xref: /dragonfly/sys/vm/vm_pageout.c (revision 3f5e28f4)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.32 2007/03/20 00:54:26 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
396 	 * mark the pages read-only.
397 	 *
398 	 * We do not have to fixup the clean/dirty bits here... we can
399 	 * allow the pager to do it after the I/O completes.
400 	 */
401 
402 	for (i = 0; i < count; i++) {
403 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404 		vm_page_io_start(mc[i]);
405 		vm_page_protect(mc[i], VM_PROT_READ);
406 	}
407 
408 	object = mc[0]->object;
409 	vm_object_pip_add(object, count);
410 
411 	vm_pager_put_pages(object, mc, count,
412 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413 	    pageout_status);
414 
415 	for (i = 0; i < count; i++) {
416 		vm_page_t mt = mc[i];
417 
418 		switch (pageout_status[i]) {
419 		case VM_PAGER_OK:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_PEND:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_BAD:
426 			/*
427 			 * Page outside of range of object. Right now we
428 			 * essentially lose the changes by pretending it
429 			 * worked.
430 			 */
431 			pmap_clear_modify(mt);
432 			vm_page_undirty(mt);
433 			break;
434 		case VM_PAGER_ERROR:
435 		case VM_PAGER_FAIL:
436 			/*
437 			 * If page couldn't be paged out, then reactivate the
438 			 * page so it doesn't clog the inactive list.  (We
439 			 * will try paging out it again later).
440 			 */
441 			vm_page_activate(mt);
442 			break;
443 		case VM_PAGER_AGAIN:
444 			break;
445 		}
446 
447 		/*
448 		 * If the operation is still going, leave the page busy to
449 		 * block all other accesses. Also, leave the paging in
450 		 * progress indicator set so that we don't attempt an object
451 		 * collapse.
452 		 */
453 		if (pageout_status[i] != VM_PAGER_PEND) {
454 			vm_object_pip_wakeup(object);
455 			vm_page_io_finish(mt);
456 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457 				vm_page_protect(mt, VM_PROT_READ);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  *	vm_pageout_object_deactivate_pages
466  *
467  *	deactivate enough pages to satisfy the inactive target
468  *	requirements or if vm_page_proc_limit is set, then
469  *	deactivate all of the pages in the object and its
470  *	backing_objects.
471  *
472  *	The object and map must be locked.
473  */
474 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
475 
476 static void
477 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
478 	vm_pindex_t desired, int map_remove_only)
479 {
480 	struct rb_vm_page_scan_info info;
481 	int remove_mode;
482 
483 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
484 		return;
485 
486 	while (object) {
487 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
488 			return;
489 		if (object->paging_in_progress)
490 			return;
491 
492 		remove_mode = map_remove_only;
493 		if (object->shadow_count > 1)
494 			remove_mode = 1;
495 
496 		/*
497 		 * scan the objects entire memory queue.  spl protection is
498 		 * required to avoid an interrupt unbusy/free race against
499 		 * our busy check.
500 		 */
501 		crit_enter();
502 		info.limit = remove_mode;
503 		info.map = map;
504 		info.desired = desired;
505 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
506 				vm_pageout_object_deactivate_pages_callback,
507 				&info
508 		);
509 		crit_exit();
510 		object = object->backing_object;
511 	}
512 }
513 
514 static int
515 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
516 {
517 	struct rb_vm_page_scan_info *info = data;
518 	int actcount;
519 
520 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
521 		return(-1);
522 	}
523 	mycpu->gd_cnt.v_pdpages++;
524 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
525 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
526 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
527 		return(0);
528 	}
529 
530 	actcount = pmap_ts_referenced(p);
531 	if (actcount) {
532 		vm_page_flag_set(p, PG_REFERENCED);
533 	} else if (p->flags & PG_REFERENCED) {
534 		actcount = 1;
535 	}
536 
537 	if ((p->queue != PQ_ACTIVE) &&
538 		(p->flags & PG_REFERENCED)) {
539 		vm_page_activate(p);
540 		p->act_count += actcount;
541 		vm_page_flag_clear(p, PG_REFERENCED);
542 	} else if (p->queue == PQ_ACTIVE) {
543 		if ((p->flags & PG_REFERENCED) == 0) {
544 			p->act_count -= min(p->act_count, ACT_DECLINE);
545 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
546 				vm_page_protect(p, VM_PROT_NONE);
547 				vm_page_deactivate(p);
548 			} else {
549 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
551 			}
552 		} else {
553 			vm_page_activate(p);
554 			vm_page_flag_clear(p, PG_REFERENCED);
555 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
556 				p->act_count += ACT_ADVANCE;
557 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
558 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
559 		}
560 	} else if (p->queue == PQ_INACTIVE) {
561 		vm_page_protect(p, VM_PROT_NONE);
562 	}
563 	return(0);
564 }
565 
566 /*
567  * deactivate some number of pages in a map, try to do it fairly, but
568  * that is really hard to do.
