xref: /dragonfly/sys/vm/vm_pageout.c (revision 40f79625)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.18 2006/03/15 07:58:37 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
396 	 * mark the pages read-only.
397 	 *
398 	 * We do not have to fixup the clean/dirty bits here... we can
399 	 * allow the pager to do it after the I/O completes.
400 	 */
401 
402 	for (i = 0; i < count; i++) {
403 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404 		vm_page_io_start(mc[i]);
405 		vm_page_protect(mc[i], VM_PROT_READ);
406 	}
407 
408 	object = mc[0]->object;
409 	vm_object_pip_add(object, count);
410 
411 	vm_pager_put_pages(object, mc, count,
412 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413 	    pageout_status);
414 
415 	for (i = 0; i < count; i++) {
416 		vm_page_t mt = mc[i];
417 
418 		switch (pageout_status[i]) {
419 		case VM_PAGER_OK:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_PEND:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_BAD:
426 			/*
427 			 * Page outside of range of object. Right now we
428 			 * essentially lose the changes by pretending it
429 			 * worked.
430 			 */
431 			pmap_clear_modify(mt);
432 			vm_page_undirty(mt);
433 			break;
434 		case VM_PAGER_ERROR:
435 		case VM_PAGER_FAIL:
436 			/*
437 			 * If page couldn't be paged out, then reactivate the
438 			 * page so it doesn't clog the inactive list.  (We
439 			 * will try paging out it again later).
440 			 */
441 			vm_page_activate(mt);
442 			break;
443 		case VM_PAGER_AGAIN:
444 			break;
445 		}
446 
447 		/*
448 		 * If the operation is still going, leave the page busy to
449 		 * block all other accesses. Also, leave the paging in
450 		 * progress indicator set so that we don't attempt an object
451 		 * collapse.
452 		 */
453 		if (pageout_status[i] != VM_PAGER_PEND) {
454 			vm_object_pip_wakeup(object);
455 			vm_page_io_finish(mt);
456 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457 				vm_page_protect(mt, VM_PROT_READ);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  *	vm_pageout_object_deactivate_pages
466  *
467  *	deactivate enough pages to satisfy the inactive target
468  *	requirements or if vm_page_proc_limit is set, then
469  *	deactivate all of the pages in the object and its
470  *	backing_objects.
471  *
472  *	The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476 	vm_pindex_t desired, int map_remove_only)
477 {
478 	vm_page_t p, next;
479 	int rcount;
480 	int remove_mode;
481 
482 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483 		return;
484 
485 	while (object) {
486 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487 			return;
488 		if (object->paging_in_progress)
489 			return;
490 
491 		remove_mode = map_remove_only;
492 		if (object->shadow_count > 1)
493 			remove_mode = 1;
494 
495 		/*
496 		 * scan the objects entire memory queue.  spl protection is
497 		 * required to avoid an interrupt unbusy/free race against
498 		 * our busy check.
