
1091 				 * (m) is busied again
1092 				 *
1093 				 * We own the busy bit and remove our hold
1094 				 * bit.  If the page is still held it
1095 				 * might be undergoing I/O, so skip it.
1096 				 */
1097 				if (m->hold_count) {
1098 					vm_page_and_queue_spin_lock(m);
1099 					if (m->queue - m->pc == PQ_INACTIVE) {
1100 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1101 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1102 						++vm_swapcache_inactive_heuristic;
1103 					}
1104 					vm_page_and_queue_spin_unlock(m);
1105 					if (object->flags & OBJ_MIGHTBEDIRTY)
1106 						++*vnodes_skippedp;
1107 					vm_page_wakeup(m);
1108 					vput(vp);
1109 					goto next;
1110 				}
1111 				/* (m) is left busied as we fall through */
1112 			}
1113 
1114 			/*
1115 			 * page is busy and not held here.
1116 			 *
1117 			 * If a page is dirty, then it is either being washed
1118 			 * (but not yet cleaned) or it is still in the
1119 			 * laundry.  If it is still in the laundry, then we
1120 			 * start the cleaning operation.
1121 			 *
1122 			 * decrement inactive_shortage on success to account
1123 			 * for the (future) cleaned page.  Otherwise we
1124 			 * could wind up laundering or cleaning too many
1125 			 * pages.
1126 			 */
1127 			count = vm_pageout_clean(m);
1128 			delta += count;
1129 			maxlaunder -= count;
1130 
1131 			/*
1132 			 * Clean ate busy, page no longer accessible
1133 			 */
1134 			if (vp != NULL)
1135 				vput(vp);
1136 		} else {
1137 			vm_page_wakeup(m);
1138 		}
1139 
1140 next:
1141 		/*
1142 		 * Systems with a ton of memory can wind up with huge
1143 		 * deactivation counts.  Because the inactive scan is
1144 		 * doing a lot of flushing, the combination can result
1145 		 * in excessive paging even in situations where other
1146 		 * unrelated threads free up sufficient VM.
1147 		 *
1148 		 * To deal with this we abort the nominal active->inactive
1149 		 * scan before we hit the inactive target when free+cache
1150 		 * levels have reached a reasonable target.
1151 		 *
1152 		 * When deciding to stop early we need to add some slop to
1153 		 * the test and we need to return full completion to the caller
1154 		 * to prevent the caller from thinking there is something
1155 		 * wrong and issuing a low-memory+swap warning or pkill.
1156 		 */
1157 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
1158 		if (vm_paging_target() < -vm_max_launder) {
1159 			/*
1160 			 * Stopping early, return full completion to caller.
1161 			 */
1162 			if (delta < avail_shortage)
1163 				delta = avail_shortage;
1164 			break;
1165 		}
1166 	}
1167 
1168 	/* page queue still spin-locked */
1169 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1170 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1171 
1172 	return (delta);
1173 }
1174 
1175 static int
1176 vm_pageout_scan_active(int pass, int q,
1177 		       int avail_shortage, int inactive_shortage,
1178 		       int *recycle_countp)
1179 {
1180 	struct vm_page marker;
1181 	vm_page_t m;
1182 	int actcount;
1183 	int delta = 0;
1184 	int maxscan;
1185 
1186 	/*
1187 	 * We want to move pages from the active queue to the inactive
1188 	 * queue to get the inactive queue to the inactive target.  If
1189 	 * we still have a page shortage from above we try to directly free
1190 	 * clean pages instead of moving them.
1191 	 *
1192 	 * If we do still have a shortage we keep track of the number of
1193 	 * pages we free or cache (recycle_count) as a measure of thrashing
1194 	 * between the active and inactive queues.
1195 	 *
1196 	 * If we were able to completely satisfy the free+cache targets
1197 	 * from the inactive pool we limit the number of pages we move
1198 	 * from the active pool to the inactive pool to 2x the pages we
1199 	 * had removed from the inactive pool (with a minimum of 1/5 the
1200 	 * inactive target).  If we were not able to completely satisfy
1201 	 * the free+cache targets we go for the whole target aggressively.
1202 	 *
1203 	 * NOTE: Both variables can end up negative.
1204 	 * NOTE: We are still in a critical section.
1205 	 */
1206 
1207 	bzero(&marker, sizeof(marker));
1208 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1209 	marker.queue = PQ_ACTIVE + q;
1210 	marker.pc = q;
1211 	marker.wire_count = 1;
1212 
1213 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1214 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1215 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1216 
1217 	/*
1218 	 * Queue locked at top of loop to avoid stack marker issues.
1219 	 */
1220 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1221 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1222 				inactive_shortage > 0))
1223 	{
1224 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1225 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1226 			     &marker, pageq);
1227 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1228 				   &marker, pageq);
1229 
1230 		/*
1231 		 * Skip marker pages (atomic against other markers to avoid
1232 		 * infinite hop-over scans).