569  */
570 static void
571 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
572 {
573 	vm_map_entry_t tmpe;
574 	vm_object_t obj, bigobj;
575 	int nothingwired;
576 
577 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
578 		return;
579 	}
580 
581 	bigobj = NULL;
582 	nothingwired = TRUE;
583 
584 	/*
585 	 * first, search out the biggest object, and try to free pages from
586 	 * that.
587 	 */
588 	tmpe = map->header.next;
589 	while (tmpe != &map->header) {
590 		switch(tmpe->maptype) {
591 		case VM_MAPTYPE_NORMAL:
592 		case VM_MAPTYPE_VPAGETABLE:
593 			obj = tmpe->object.vm_object;
594 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
595 				((bigobj == NULL) ||
596 				 (bigobj->resident_page_count < obj->resident_page_count))) {
597 				bigobj = obj;
598 			}
599 			break;
600 		default:
601 			break;
602 		}
603 		if (tmpe->wired_count > 0)
604 			nothingwired = FALSE;
605 		tmpe = tmpe->next;
606 	}
607 
608 	if (bigobj)
609 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
610 
611 	/*
612 	 * Next, hunt around for other pages to deactivate.  We actually
613 	 * do this search sort of wrong -- .text first is not the best idea.
614 	 */
615 	tmpe = map->header.next;
616 	while (tmpe != &map->header) {
617 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
618 			break;
619 		switch(tmpe->maptype) {
620 		case VM_MAPTYPE_NORMAL:
621 		case VM_MAPTYPE_VPAGETABLE:
622 			obj = tmpe->object.vm_object;
623 			if (obj)
624 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
625 			break;
626 		default:
627 			break;
628 		}
629 		tmpe = tmpe->next;
630 	};
631 
632 	/*
633 	 * Remove all mappings if a process is swapped out, this will free page
634 	 * table pages.
635 	 */
636 	if (desired == 0 && nothingwired)
637 		pmap_remove(vm_map_pmap(map),
638 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
639 	vm_map_unlock(map);
640 }
641 #endif
642 
643 /*
644  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
645  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
646  * be trivially freed.
647  */
648 void
649 vm_pageout_page_free(vm_page_t m)
650 {
651 	vm_object_t object = m->object;
652 	int type = object->type;
653 
654 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
655 		vm_object_reference(object);
656 	vm_page_busy(m);
657 	vm_page_protect(m, VM_PROT_NONE);
658 	vm_page_free(m);
659 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
660 		vm_object_deallocate(object);
661 }
662 
663 /*
664  *	vm_pageout_scan does the dirty work for the pageout daemon.
665  */
666 
667 struct vm_pageout_scan_info {
668 	struct proc *bigproc;
669 	vm_offset_t bigsize;
670 };
671 
672 static int vm_pageout_scan_callback(struct proc *p, void *data);
673 
674 static void
675 vm_pageout_scan(int pass)
676 {
677 	struct vm_pageout_scan_info info;
678 	vm_page_t m, next;
679 	struct vm_page marker;
680 	int page_shortage, maxscan, pcount;
681 	int addl_page_shortage, addl_page_shortage_init;
682 	vm_object_t object;
683 	int actcount;
684 	int vnodes_skipped = 0;
685 	int maxlaunder;
686 
687 	/*
688 	 * Do whatever cleanup that the pmap code can.
689 	 */
690 	pmap_collect();
691 
692 	addl_page_shortage_init = vm_pageout_deficit;
693 	vm_pageout_deficit = 0;
694 
695 	/*
696 	 * Calculate the number of pages we want to either free or move
697 	 * to the cache.
698 	 */
699 	page_shortage = vm_paging_target() + addl_page_shortage_init;
700 
701 	/*
702 	 * Initialize our marker
703 	 */
704 	bzero(&marker, sizeof(marker));
705 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
706 	marker.queue = PQ_INACTIVE;
707 	marker.wire_count = 1;
708 
709 	/*
710 	 * Start scanning the inactive queue for pages we can move to the
711 	 * cache or free.  The scan will stop when the target is reached or
712 	 * we have scanned the entire inactive queue.  Note that m->act_count
713 	 * is not used to form decisions for the inactive queue, only for the
714 	 * active queue.