499 		 */
500 		crit_enter();
501 		rcount = object->resident_page_count;
502 		p = TAILQ_FIRST(&object->memq);
503 
504 		while (p && (rcount-- > 0)) {
505 			int actcount;
506 			if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507 				crit_exit();
508 				return;
509 			}
510 			next = TAILQ_NEXT(p, listq);
511 			mycpu->gd_cnt.v_pdpages++;
512 			if (p->wire_count != 0 ||
513 			    p->hold_count != 0 ||
514 			    p->busy != 0 ||
515 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517 				p = next;
518 				continue;
519 			}
520 
521 			actcount = pmap_ts_referenced(p);
522 			if (actcount) {
523 				vm_page_flag_set(p, PG_REFERENCED);
524 			} else if (p->flags & PG_REFERENCED) {
525 				actcount = 1;
526 			}
527 
528 			if ((p->queue != PQ_ACTIVE) &&
529 				(p->flags & PG_REFERENCED)) {
530 				vm_page_activate(p);
531 				p->act_count += actcount;
532 				vm_page_flag_clear(p, PG_REFERENCED);
533 			} else if (p->queue == PQ_ACTIVE) {
534 				if ((p->flags & PG_REFERENCED) == 0) {
535 					p->act_count -= min(p->act_count, ACT_DECLINE);
536 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537 						vm_page_protect(p, VM_PROT_NONE);
538 						vm_page_deactivate(p);
539 					} else {
540 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542 					}
543 				} else {
544 					vm_page_activate(p);
545 					vm_page_flag_clear(p, PG_REFERENCED);
546 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547 						p->act_count += ACT_ADVANCE;
548 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550 				}
551 			} else if (p->queue == PQ_INACTIVE) {
552 				vm_page_protect(p, VM_PROT_NONE);
553 			}
554 			p = next;
555 		}
556 		crit_exit();
557 		object = object->backing_object;
558 	}
559 }
560 
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568 	vm_map_entry_t tmpe;
569 	vm_object_t obj, bigobj;
570 	int nothingwired;
571 
572 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread)) {
573 		return;
574 	}
575 
576 	bigobj = NULL;
577 	nothingwired = TRUE;
578 
579 	/*
580 	 * first, search out the biggest object, and try to free pages from
581 	 * that.
582 	 */
583 	tmpe = map->header.next;
584 	while (tmpe != &map->header) {
585 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586 			obj = tmpe->object.vm_object;
587 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
588 				((bigobj == NULL) ||
589 				 (bigobj->resident_page_count < obj->resident_page_count))) {
590 				bigobj = obj;
591 			}
592 		}
593 		if (tmpe->wired_count > 0)
594 			nothingwired = FALSE;
595 		tmpe = tmpe->next;
596 	}
597 
598 	if (bigobj)
599 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
600 
601 	/*
602 	 * Next, hunt around for other pages to deactivate.  We actually
603 	 * do this search sort of wrong -- .text first is not the best idea.
604 	 */
605 	tmpe = map->header.next;
606 	while (tmpe != &map->header) {
607 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
608 			break;
609 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
610 			obj = tmpe->object.vm_object;
611 			if (obj)
612 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
613 		}
614 		tmpe = tmpe->next;
615 	};
616 
617 	/*
618 	 * Remove all mappings if a process is swapped out, this will free page
619 	 * table pages.
620 	 */
621 	if (desired == 0 && nothingwired)
622 		pmap_remove(vm_map_pmap(map),
623 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
624 	vm_map_unlock(map);
625 }
626 #endif
627 
628 /*
629  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
630  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
631  * which we know can be trivially freed.
632  */
633 
634 void
635 vm_pageout_page_free(vm_page_t m) {
636 	vm_object_t object = m->object;
637 	int type = object->type;
638 
639 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
640 		vm_object_reference(object);
641 	vm_page_busy(m);
642 	vm_page_protect(m, VM_PROT_NONE);
643 	vm_page_free(m);
644 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
645 		vm_object_deallocate(object);
646 }
647 
648 /*
649  *	vm_pageout_scan does the dirty work for the pageout daemon.
650  */
651 static void
652 vm_pageout_scan(int pass)
653 {
654 	vm_page_t m, next;
655 	struct vm_page marker;
656 	int page_shortage, maxscan, pcount;
657 	int addl_page_shortage, addl_page_shortage_init;
658 	struct proc *p, *bigproc;
659 	vm_offset_t size, bigsize;
660 	vm_object_t object;
661 	int actcount;
662 	int vnodes_skipped = 0;
663 	int maxlaunder;
664 
665 	/*
666 	 * Do whatever cleanup that the pmap code can.
667 	 */
668 	pmap_collect();
669 
670 	addl_page_shortage_init = vm_pageout_deficit;
671 	vm_pageout_deficit = 0;
672 
673 	/*
674 	 * Calculate the number of pages we want to either free or move
675 	 * to the cache.