1233 		 */
1234 		if (m->flags & PG_MARKER)
1235 			continue;
1236 
1237 		/*
1238 		 * Try to busy the page.  Don't mess with pages which are
1239 		 * already busy or reorder them in the queue.
1240 		 */
1241 		if (vm_page_busy_try(m, TRUE))
1242 			continue;
1243 
1244 		/*
1245 		 * Remaining operations run with the page busy and neither
1246 		 * the page or the queue will be spin-locked.
1247 		 */
1248 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1249 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1250 		lwkt_yield();
1251 
1252 		/*
1253 		 * Don't deactivate pages that are held, even if we can
1254 		 * busy them.  (XXX why not?)
1255 		 */
1256 		if (m->hold_count != 0) {
1257 			vm_page_and_queue_spin_lock(m);
1258 			if (m->queue - m->pc == PQ_ACTIVE) {
1259 				TAILQ_REMOVE(
1260 					&vm_page_queues[PQ_ACTIVE + q].pl,
1261 					m, pageq);
1262 				TAILQ_INSERT_TAIL(
1263 					&vm_page_queues[PQ_ACTIVE + q].pl,
1264 					m, pageq);
1265 			}
1266 			vm_page_and_queue_spin_unlock(m);
1267 			vm_page_wakeup(m);
1268 			goto next;
1269 		}
1270 
1271 		/*
1272 		 * The count for pagedaemon pages is done after checking the
1273 		 * page for eligibility...
1274 		 */
1275 		mycpu->gd_cnt.v_pdpages++;
1276 
1277 		/*
1278 		 * Check to see "how much" the page has been used and clear
1279 		 * the tracking access bits.  If the object has no references
1280 		 * don't bother paying the expense.
1281 		 */
1282 		actcount = 0;
1283 		if (m->object && m->object->ref_count != 0) {
1284 			if (m->flags & PG_REFERENCED)
1285 				++actcount;
1286 			actcount += pmap_ts_referenced(m);
1287 			if (actcount) {
1288 				m->act_count += ACT_ADVANCE + actcount;
1289 				if (m->act_count > ACT_MAX)
1290 					m->act_count = ACT_MAX;
1291 			}
1292 		}
1293 		vm_page_flag_clear(m, PG_REFERENCED);
1294 
1295 		/*
1296 		 * actcount is only valid if the object ref_count is non-zero.
1297 		 * If the page does not have an object, actcount will be zero.
1298 		 */
1299 		if (actcount && m->object->ref_count != 0) {
1300 			vm_page_and_queue_spin_lock(m);
1301 			if (m->queue - m->pc == PQ_ACTIVE) {
1302 				TAILQ_REMOVE(
1303 					&vm_page_queues[PQ_ACTIVE + q].pl,
1304 					m, pageq);
1305 				TAILQ_INSERT_TAIL(
1306 					&vm_page_queues[PQ_ACTIVE + q].pl,
1307 					m, pageq);
1308 			}
1309 			vm_page_and_queue_spin_unlock(m);
1310 			vm_page_wakeup(m);
1311 		} else {
1312 			switch(m->object->type) {
1313 			case OBJT_DEFAULT:
1314 			case OBJT_SWAP:
1315 				m->act_count -= min(m->act_count,
1316 						    vm_anonmem_decline);
1317 				break;
1318 			default:
1319 				m->act_count -= min(m->act_count,
1320 						    vm_filemem_decline);
1321 				break;
1322 			}
1323 			if (vm_pageout_algorithm ||
1324 			    (m->object == NULL) ||
1325 			    (m->object && (m->object->ref_count == 0)) ||
1326 			    m->act_count < pass + 1
1327 			) {
1328 				/*
1329 				 * Deactivate the page.  If we had a
1330 				 * shortage from our inactive scan try to
1331 				 * free (cache) the page instead.
1332 				 *
1333 				 * Don't just blindly cache the page if
1334 				 * we do not have a shortage from the
1335 				 * inactive scan, that could lead to
1336 				 * gigabytes being moved.