715 	 *
716 	 * maxlaunder limits the number of dirty pages we flush per scan.
717 	 * For most systems a smaller value (16 or 32) is more robust under
718 	 * extreme memory and disk pressure because any unnecessary writes
719 	 * to disk can result in extreme performance degredation.  However,
720 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
721 	 * used) will die horribly with limited laundering.  If the pageout
722 	 * daemon cannot clean enough pages in the first pass, we let it go
723 	 * all out in succeeding passes.
724 	 */
725 	if ((maxlaunder = vm_max_launder) <= 1)
726 		maxlaunder = 1;
727 	if (pass)
728 		maxlaunder = 10000;
729 
730 	/*
731 	 * We will generally be in a critical section throughout the
732 	 * scan, but we can release it temporarily when we are sitting on a
733 	 * non-busy page without fear.  this is required to prevent an
734 	 * interrupt from unbusying or freeing a page prior to our busy
735 	 * check, leaving us on the wrong queue or checking the wrong
736 	 * page.
737 	 */
738 	crit_enter();
739 rescan0:
740 	addl_page_shortage = addl_page_shortage_init;
741 	maxscan = vmstats.v_inactive_count;
742 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
743 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
744 	     m = next
745 	 ) {
746 		mycpu->gd_cnt.v_pdpages++;
747 
748 		/*
749 		 * Give interrupts a chance
750 		 */
751 		crit_exit();
752 		crit_enter();
753 
754 		/*
755 		 * It's easier for some of the conditions below to just loop
756 		 * and catch queue changes here rather then check everywhere
757 		 * else.
758 		 */
759 		if (m->queue != PQ_INACTIVE)
760 			goto rescan0;
761 		next = TAILQ_NEXT(m, pageq);
762 
763 		/*
764 		 * skip marker pages
765 		 */
766 		if (m->flags & PG_MARKER)
767 			continue;
768 
769 		/*
770 		 * A held page may be undergoing I/O, so skip it.
771 		 */
772 		if (m->hold_count) {
773 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
774 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
775 			addl_page_shortage++;
776 			continue;
777 		}
778 
779 		/*
780 		 * Dont mess with busy pages, keep in the front of the
781 		 * queue, most likely are being paged out.
782 		 */
783 		if (m->busy || (m->flags & PG_BUSY)) {
784 			addl_page_shortage++;
785 			continue;
786 		}
787 
788 		if (m->object->ref_count == 0) {
789 			/*
790 			 * If the object is not being used, we ignore previous
791 			 * references.
792 			 */
793 			vm_page_flag_clear(m, PG_REFERENCED);
794 			pmap_clear_reference(m);
795 
796 		} else if (((m->flags & PG_REFERENCED) == 0) &&
797 			    (actcount = pmap_ts_referenced(m))) {
798 			/*
799 			 * Otherwise, if the page has been referenced while
800 			 * in the inactive queue, we bump the "activation
801 			 * count" upwards, making it less likely that the
802 			 * page will be added back to the inactive queue
803 			 * prematurely again.  Here we check the page tables
804 			 * (or emulated bits, if any), given the upper level
805 			 * VM system not knowing anything about existing
806 			 * references.
807 			 */
808 			vm_page_activate(m);
809 			m->act_count += (actcount + ACT_ADVANCE);
810 			continue;
811 		}
812 
813 		/*
814 		 * If the upper level VM system knows about any page
815 		 * references, we activate the page.  We also set the
816 		 * "activation count" higher than normal so that we will less
817 		 * likely place pages back onto the inactive queue again.
818 		 */
819 		if ((m->flags & PG_REFERENCED) != 0) {
820 			vm_page_flag_clear(m, PG_REFERENCED);
821 			actcount = pmap_ts_referenced(m);
822 			vm_page_activate(m);
823 			m->act_count += (actcount + ACT_ADVANCE + 1);
824 			continue;
825 		}
826 
827 		/*
828 		 * If the upper level VM system doesn't know anything about
829 		 * the page being dirty, we have to check for it again.  As
830 		 * far as the VM code knows, any partially dirty pages are
831 		 * fully dirty.
832 		 *
833 		 * Pages marked PG_WRITEABLE may be mapped into the user
834 		 * address space of a process running on another cpu.  A
835 		 * user process (without holding the MP lock) running on
836 		 * another cpu may be able to touch the page while we are
837 		 * trying to remove it.  To prevent this from occuring we
838 		 * must call pmap_remove_all() or otherwise make the page
839 		 * read-only.  If the race occured pmap_remove_all() is
840 		 * responsible for setting m->dirty.