676 	 */
677 	page_shortage = vm_paging_target() + addl_page_shortage_init;
678 
679 	/*
680 	 * Initialize our marker
681 	 */
682 	bzero(&marker, sizeof(marker));
683 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
684 	marker.queue = PQ_INACTIVE;
685 	marker.wire_count = 1;
686 
687 	/*
688 	 * Start scanning the inactive queue for pages we can move to the
689 	 * cache or free.  The scan will stop when the target is reached or
690 	 * we have scanned the entire inactive queue.  Note that m->act_count
691 	 * is not used to form decisions for the inactive queue, only for the
692 	 * active queue.
693 	 *
694 	 * maxlaunder limits the number of dirty pages we flush per scan.
695 	 * For most systems a smaller value (16 or 32) is more robust under
696 	 * extreme memory and disk pressure because any unnecessary writes
697 	 * to disk can result in extreme performance degredation.  However,
698 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
699 	 * used) will die horribly with limited laundering.  If the pageout
700 	 * daemon cannot clean enough pages in the first pass, we let it go
701 	 * all out in succeeding passes.
702 	 */
703 	if ((maxlaunder = vm_max_launder) <= 1)
704 		maxlaunder = 1;
705 	if (pass)
706 		maxlaunder = 10000;
707 
708 	/*
709 	 * We will generally be in a critical section throughout the
710 	 * scan, but we can release it temporarily when we are sitting on a
711 	 * non-busy page without fear.  this is required to prevent an
712 	 * interrupt from unbusying or freeing a page prior to our busy
713 	 * check, leaving us on the wrong queue or checking the wrong
714 	 * page.
715 	 */
716 	crit_enter();
717 rescan0:
718 	addl_page_shortage = addl_page_shortage_init;
719 	maxscan = vmstats.v_inactive_count;
720 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
721 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
722 	     m = next
723 	 ) {
724 		mycpu->gd_cnt.v_pdpages++;
725 
726 		/*
727 		 * Give interrupts a chance
728 		 */
729 		crit_exit();
730 		crit_enter();
731 
732 		/*
733 		 * It's easier for some of the conditions below to just loop
734 		 * and catch queue changes here rather then check everywhere
735 		 * else.
736 		 */
737 		if (m->queue != PQ_INACTIVE)
738 			goto rescan0;
739 		next = TAILQ_NEXT(m, pageq);
740 
741 		/*
742 		 * skip marker pages
743 		 */
744 		if (m->flags & PG_MARKER)
745 			continue;
746 
747 		/*
748 		 * A held page may be undergoing I/O, so skip it.
749 		 */
750 		if (m->hold_count) {
751 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
752 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
753 			addl_page_shortage++;
754 			continue;
755 		}
756 
757 		/*
758 		 * Dont mess with busy pages, keep in the front of the
759 		 * queue, most likely are being paged out.
760 		 */
761 		if (m->busy || (m->flags & PG_BUSY)) {
762 			addl_page_shortage++;
763 			continue;
764 		}
765 
766 		if (m->object->ref_count == 0) {
767 			/*
768 			 * If the object is not being used, we ignore previous
769 			 * references.
770 			 */
771 			vm_page_flag_clear(m, PG_REFERENCED);
772 			pmap_clear_reference(m);
773 
774 		} else if (((m->flags & PG_REFERENCED) == 0) &&
775 			    (actcount = pmap_ts_referenced(m))) {
776 			/*
777 			 * Otherwise, if the page has been referenced while
778 			 * in the inactive queue, we bump the "activation
779 			 * count" upwards, making it less likely that the
780 			 * page will be added back to the inactive queue
781 			 * prematurely again.  Here we check the page tables
782 			 * (or emulated bits, if any), given the upper level
783 			 * VM system not knowing anything about existing
784 			 * references.
785 			 */
786 			vm_page_activate(m);
787 			m->act_count += (actcount + ACT_ADVANCE);
788 			continue;
789 		}
790 
791 		/*
792 		 * If the upper level VM system knows about any page
793 		 * references, we activate the page.  We also set the
794 		 * "activation count" higher than normal so that we will less
795 		 * likely place pages back onto the inactive queue again.