1337 				 */
1338 				--inactive_shortage;
1339 				if (avail_shortage - delta > 0 ||
1340 				    (m->object && (m->object->ref_count == 0)))
1341 				{
1342 					if (avail_shortage - delta > 0)
1343 						++*recycle_countp;
1344 					vm_page_protect(m, VM_PROT_NONE);
1345 					if (m->dirty == 0 &&
1346 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1347 					    avail_shortage - delta > 0) {
1348 						vm_page_cache(m);
1349 					} else {
1350 						vm_page_deactivate(m);
1351 						vm_page_wakeup(m);
1352 					}
1353 				} else {
1354 					vm_page_deactivate(m);
1355 					vm_page_wakeup(m);
1356 				}
1357 				++delta;
1358 			} else {
1359 				vm_page_and_queue_spin_lock(m);
1360 				if (m->queue - m->pc == PQ_ACTIVE) {
1361 					TAILQ_REMOVE(
1362 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1363 					    m, pageq);
1364 					TAILQ_INSERT_TAIL(
1365 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1366 					    m, pageq);
1367 				}
1368 				vm_page_and_queue_spin_unlock(m);
1369 				vm_page_wakeup(m);
1370 			}
1371 		}
1372 next:
1373 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1374 	}
1375 
1376 	/*
1377 	 * Clean out our local marker.
1378 	 *
1379 	 * Page queue still spin-locked.
1380 	 */
1381 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1382 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1383 
1384 	return (delta);
1385 }
1386 
1387 /*
1388  * The number of actually free pages can drop down to v_free_reserved,
1389  * we try to build the free count back above v_free_min.  Note that
1390  * vm_paging_needed() also returns TRUE if v_free_count is not at
1391  * least v_free_min so that is the minimum we must build the free
1392  * count to.
1393  *
1394  * We use a slightly higher target to improve hysteresis,
1395  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1396  * is usually the same as v_cache_min this maintains about
1397  * half the pages in the free queue as are in the cache queue,
1398  * providing pretty good pipelining for pageout operation.
1399  *
1400  * The system operator can manipulate vm.v_cache_min and
1401  * vm.v_free_target to tune the pageout demon.  Be sure
1402  * to keep vm.v_free_min < vm.v_free_target.
1403  *
1404  * Note that the original paging target is to get at least
1405  * (free_min + cache_min) into (free + cache).  The slightly
1406  * higher target will shift additional pages from cache to free
1407  * without effecting the original paging target in order to
1408  * maintain better hysteresis and not have the free count always
1409  * be dead-on v_free_min.
1410  *
1411  * NOTE: we are still in a critical section.
1412  *
1413  * Pages moved from PQ_CACHE to totally free are not counted in the
1414  * pages_freed counter.
1415  */
1416 static void
1417 vm_pageout_scan_cache(int avail_shortage, int pass,
1418 		      int vnodes_skipped, int recycle_count)
1419 {
1420 	static int lastkillticks;
1421 	struct vm_pageout_scan_info info;
1422 	vm_page_t m;
1423 
1424 	while (vmstats.v_free_count <
1425 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1426 		/*
1427 		 * This steals some code from vm/vm_page.c
1428 		 */
1429 		static int cache_rover = 0;
1430 
1431 		m = vm_page_list_find(PQ_CACHE,
1432 				      cache_rover & PQ_L2_MASK, FALSE);
1433 		if (m == NULL)
1434 			break;
1435 		/* page is returned removed from its queue and spinlocked */
1436 		if (vm_page_busy_try(m, TRUE)) {
1437 			vm_page_deactivate_locked(m);
1438 			vm_page_spin_unlock(m);
1439 			continue;
1440 		}
1441 		vm_page_spin_unlock(m);
1442 		pagedaemon_wakeup();
1443 		lwkt_yield();
1444 
1445 		/*
1446 		 * Remaining operations run with the page busy and neither
1447 		 * the page or the queue will be spin-locked.
1448 		 */
1449 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1450 		    m->hold_count ||
1451 		    m->wire_count) {
1452 			vm_page_deactivate(m);
1453 			vm_page_wakeup(m);
1454 			continue;
1455 		}
1456 		KKASSERT((m->flags & PG_MAPPED) == 0);
1457 		KKASSERT(m->dirty == 0);
1458 		cache_rover += PQ_PRIME2;
1459 		vm_pageout_page_free(m);
1460 		mycpu->gd_cnt.v_dfree++;
1461 	}
1462 
1463 #if !defined(NO_SWAPPING)
1464 	/*
1465 	 * Idle process swapout -- run once per second.
1466 	 */
1467 	if (vm_swap_idle_enabled) {
1468 		static time_t lsec;
1469 		if (time_uptime != lsec) {
1470 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1471 			vm_req_vmdaemon();
1472 			lsec = time_uptime;
1473 		}
1474 	}
1475 #endif
1476 
1477 	/*
1478 	 * If we didn't get enough free pages, and we have skipped a vnode
1479 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1480 	 * if we did not get enough free pages.