841 		 */
842 		if (m->dirty == 0) {
843 			vm_page_test_dirty(m);
844 #if 0
845 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
846 				pmap_remove_all(m);
847 #endif
848 		} else {
849 			vm_page_dirty(m);
850 		}
851 
852 		if (m->valid == 0) {
853 			/*
854 			 * Invalid pages can be easily freed
855 			 */
856 			vm_pageout_page_free(m);
857 			mycpu->gd_cnt.v_dfree++;
858 			--page_shortage;
859 		} else if (m->dirty == 0) {
860 			/*
861 			 * Clean pages can be placed onto the cache queue.
862 			 * This effectively frees them.
863 			 */
864 			vm_page_cache(m);
865 			--page_shortage;
866 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
867 			/*
868 			 * Dirty pages need to be paged out, but flushing
869 			 * a page is extremely expensive verses freeing
870 			 * a clean page.  Rather then artificially limiting
871 			 * the number of pages we can flush, we instead give
872 			 * dirty pages extra priority on the inactive queue
873 			 * by forcing them to be cycled through the queue
874 			 * twice before being flushed, after which the
875 			 * (now clean) page will cycle through once more
876 			 * before being freed.  This significantly extends
877 			 * the thrash point for a heavily loaded machine.
878 			 */
879 			vm_page_flag_set(m, PG_WINATCFLS);
880 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
881 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
882 		} else if (maxlaunder > 0) {
883 			/*
884 			 * We always want to try to flush some dirty pages if
885 			 * we encounter them, to keep the system stable.
886 			 * Normally this number is small, but under extreme
887 			 * pressure where there are insufficient clean pages
888 			 * on the inactive queue, we may have to go all out.
889 			 */
890 			int swap_pageouts_ok;
891 			struct vnode *vp = NULL;
892 
893 			object = m->object;
894 
895 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
896 				swap_pageouts_ok = 1;
897 			} else {
898 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
899 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
900 				vm_page_count_min());
901 
902 			}
903 
904 			/*
905 			 * We don't bother paging objects that are "dead".
906 			 * Those objects are in a "rundown" state.
907 			 */
908 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
909 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
910 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
911 				continue;
912 			}
913 
914 			/*
915 			 * The object is already known NOT to be dead.   It
916 			 * is possible for the vget() to block the whole
917 			 * pageout daemon, but the new low-memory handling
918 			 * code should prevent it.
919 			 *
920 			 * The previous code skipped locked vnodes and, worse,
921 			 * reordered pages in the queue.  This results in
922 			 * completely non-deterministic operation because,
923 			 * quite often, a vm_fault has initiated an I/O and
924 			 * is holding a locked vnode at just the point where
925 			 * the pageout daemon is woken up.
926 			 *
927 			 * We can't wait forever for the vnode lock, we might
928 			 * deadlock due to a vn_read() getting stuck in
929 			 * vm_wait while holding this vnode.  We skip the
930 			 * vnode if we can't get it in a reasonable amount
931 			 * of time.
932 			 */
933 
934 			if (object->type == OBJT_VNODE) {
935 				vp = object->handle;
936 
937 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
938 					++pageout_lock_miss;
939 					if (object->flags & OBJ_MIGHTBEDIRTY)
940 						    vnodes_skipped++;
941 					continue;
942 				}
943 
944 				/*
945 				 * The page might have been moved to another
946 				 * queue during potential blocking in vget()
947 				 * above.  The page might have been freed and
948 				 * reused for another vnode.  The object might
949 				 * have been reused for another vnode.
950 				 */
951 				if (m->queue != PQ_INACTIVE ||
952 				    m->object != object ||
953 				    object->handle != vp) {
954 					if (object->flags & OBJ_MIGHTBEDIRTY)
955 						vnodes_skipped++;
956 					vput(vp);
957 					continue;
958 				}
959 
960 				/*
961 				 * The page may have been busied during the
962 				 * blocking in vput();  We don't move the
963 				 * page back onto the end of the queue so that
964 				 * statistics are more correct if we don't.