796 		 */
797 		if ((m->flags & PG_REFERENCED) != 0) {
798 			vm_page_flag_clear(m, PG_REFERENCED);
799 			actcount = pmap_ts_referenced(m);
800 			vm_page_activate(m);
801 			m->act_count += (actcount + ACT_ADVANCE + 1);
802 			continue;
803 		}
804 
805 		/*
806 		 * If the upper level VM system doesn't know anything about
807 		 * the page being dirty, we have to check for it again.  As
808 		 * far as the VM code knows, any partially dirty pages are
809 		 * fully dirty.
810 		 *
811 		 * Pages marked PG_WRITEABLE may be mapped into the user
812 		 * address space of a process running on another cpu.  A
813 		 * user process (without holding the MP lock) running on
814 		 * another cpu may be able to touch the page while we are
815 		 * trying to remove it.  To prevent this from occuring we
816 		 * must call pmap_remove_all() or otherwise make the page
817 		 * read-only.  If the race occured pmap_remove_all() is
818 		 * responsible for setting m->dirty.
819 		 */
820 		if (m->dirty == 0) {
821 			vm_page_test_dirty(m);
822 #if 0
823 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
824 				pmap_remove_all(m);
825 #endif
826 		} else {
827 			vm_page_dirty(m);
828 		}
829 
830 		if (m->valid == 0) {
831 			/*
832 			 * Invalid pages can be easily freed
833 			 */
834 			vm_pageout_page_free(m);
835 			mycpu->gd_cnt.v_dfree++;
836 			--page_shortage;
837 		} else if (m->dirty == 0) {
838 			/*
839 			 * Clean pages can be placed onto the cache queue.
840 			 * This effectively frees them.
841 			 */
842 			vm_page_cache(m);
843 			--page_shortage;
844 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
845 			/*
846 			 * Dirty pages need to be paged out, but flushing
847 			 * a page is extremely expensive verses freeing
848 			 * a clean page.  Rather then artificially limiting
849 			 * the number of pages we can flush, we instead give
850 			 * dirty pages extra priority on the inactive queue
851 			 * by forcing them to be cycled through the queue
852 			 * twice before being flushed, after which the
853 			 * (now clean) page will cycle through once more
854 			 * before being freed.  This significantly extends
855 			 * the thrash point for a heavily loaded machine.
856 			 */
857 			vm_page_flag_set(m, PG_WINATCFLS);
858 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
859 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
860 		} else if (maxlaunder > 0) {
861 			/*
862 			 * We always want to try to flush some dirty pages if
863 			 * we encounter them, to keep the system stable.
864 			 * Normally this number is small, but under extreme
865 			 * pressure where there are insufficient clean pages
866 			 * on the inactive queue, we may have to go all out.
867 			 */
868 			int swap_pageouts_ok;
869 			struct vnode *vp = NULL;
870 
871 			object = m->object;
872 
873 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
874 				swap_pageouts_ok = 1;
875 			} else {
876 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
877 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
878 				vm_page_count_min());
879 
880 			}
881 
882 			/*
883 			 * We don't bother paging objects that are "dead".
884 			 * Those objects are in a "rundown" state.
885 			 */
886 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
887 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
888 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
889 				continue;
890 			}
891 
892 			/*
893 			 * The object is already known NOT to be dead.   It
894 			 * is possible for the vget() to block the whole
895 			 * pageout daemon, but the new low-memory handling
896 			 * code should prevent it.
897 			 *
898 			 * The previous code skipped locked vnodes and, worse,
899 			 * reordered pages in the queue.  This results in
900 			 * completely non-deterministic operation because,
901 			 * quite often, a vm_fault has initiated an I/O and
902 			 * is holding a locked vnode at just the point where
903 			 * the pageout daemon is woken up.