1481 	 */
1482 	if (vm_paging_target() > 0) {
1483 		if (vnodes_skipped && vm_page_count_min(0))
1484 			speedup_syncer(NULL);
1485 #if !defined(NO_SWAPPING)
1486 		if (vm_swap_enabled && vm_page_count_target()) {
1487 			vm_req_vmdaemon();
1488 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1489 		}
1490 #endif
1491 	}
1492 
1493 	/*
1494 	 * Handle catastrophic conditions.  Under good conditions we should
1495 	 * be at the target, well beyond our minimum.  If we could not even
1496 	 * reach our minimum the system is under heavy stress.  But just being
1497 	 * under heavy stress does not trigger process killing.
1498 	 *
1499 	 * We consider ourselves to have run out of memory if the swap pager
1500 	 * is full and avail_shortage is still positive.  The secondary check
1501 	 * ensures that we do not kill processes if the instantanious
1502 	 * availability is good, even if the pageout demon pass says it
1503 	 * couldn't get to the target.
1504 	 */
1505 	if (swap_pager_almost_full &&
1506 	    pass > 0 &&
1507 	    (vm_page_count_min(recycle_count) || avail_shortage > 0)) {
1508 		kprintf("Warning: system low on memory+swap "
1509 			"shortage %d for %d ticks!\n",
1510 			avail_shortage, ticks - swap_fail_ticks);
1511 	}
1512 	if (swap_pager_full &&
1513 	    pass > 1 &&
1514 	    avail_shortage > 0 &&
1515 	    vm_paging_target() > 0 &&
1516 	    (unsigned int)(ticks - lastkillticks) >= hz) {
1517 		/*
1518 		 * Kill something, maximum rate once per second to give
1519 		 * the process time to free up sufficient memory.
1520 		 */
1521 		lastkillticks = ticks;
1522 		info.bigproc = NULL;
1523 		info.bigsize = 0;
1524 		allproc_scan(vm_pageout_scan_callback, &info);
1525 		if (info.bigproc != NULL) {
1526 			info.bigproc->p_nice = PRIO_MIN;
1527 			info.bigproc->p_usched->resetpriority(
1528 				FIRST_LWP_IN_PROC(info.bigproc));
1529 			killproc(info.bigproc, "out of swap space");
1530 			wakeup(&vmstats.v_free_count);
1531 			PRELE(info.bigproc);
1532 		}
1533 	}
1534 }
1535 
1536 static int
1537 vm_pageout_scan_callback(struct proc *p, void *data)
1538 {
1539 	struct vm_pageout_scan_info *info = data;
1540 	vm_offset_t size;
1541 
1542 	/*
1543 	 * Never kill system processes or init.  If we have configured swap
1544 	 * then try to avoid killing low-numbered pids.
1545 	 */
1546 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1547 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1548 		return (0);
1549 	}
1550 
1551 	lwkt_gettoken(&p->p_token);
1552 
1553 	/*
1554 	 * if the process is in a non-running type state,
1555 	 * don't touch it.
1556 	 */
1557 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
1558 		lwkt_reltoken(&p->p_token);
1559 		return (0);
1560 	}
1561 
1562 	/*
1563 	 * Get the approximate process size.  Note that anonymous pages
1564 	 * with backing swap will be counted twice, but there should not
1565 	 * be too many such pages due to the stress the VM system is
1566 	 * under at this point.
1567 	 */
1568 	size = vmspace_anonymous_count(p->p_vmspace) +
1569 		vmspace_swap_count(p->p_vmspace);
1570 
1571 	/*
1572 	 * If the this process is bigger than the biggest one
1573 	 * remember it.
1574 	 */
1575 	if (info->bigsize < size) {
1576 		if (info->bigproc)
1577 			PRELE(info->bigproc);
1578 		PHOLD(p);
1579 		info->bigproc = p;
1580 		info->bigsize = size;
1581 	}
1582 	lwkt_reltoken(&p->p_token);
1583 	lwkt_yield();
1584 
1585 	return(0);
1586 }
1587 
1588 /*
1589  * This routine tries to maintain the pseudo LRU active queue,
1590  * so that during long periods of time where there is no paging,
1591  * that some statistic accumulation still occurs.  This code
1592  * helps the situation where paging just starts to occur.
1593  */
1594 static void
1595 vm_pageout_page_stats(int q)
1596 {
1597 	static int fullintervalcount = 0;
1598 	struct vm_page marker;
1599 	vm_page_t m;
1600 	int pcount, tpcount;		/* Number of pages to check */
1601 	int page_shortage;
1602 
1603 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1604 			 vmstats.v_free_min) -
1605 			(vmstats.v_free_count + vmstats.v_inactive_count +
1606 			 vmstats.v_cache_count);
1607 
1608 	if (page_shortage <= 0)
1609 		return;
1610 
1611 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1612 	fullintervalcount += vm_pageout_stats_interval;
1613 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1614 		tpcount = (vm_pageout_stats_max * pcount) /
1615 			  vmstats.v_page_count + 1;
1616 		if (pcount > tpcount)
1617 			pcount = tpcount;
1618 	} else {
1619 		fullintervalcount = 0;
1620 	}
1621 
1622 	bzero(&marker, sizeof(marker));
1623 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1624 	marker.queue = PQ_ACTIVE + q;
1625 	marker.pc = q;
1626 	marker.wire_count = 1;
1627 
1628 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1629 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1630 
1631 	/*
1632 	 * Queue locked at top of loop to avoid stack marker issues.