965 				 */
966 				if (m->busy || (m->flags & PG_BUSY)) {
967 					vput(vp);
968 					continue;
969 				}
970 
971 				/*
972 				 * If the page has become held it might
973 				 * be undergoing I/O, so skip it
974 				 */
975 				if (m->hold_count) {
976 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
977 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
978 					if (object->flags & OBJ_MIGHTBEDIRTY)
979 						vnodes_skipped++;
980 					vput(vp);
981 					continue;
982 				}
983 			}
984 
985 			/*
986 			 * If a page is dirty, then it is either being washed
987 			 * (but not yet cleaned) or it is still in the
988 			 * laundry.  If it is still in the laundry, then we
989 			 * start the cleaning operation.
990 			 *
991 			 * This operation may cluster, invalidating the 'next'
992 			 * pointer.  To prevent an inordinate number of
993 			 * restarts we use our marker to remember our place.
994 			 *
995 			 * decrement page_shortage on success to account for
996 			 * the (future) cleaned page.  Otherwise we could wind
997 			 * up laundering or cleaning too many pages.
998 			 */
999 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1000 			if (vm_pageout_clean(m) != 0) {
1001 				--page_shortage;
1002 				--maxlaunder;
1003 			}
1004 			next = TAILQ_NEXT(&marker, pageq);
1005 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1006 			if (vp != NULL)
1007 				vput(vp);
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Compute the number of pages we want to try to move from the
1013 	 * active queue to the inactive queue.
1014 	 */
1015 	page_shortage = vm_paging_target() +
1016 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
1017 	page_shortage += addl_page_shortage;
1018 
1019 	/*
1020 	 * Scan the active queue for things we can deactivate. We nominally
1021 	 * track the per-page activity counter and use it to locate
1022 	 * deactivation candidates.
1023 	 *
1024 	 * NOTE: we are still in a critical section.
1025 	 */
1026 	pcount = vmstats.v_active_count;
1027 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1028 
1029 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1030 		/*
1031 		 * Give interrupts a chance.
1032 		 */
1033 		crit_exit();
1034 		crit_enter();
1035 
1036 		/*
1037 		 * If the page was ripped out from under us, just stop.
1038 		 */
1039 		if (m->queue != PQ_ACTIVE)
1040 			break;
1041 		next = TAILQ_NEXT(m, pageq);
1042 
1043 		/*
1044 		 * Don't deactivate pages that are busy.
1045 		 */
1046 		if ((m->busy != 0) ||
1047 		    (m->flags & PG_BUSY) ||
1048 		    (m->hold_count != 0)) {
1049 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1050 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1051 			m = next;
1052 			continue;
1053 		}
1054 
1055 		/*
1056 		 * The count for pagedaemon pages is done after checking the
1057 		 * page for eligibility...
1058 		 */
1059 		mycpu->gd_cnt.v_pdpages++;
1060 
1061 		/*
1062 		 * Check to see "how much" the page has been used.
1063 		 */
1064 		actcount = 0;
1065 		if (m->object->ref_count != 0) {
1066 			if (m->flags & PG_REFERENCED) {
1067 				actcount += 1;
1068 			}
1069 			actcount += pmap_ts_referenced(m);
1070 			if (actcount) {
1071 				m->act_count += ACT_ADVANCE + actcount;
1072 				if (m->act_count > ACT_MAX)
1073 					m->act_count = ACT_MAX;
1074 			}
1075 		}
1076 
1077 		/*
1078 		 * Since we have "tested" this bit, we need to clear it now.
1079 		 */
1080 		vm_page_flag_clear(m, PG_REFERENCED);
1081 
1082 		/*
1083 		 * Only if an object is currently being used, do we use the
1084 		 * page activation count stats.
1085 		 */
1086 		if (actcount && (m->object->ref_count != 0)) {
1087 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1088 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1089 		} else {
1090 			m->act_count -= min(m->act_count, ACT_DECLINE);
1091 			if (vm_pageout_algorithm ||
1092 			    m->object->ref_count == 0 ||
1093 			    m->act_count < pass) {
1094 				page_shortage--;
1095 				if (m->object->ref_count == 0) {
1096 					vm_page_protect(m, VM_PROT_NONE);
1097 					if (m->dirty == 0)
1098 						vm_page_cache(m);
1099 					else
1100 						vm_page_deactivate(m);
1101 				} else {
1102 					vm_page_deactivate(m);
1103 				}
1104 			} else {
1105 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107 			}
1108 		}
1109 		m = next;
1110 	}
1111 
1112 	/*
1113 	 * We try to maintain some *really* free pages, this allows interrupt
1114 	 * code to be guaranteed space.  Since both cache and free queues
1115 	 * are considered basically 'free', moving pages from cache to free
1116 	 * does not effect other calculations.
1117 	 *
1118 	 * NOTE: we are still in a critical section.
1119 	 */
1120 
1121 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1122 		static int cache_rover = 0;
1123 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1124 		if (!m)
1125 			break;
1126 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1127 		    m->busy ||
1128 		    m->hold_count ||
1129 		    m->wire_count) {
1130 #ifdef INVARIANTS
1131 			kprintf("Warning: busy page %p found in cache\n", m);
1132 #endif
1133 			vm_page_deactivate(m);
1134 			continue;
1135 		}
1136 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1137 		vm_pageout_page_free(m);
1138 		mycpu->gd_cnt.v_dfree++;
1139 	}
1140 
1141 	crit_exit();
1142 
1143 #if !defined(NO_SWAPPING)
1144 	/*
1145 	 * Idle process swapout -- run once per second.
1146 	 */
1147 	if (vm_swap_idle_enabled) {
1148 		static long lsec;
1149 		if (time_second != lsec) {
1150 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1151 			vm_req_vmdaemon();
1152 			lsec = time_second;
1153 		}
1154 	}
1155 #endif
1156 
1157 	/*
1158 	 * If we didn't get enough free pages, and we have skipped a vnode
1159 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1160 	 * if we did not get enough free pages.
1161 	 */
1162 	if (vm_paging_target() > 0) {
1163 		if (vnodes_skipped && vm_page_count_min())
1164 			speedup_syncer();
1165 #if !defined(NO_SWAPPING)
1166 		if (vm_swap_enabled && vm_page_count_target()) {
1167 			vm_req_vmdaemon();
1168 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1169 		}
1170 #endif
1171 	}
1172 
1173 	/*
1174 	 * If we are out of swap and were not able to reach our paging
1175 	 * target, kill the largest process.
1176 	 */
1177 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1178 	    (swap_pager_full && vm_paging_target() > 0)) {
1179 #if 0
1180 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1181 #endif
1182 		info.bigproc = NULL;
1183 		info.bigsize = 0;
1184 		allproc_scan(vm_pageout_scan_callback, &info);
1185 		if (info.bigproc != NULL) {
1186 			killproc(info.bigproc, "out of swap space");
1187 			info.bigproc->p_nice = PRIO_MIN;
1188 			info.bigproc->p_usched->resetpriority(
1189 				FIRST_LWP_IN_PROC(info.bigproc));
1190 			wakeup(&vmstats.v_free_count);
1191 			PRELE(info.bigproc);
1192 		}
1193 	}
1194 }
1195 
1196 static int
1197 vm_pageout_scan_callback(struct proc *p, void *data)
1198 {
1199 	struct vm_pageout_scan_info *info = data;
1200 	vm_offset_t size;
1201 
1202 	/*
1203 	 * if this is a system process, skip it
1204 	 */
1205 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1206 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1207 		return (0);
1208 	}
1209 
1210 	/*
1211 	 * if the process is in a non-running type state,
1212 	 * don't touch it.
1213 	 */
1214 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1215 		return (0);
1216 	}
1217 
1218 	/*
1219 	 * get the process size
1220 	 */
1221 	size = vmspace_resident_count(p->p_vmspace) +
1222 		vmspace_swap_count(p->p_vmspace);
1223 
1224 	/*
1225 	 * If the this process is bigger than the biggest one
1226 	 * remember it.
1227 	 */
1228 	if (size > info->bigsize) {
1229 		if (info->bigproc)
1230 			PRELE(info->bigproc);
1231 		PHOLD(p);
1232 		info->bigproc = p;
1233 		info->bigsize = size;
1234 	}
1235 	return(0);
1236 }
1237 
1238 /*
1239  * This routine tries to maintain the pseudo LRU active queue,
1240  * so that during long periods of time where there is no paging,
1241  * that some statistic accumulation still occurs.  This code
1242  * helps the situation where paging just starts to occur.
1243  */
1244 static void
1245 vm_pageout_page_stats(void)
1246 {
1247 	vm_page_t m,next;
1248 	int pcount,tpcount;		/* Number of pages to check */
1249 	static int fullintervalcount = 0;
1250 	int page_shortage;
1251 
1252 	page_shortage =
1253 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1254 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1255 
1256 	if (page_shortage <= 0)
1257 		return;
1258 
1259 	crit_enter();
1260 
1261 	pcount = vmstats.v_active_count;
1262 	fullintervalcount += vm_pageout_stats_interval;
1263 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1264 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1265 		if (pcount > tpcount)
1266 			pcount = tpcount;
1267 	} else {
1268 		fullintervalcount = 0;
1269 	}
1270 
1271 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1272 	while ((m != NULL) && (pcount-- > 0)) {
1273 		int actcount;
1274 
1275 		if (m->queue != PQ_ACTIVE) {
1276 			break;
1277 		}
1278 
1279 		next = TAILQ_NEXT(m, pageq);
1280 		/*
1281 		 * Don't deactivate pages that are busy.