1633 	 */
1634 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1635 	       pcount-- > 0)
1636 	{
1637 		int actcount;
1638 
1639 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1640 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1641 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1642 				   &marker, pageq);
1643 
1644 		/*
1645 		 * Skip marker pages (atomic against other markers to avoid
1646 		 * infinite hop-over scans).
1647 		 */
1648 		if (m->flags & PG_MARKER)
1649 			continue;
1650 
1651 		/*
1652 		 * Ignore pages we can't busy
1653 		 */
1654 		if (vm_page_busy_try(m, TRUE))
1655 			continue;
1656 
1657 		/*
1658 		 * Remaining operations run with the page busy and neither
1659 		 * the page or the queue will be spin-locked.
1660 		 */
1661 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1662 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1663 
1664 		/*
1665 		 * We now have a safely busied page, the page and queue
1666 		 * spinlocks have been released.
1667 		 *
1668 		 * Ignore held pages
1669 		 */
1670 		if (m->hold_count) {
1671 			vm_page_wakeup(m);
1672 			goto next;
1673 		}
1674 
1675 		/*
1676 		 * Calculate activity
1677 		 */
1678 		actcount = 0;
1679 		if (m->flags & PG_REFERENCED) {
1680 			vm_page_flag_clear(m, PG_REFERENCED);
1681 			actcount += 1;
1682 		}
1683 		actcount += pmap_ts_referenced(m);
1684 
1685 		/*
1686 		 * Update act_count and move page to end of queue.
1687 		 */
1688 		if (actcount) {
1689 			m->act_count += ACT_ADVANCE + actcount;
1690 			if (m->act_count > ACT_MAX)
1691 				m->act_count = ACT_MAX;
1692 			vm_page_and_queue_spin_lock(m);
1693 			if (m->queue - m->pc == PQ_ACTIVE) {
1694 				TAILQ_REMOVE(
1695 					&vm_page_queues[PQ_ACTIVE + q].pl,
1696 					m, pageq);
1697 				TAILQ_INSERT_TAIL(
1698 					&vm_page_queues[PQ_ACTIVE + q].pl,
1699 					m, pageq);
1700 			}
1701 			vm_page_and_queue_spin_unlock(m);
1702 			vm_page_wakeup(m);
1703 			goto next;
1704 		}
1705 
1706 		if (m->act_count == 0) {
1707 			/*
1708 			 * We turn off page access, so that we have
1709 			 * more accurate RSS stats.  We don't do this
1710 			 * in the normal page deactivation when the
1711 			 * system is loaded VM wise, because the
1712 			 * cost of the large number of page protect
1713 			 * operations would be higher than the value
1714 			 * of doing the operation.
1715 			 *
1716 			 * We use the marker to save our place so
1717 			 * we can release the spin lock.  both (m)
1718 			 * and (next) will be invalid.
1719 			 */
1720 			vm_page_protect(m, VM_PROT_NONE);
1721 			vm_page_deactivate(m);
1722 		} else {
1723 			m->act_count -= min(m->act_count, ACT_DECLINE);
1724 			vm_page_and_queue_spin_lock(m);
1725 			if (m->queue - m->pc == PQ_ACTIVE) {
1726 				TAILQ_REMOVE(
1727 					&vm_page_queues[PQ_ACTIVE + q].pl,
1728 					m, pageq);
1729 				TAILQ_INSERT_TAIL(
1730 					&vm_page_queues[PQ_ACTIVE + q].pl,
1731 					m, pageq);
1732 			}
1733 			vm_page_and_queue_spin_unlock(m);
1734 		}
1735 		vm_page_wakeup(m);
1736 next:
1737 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1738 	}
1739 
1740 	/*
1741 	 * Remove our local marker
1742 	 *
1743 	 * Page queue still spin-locked.
1744 	 */
1745 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1746 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1747 }
1748 
1749 static int
1750 vm_pageout_free_page_calc(vm_size_t count)
1751 {
1752 	if (count < vmstats.v_page_count)
1753 		 return 0;
1754 	/*
1755 	 * free_reserved needs to include enough for the largest swap pager
1756 	 * structures plus enough for any pv_entry structs when paging.