1282 		 */
1283 		if ((m->busy != 0) ||
1284 		    (m->flags & PG_BUSY) ||
1285 		    (m->hold_count != 0)) {
1286 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1287 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1288 			m = next;
1289 			continue;
1290 		}
1291 
1292 		actcount = 0;
1293 		if (m->flags & PG_REFERENCED) {
1294 			vm_page_flag_clear(m, PG_REFERENCED);
1295 			actcount += 1;
1296 		}
1297 
1298 		actcount += pmap_ts_referenced(m);
1299 		if (actcount) {
1300 			m->act_count += ACT_ADVANCE + actcount;
1301 			if (m->act_count > ACT_MAX)
1302 				m->act_count = ACT_MAX;
1303 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1304 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1305 		} else {
1306 			if (m->act_count == 0) {
1307 				/*
1308 				 * We turn off page access, so that we have
1309 				 * more accurate RSS stats.  We don't do this
1310 				 * in the normal page deactivation when the
1311 				 * system is loaded VM wise, because the
1312 				 * cost of the large number of page protect
1313 				 * operations would be higher than the value
1314 				 * of doing the operation.
1315 				 */
1316 				vm_page_protect(m, VM_PROT_NONE);
1317 				vm_page_deactivate(m);
1318 			} else {
1319 				m->act_count -= min(m->act_count, ACT_DECLINE);
1320 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1321 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1322 			}
1323 		}
1324 
1325 		m = next;
1326 	}
1327 	crit_exit();
1328 }
1329 
1330 static int
1331 vm_pageout_free_page_calc(vm_size_t count)
1332 {
1333 	if (count < vmstats.v_page_count)
1334 		 return 0;
1335 	/*
1336 	 * free_reserved needs to include enough for the largest swap pager
1337 	 * structures plus enough for any pv_entry structs when paging.
1338 	 */
1339 	if (vmstats.v_page_count > 1024)
1340 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1341 	else
1342 		vmstats.v_free_min = 4;
1343 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1344 		vmstats.v_interrupt_free_min;
1345 	vmstats.v_free_reserved = vm_pageout_page_count +
1346 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1347 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1348 	vmstats.v_free_min += vmstats.v_free_reserved;
1349 	vmstats.v_free_severe += vmstats.v_free_reserved;
1350 	return 1;
1351 }
1352 
1353 
1354 /*
1355  *	vm_pageout is the high level pageout daemon.
1356  */
1357 static void
1358 vm_pageout(void)
1359 {
1360 	int pass;
1361 
1362 	/*
1363 	 * Initialize some paging parameters.
1364 	 */
1365 
1366 	vmstats.v_interrupt_free_min = 2;
1367 	if (vmstats.v_page_count < 2000)
1368 		vm_pageout_page_count = 8;
1369 
1370 	vm_pageout_free_page_calc(vmstats.v_page_count);
1371 	/*
1372 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1373 	 * that these are more a measure of the VM cache queue hysteresis
1374 	 * then the VM free queue.  Specifically, v_free_target is the
1375 	 * high water mark (free+cache pages).
1376 	 *
1377 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1378 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1379 	 * be big enough to handle memory needs while the pageout daemon
1380 	 * is signalled and run to free more pages.
1381 	 */
1382 	if (vmstats.v_free_count > 6144)
1383 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1384 	else
1385 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1386 
1387 	if (vmstats.v_free_count > 2048) {
1388 		vmstats.v_cache_min = vmstats.v_free_target;
1389 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1390 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1391 	} else {
1392 		vmstats.v_cache_min = 0;
1393 		vmstats.v_cache_max = 0;
1394 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1395 	}
1396 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1397 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1398 
1399 	/* XXX does not really belong here */
1400 	if (vm_page_max_wired == 0)
1401 		vm_page_max_wired = vmstats.v_free_count / 3;
1402 
1403 	if (vm_pageout_stats_max == 0)
1404 		vm_pageout_stats_max = vmstats.v_free_target;
1405 
1406 	/*
1407 	 * Set interval in seconds for stats scan.