1757 	 *
1758 	 * v_free_min		normal allocations
1759 	 * v_free_reserved	system allocations
1760 	 * v_pageout_free_min	allocations by pageout daemon
1761 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1762 	 */
1763 	if (vmstats.v_page_count > 1024)
1764 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1765 	else
1766 		vmstats.v_free_min = 64;
1767 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1768 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1769 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1770 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1771 
1772 	return 1;
1773 }
1774 
1775 
1776 /*
1777  * vm_pageout is the high level pageout daemon.
1778  *
1779  * No requirements.
1780  */
1781 static void
1782 vm_pageout_thread(void)
1783 {
1784 	int pass;
1785 	int q;
1786 	int q1iterator = 0;
1787 	int q2iterator = 0;
1788 
1789 	/*
1790 	 * Initialize some paging parameters.
1791 	 */
1792 	curthread->td_flags |= TDF_SYSTHREAD;
1793 
1794 	vm_pageout_free_page_calc(vmstats.v_page_count);
1795 
1796 	/*
1797 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1798 	 * that these are more a measure of the VM cache queue hysteresis
1799 	 * then the VM free queue.  Specifically, v_free_target is the
1800 	 * high water mark (free+cache pages).
1801 	 *
1802 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1803 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1804 	 * be big enough to handle memory needs while the pageout daemon
1805 	 * is signalled and run to free more pages.
1806 	 */
1807 	if (vmstats.v_free_count > 6144)
1808 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1809 	else
1810 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1811 
1812 	/*
1813 	 * NOTE: With the new buffer cache b_act_count we want the default
1814 	 *	 inactive target to be a percentage of available memory.
1815 	 *
1816 	 *	 The inactive target essentially determines the minimum
1817 	 *	 number of 'temporary' pages capable of caching one-time-use
1818 	 *	 files when the VM system is otherwise full of pages
1819 	 *	 belonging to multi-time-use files or active program data.
1820 	 *
1821 	 * NOTE: The inactive target is aggressively persued only if the
1822 	 *	 inactive queue becomes too small.  If the inactive queue
1823 	 *	 is large enough to satisfy page movement to free+cache
1824 	 *	 then it is repopulated more slowly from the active queue.
1825 	 *	 This allows a general inactive_target default to be set.
1826 	 *
1827 	 *	 There is an issue here for processes which sit mostly idle
1828 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1829 	 *	 the active queue will eventually cause such pages to
1830 	 *	 recycle eventually causing a lot of paging in the morning.
1831 	 *	 To reduce the incidence of this pages cycled out of the
1832 	 *	 buffer cache are moved directly to the inactive queue if
1833 	 *	 they were only used once or twice.
1834 	 *
1835 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1836 	 *	 Increasing the value (up to 64) increases the number of
1837 	 *	 buffer recyclements which go directly to the inactive queue.
1838 	 */
1839 	if (vmstats.v_free_count > 2048) {
1840 		vmstats.v_cache_min = vmstats.v_free_target;
1841 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1842 	} else {
1843 		vmstats.v_cache_min = 0;
1844 		vmstats.v_cache_max = 0;
1845 	}
1846 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1847 
1848 	/* XXX does not really belong here */
1849 	if (vm_page_max_wired == 0)
1850 		vm_page_max_wired = vmstats.v_free_count / 3;
1851 
1852 	if (vm_pageout_stats_max == 0)
1853 		vm_pageout_stats_max = vmstats.v_free_target;
1854 
1855 	/*
1856 	 * Set interval in seconds for stats scan.
1857 	 */
1858 	if (vm_pageout_stats_interval == 0)
1859 		vm_pageout_stats_interval = 5;
1860 	if (vm_pageout_full_stats_interval == 0)
1861 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1862 
1863 
1864 	/*
1865 	 * Set maximum free per pass
1866 	 */
1867 	if (vm_pageout_stats_free_max == 0)
1868 		vm_pageout_stats_free_max = 5;
1869 
1870 	swap_pager_swap_init();
1871 	pass = 0;
1872 
1873 	/*
1874 	 * The pageout daemon is never done, so loop forever.
1875 	 */
1876 	while (TRUE) {
1877 		int error;
1878 		int avail_shortage;
1879 		int inactive_shortage;
1880 		int vnodes_skipped = 0;
1881 		int recycle_count = 0;
1882 		int tmp;
1883 
1884 		/*
1885 		 * Wait for an action request.  If we timeout check to
1886 		 * see if paging is needed (in case the normal wakeup
1887 		 * code raced us).
1888 		 */
1889 		if (vm_pages_needed == 0) {
1890 			error = tsleep(&vm_pages_needed,
1891 				       0, "psleep",
1892 				       vm_pageout_stats_interval * hz);
1893 			if (error &&
1894 			    vm_paging_needed() == 0 &&
1895 			    vm_pages_needed == 0) {
1896 				for (q = 0; q < PQ_L2_SIZE; ++q)
1897 					vm_pageout_page_stats(q);
1898 				continue;
1899 			}
1900 			vm_pages_needed = 1;
1901 		}
1902 
1903 		mycpu->gd_cnt.v_pdwakeups++;
1904 
1905 		/*
1906 		 * Do whatever cleanup that the pmap code can.
1907 		 */
1908 		pmap_collect();
1909 
1910 		/*
1911 		 * Scan for pageout.  Try to avoid thrashing the system
1912 		 * with activity.
1913 		 *
1914 		 * Calculate our target for the number of free+cache pages we
1915 		 * want to get to.  This is higher then the number that causes
1916 		 * allocations to stall (severe) in order to provide hysteresis,
1917 		 * and if we don't make it all the way but get to the minimum
1918 		 * we're happy.  Goose it a bit if there are multiple requests
1919 		 * for memory.
1920 		 *
1921 		 * Don't reduce avail_shortage inside the loop or the
1922 		 * PQAVERAGE() calculation will break.
1923 		 */
1924 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1925 		vm_pageout_deficit = 0;
1926 
1927 		if (avail_shortage > 0) {
1928 			int delta = 0;
1929 
1930 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1931 				delta += vm_pageout_scan_inactive(
1932 					    pass,
1933 					    (q + q1iterator) & PQ_L2_MASK,
1934 					    PQAVERAGE(avail_shortage),
1935 					    &vnodes_skipped);
1936 				if (avail_shortage - delta <= 0)
1937 					break;
1938 			}
1939 			avail_shortage -= delta;
1940 			q1iterator = q + 1;
1941 		}
1942 
1943 		/*
1944 		 * Figure out how many active pages we must deactivate.  If
1945 		 * we were able to reach our target with just the inactive
1946 		 * scan above we limit the number of active pages we
1947 		 * deactivate to reduce unnecessary work.
1948 		 */
1949 		inactive_shortage = vmstats.v_inactive_target -
1950 				    vmstats.v_inactive_count;
1951 
1952 		/*
1953 		 * If we were unable to free sufficient inactive pages to
1954 		 * satisfy the free/cache queue requirements then simply
1955 		 * reaching the inactive target may not be good enough.
1956 		 * Try to deactivate pages in excess of the target based
1957 		 * on the shortfall.
1958 		 *
1959 		 * However to prevent thrashing the VM system do not
1960 		 * deactivate more than an additional 1/10 the inactive
1961 		 * target's worth of active pages.
1962 		 */
1963 		if (avail_shortage > 0) {
1964 			tmp = avail_shortage * 2;
1965 			if (tmp > vmstats.v_inactive_target / 10)
1966 				tmp = vmstats.v_inactive_target / 10;
1967 			inactive_shortage += tmp;
1968 		}
1969 
1970 		/*
1971 		 * Only trigger on inactive shortage.  Triggering on
1972 		 * avail_shortage can starve the active queue with
1973 		 * unnecessary active->inactive transitions and destroy
1974 		 * performance.
1975 		 */
1976 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
1977 			int delta = 0;
1978 
1979 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1980 				delta += vm_pageout_scan_active(
1981 						pass,
1982 						(q + q2iterator) & PQ_L2_MASK,
1983 						PQAVERAGE(avail_shortage),
1984 						PQAVERAGE(inactive_shortage),
1985 						&recycle_count);
1986 				if (inactive_shortage - delta <= 0 &&
1987 				    avail_shortage - delta <= 0) {
1988 					break;
1989 				}
1990 			}
1991 			inactive_shortage -= delta;
1992 			avail_shortage -= delta;
1993 			q2iterator = q + 1;
1994 		}
1995 
1996 		/*
1997 		 * Finally free enough cache pages to meet our free page
1998 		 * requirement and take more drastic measures if we are
1999 		 * still in trouble.
2000 		 */
2001 		vm_pageout_scan_cache(avail_shortage, pass,
2002 				      vnodes_skipped, recycle_count);
2003 
2004 		/*
2005 		 * Wait for more work.
2006 		 */
2007 		if (avail_shortage > 0) {
2008 			++pass;
2009 			if (pass < 10 && vm_pages_needed > 1) {
2010 				/*
2011 				 * Normal operation, additional processes
2012 				 * have already kicked us.  Retry immediately
2013 				 * unless swap space is completely full in
2014 				 * which case delay a bit.
2015 				 */
2016 				if (swap_pager_full) {
2017 					tsleep(&vm_pages_needed, 0, "pdelay",
2018 						hz / 5);
2019 				} /* else immediate retry */
2020 			} else if (pass < 10) {
2021 				/*
2022 				 * Normal operation, fewer processes.  Delay
2023 				 * a bit but allow wakeups.