1408 	 */
1409 	if (vm_pageout_stats_interval == 0)
1410 		vm_pageout_stats_interval = 5;
1411 	if (vm_pageout_full_stats_interval == 0)
1412 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1413 
1414 
1415 	/*
1416 	 * Set maximum free per pass
1417 	 */
1418 	if (vm_pageout_stats_free_max == 0)
1419 		vm_pageout_stats_free_max = 5;
1420 
1421 	swap_pager_swap_init();
1422 	pass = 0;
1423 	/*
1424 	 * The pageout daemon is never done, so loop forever.
1425 	 */
1426 	while (TRUE) {
1427 		int error;
1428 
1429 		/*
1430 		 * If we have enough free memory, wakeup waiters.  Do
1431 		 * not clear vm_pages_needed until we reach our target,
1432 		 * otherwise we may be woken up over and over again and
1433 		 * waste a lot of cpu.
1434 		 */
1435 		crit_enter();
1436 		if (vm_pages_needed && !vm_page_count_min()) {
1437 			if (vm_paging_needed() <= 0)
1438 				vm_pages_needed = 0;
1439 			wakeup(&vmstats.v_free_count);
1440 		}
1441 		if (vm_pages_needed) {
1442 			/*
1443 			 * Still not done, take a second pass without waiting
1444 			 * (unlimited dirty cleaning), otherwise sleep a bit
1445 			 * and try again.
1446 			 */
1447 			++pass;
1448 			if (pass > 1)
1449 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1450 		} else {
1451 			/*
1452 			 * Good enough, sleep & handle stats.  Prime the pass
1453 			 * for the next run.
1454 			 */
1455 			if (pass > 1)
1456 				pass = 1;
1457 			else
1458 				pass = 0;
1459 			error = tsleep(&vm_pages_needed,
1460 				0, "psleep", vm_pageout_stats_interval * hz);
1461 			if (error && !vm_pages_needed) {
1462 				crit_exit();
1463 				pass = 0;
1464 				vm_pageout_page_stats();
1465 				continue;
1466 			}
1467 		}
1468 
1469 		if (vm_pages_needed)
1470 			mycpu->gd_cnt.v_pdwakeups++;
1471 		crit_exit();
1472 		vm_pageout_scan(pass);
1473 		vm_pageout_deficit = 0;
1474 	}
1475 }
1476 
1477 void
1478 pagedaemon_wakeup(void)
1479 {
1480 	if (!vm_pages_needed && curthread != pagethread) {
1481 		vm_pages_needed++;
1482 		wakeup(&vm_pages_needed);
1483 	}
1484 }
1485 
1486 #if !defined(NO_SWAPPING)
1487 static void
1488 vm_req_vmdaemon(void)
1489 {
1490 	static int lastrun = 0;
1491 
1492 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1493 		wakeup(&vm_daemon_needed);
1494 		lastrun = ticks;
1495 	}
1496 }
1497 
1498 static int vm_daemon_callback(struct proc *p, void *data __unused);
1499 
1500 static void
1501 vm_daemon(void)
1502 {
1503 	while (TRUE) {
1504 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1505 		if (vm_pageout_req_swapout) {
1506 			swapout_procs(vm_pageout_req_swapout);
1507 			vm_pageout_req_swapout = 0;
1508 		}
1509 		/*
1510 		 * scan the processes for exceeding their rlimits or if
1511 		 * process is swapped out -- deactivate pages
1512 		 */
1513 		allproc_scan(vm_daemon_callback, NULL);
1514 	}
1515 }
1516 
1517 static int
1518 vm_daemon_callback(struct proc *p, void *data __unused)
1519 {
1520 	vm_pindex_t limit, size;
1521 
1522 	/*
1523 	 * if this is a system process or if we have already
1524 	 * looked at this process, skip it.
1525 	 */
1526 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1527 		return (0);
1528 
1529 	/*
1530 	 * if the process is in a non-running type state,
1531 	 * don't touch it.
1532 	 */
1533 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1534 		return (0);
1535 
1536 	/*
1537 	 * get a limit
1538 	 */
1539 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1540 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1541 
1542 	/*
1543 	 * let processes that are swapped out really be
1544 	 * swapped out.  Set the limit to nothing to get as
1545 	 * many pages out to swap as possible.
1546 	 */
1547 	if (p->p_flag & P_SWAPPEDOUT)
1548 		limit = 0;
1549 
1550 	size = vmspace_resident_count(p->p_vmspace);
1551 	if (limit >= 0 && size >= limit) {
1552 		vm_pageout_map_deactivate_pages(
1553 		    &p->p_vmspace->vm_map, limit);
1554 	}
1555 	return (0);
1556 }
1557 
1558 #endif
1559