2024 				 */
2025 				vm_pages_needed = 0;
2026 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2027 				vm_pages_needed = 1;
2028 			} else if (swap_pager_full == 0) {
2029 				/*
2030 				 * We've taken too many passes, forced delay.
2031 				 */
2032 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2033 			} else {
2034 				/*
2035 				 * Running out of memory, catastrophic
2036 				 * back-off to one-second intervals.
2037 				 */
2038 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
2039 			}
2040 		} else if (vm_pages_needed) {
2041 			/*
2042 			 * Interlocked wakeup of waiters (non-optional).
2043 			 *
2044 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2045 			 * wake
2046 			 */
2047 			pass = 0;
2048 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2049 			    !vm_page_count_target()) {
2050 				vm_pages_needed = 0;
2051 				wakeup(&vmstats.v_free_count);
2052 			}
2053 		} else {
2054 			pass = 0;
2055 		}
2056 	}
2057 }
2058 
2059 static struct kproc_desc page_kp = {
2060 	"pagedaemon",
2061 	vm_pageout_thread,
2062 	&pagethread
2063 };
2064 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp);
2065 
2066 
2067 /*
2068  * Called after allocating a page out of the cache or free queue
2069  * to possibly wake the pagedaemon up to replentish our supply.
2070  *
2071  * We try to generate some hysteresis by waking the pagedaemon up
2072  * when our free+cache pages go below the free_min+cache_min level.
2073  * The pagedaemon tries to get the count back up to at least the
2074  * minimum, and through to the target level if possible.
2075  *
2076  * If the pagedaemon is already active bump vm_pages_needed as a hint
2077  * that there are even more requests pending.
2078  *
2079  * SMP races ok?
2080  * No requirements.
2081  */
2082 void
2083 pagedaemon_wakeup(void)
2084 {
2085 	if (vm_paging_needed() && curthread != pagethread) {
2086 		if (vm_pages_needed == 0) {
2087 			vm_pages_needed = 1;	/* SMP race ok */
2088 			wakeup(&vm_pages_needed);
2089 		} else if (vm_page_count_min(0)) {
2090 			++vm_pages_needed;	/* SMP race ok */
2091 		}
2092 	}
2093 }
2094 
2095 #if !defined(NO_SWAPPING)
2096 
2097 /*
2098  * SMP races ok?
2099  * No requirements.
2100  */
2101 static void
2102 vm_req_vmdaemon(void)
2103 {
2104 	static int lastrun = 0;
2105 
2106 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2107 		wakeup(&vm_daemon_needed);
2108 		lastrun = ticks;
2109 	}
2110 }
2111 
2112 static int vm_daemon_callback(struct proc *p, void *data __unused);
2113 
2114 /*
2115  * No requirements.
2116  */
2117 static void
2118 vm_daemon(void)
2119 {
2120 	/*
2121 	 * XXX vm_daemon_needed specific token?
2122 	 */
2123 	while (TRUE) {
2124 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2125 		if (vm_pageout_req_swapout) {
2126 			swapout_procs(vm_pageout_req_swapout);
2127 			vm_pageout_req_swapout = 0;
2128 		}
2129 		/*
2130 		 * scan the processes for exceeding their rlimits or if
2131 		 * process is swapped out -- deactivate pages
2132 		 */
2133 		allproc_scan(vm_daemon_callback, NULL);
2134 	}
2135 }
2136 
2137 static int
2138 vm_daemon_callback(struct proc *p, void *data __unused)
2139 {
2140 	struct vmspace *vm;
2141 	vm_pindex_t limit, size;
2142 
2143 	/*
2144 	 * if this is a system process or if we have already
2145 	 * looked at this process, skip it.
2146 	 */
2147 	lwkt_gettoken(&p->p_token);
2148 
2149 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2150 		lwkt_reltoken(&p->p_token);
2151 		return (0);
2152 	}
2153 
2154 	/*
2155 	 * if the process is in a non-running type state,
2156 	 * don't touch it.
2157 	 */
2158 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
2159 		lwkt_reltoken(&p->p_token);
2160 		return (0);
2161 	}
2162 
2163 	/*
2164 	 * get a limit
2165 	 */
2166 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2167 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2168 
2169 	/*
2170 	 * let processes that are swapped out really be
2171 	 * swapped out.  Set the limit to nothing to get as
2172 	 * many pages out to swap as possible.
2173 	 */
2174 	if (p->p_flags & P_SWAPPEDOUT)
2175 		limit = 0;
2176 
2177 	vm = p->p_vmspace;
2178 	vmspace_hold(vm);
2179 	size = vmspace_resident_count(vm);
2180 	if (limit >= 0 && size >= limit) {
2181 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2182 	}
2183 	vmspace_drop(vm);
2184 
2185 	lwkt_reltoken(&p->p_token);
2186 
2187 	return (0);
2188 }
2189 
2190 #endif
2191