904 			 *
905 			 * We can't wait forever for the vnode lock, we might
906 			 * deadlock due to a vn_read() getting stuck in
907 			 * vm_wait while holding this vnode.  We skip the
908 			 * vnode if we can't get it in a reasonable amount
909 			 * of time.
910 			 */
911 
912 			if (object->type == OBJT_VNODE) {
913 				vp = object->handle;
914 
915 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curthread)) {
916 					++pageout_lock_miss;
917 					if (object->flags & OBJ_MIGHTBEDIRTY)
918 						    vnodes_skipped++;
919 					continue;
920 				}
921 
922 				/*
923 				 * The page might have been moved to another
924 				 * queue during potential blocking in vget()
925 				 * above.  The page might have been freed and
926 				 * reused for another vnode.  The object might
927 				 * have been reused for another vnode.
928 				 */
929 				if (m->queue != PQ_INACTIVE ||
930 				    m->object != object ||
931 				    object->handle != vp) {
932 					if (object->flags & OBJ_MIGHTBEDIRTY)
933 						vnodes_skipped++;
934 					vput(vp);
935 					continue;
936 				}
937 
938 				/*
939 				 * The page may have been busied during the
940 				 * blocking in vput();  We don't move the
941 				 * page back onto the end of the queue so that
942 				 * statistics are more correct if we don't.
943 				 */
944 				if (m->busy || (m->flags & PG_BUSY)) {
945 					vput(vp);
946 					continue;
947 				}
948 
949 				/*
950 				 * If the page has become held it might
951 				 * be undergoing I/O, so skip it
952 				 */
953 				if (m->hold_count) {
954 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
955 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
956 					if (object->flags & OBJ_MIGHTBEDIRTY)
957 						vnodes_skipped++;
958 					vput(vp);
959 					continue;
960 				}
961 			}
962 
963 			/*
964 			 * If a page is dirty, then it is either being washed
965 			 * (but not yet cleaned) or it is still in the
966 			 * laundry.  If it is still in the laundry, then we
967 			 * start the cleaning operation.
968 			 *
969 			 * This operation may cluster, invalidating the 'next'
970 			 * pointer.  To prevent an inordinate number of
971 			 * restarts we use our marker to remember our place.
972 			 *
973 			 * decrement page_shortage on success to account for
974 			 * the (future) cleaned page.  Otherwise we could wind
975 			 * up laundering or cleaning too many pages.
976 			 */
977 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
978 			if (vm_pageout_clean(m) != 0) {
979 				--page_shortage;
980 				--maxlaunder;
981 			}
982 			next = TAILQ_NEXT(&marker, pageq);
983 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
984 			if (vp != NULL)
985 				vput(vp);
986 		}
987 	}
988 
989 	/*
990 	 * Compute the number of pages we want to try to move from the
991 	 * active queue to the inactive queue.
992 	 */
993 	page_shortage = vm_paging_target() +
994 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
995 	page_shortage += addl_page_shortage;
996 
997 	/*
998 	 * Scan the active queue for things we can deactivate. We nominally
999 	 * track the per-page activity counter and use it to locate
1000 	 * deactivation candidates.
1001 	 *
1002 	 * NOTE: we are still in a critical section.
1003 	 */
1004 	pcount = vmstats.v_active_count;
1005 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1006 
1007 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1008 		/*
1009 		 * Give interrupts a chance.
1010 		 */
1011 		crit_exit();
1012 		crit_enter();
1013 
1014 		/*
1015 		 * If the page was ripped out from under us, just stop.
1016 		 */
1017 		if (m->queue != PQ_ACTIVE)
1018 			break;
1019 		next = TAILQ_NEXT(m, pageq);
1020 
1021 		/*
1022 		 * Don't deactivate pages that are busy.
1023 		 */
1024 		if ((m->busy != 0) ||
1025 		    (m->flags & PG_BUSY) ||
1026 		    (m->hold_count != 0)) {
1027 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1028 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1029 			m = next;
1030 			continue;
1031 		}
1032 
1033 		/*
1034 		 * The count for pagedaemon pages is done after checking the
1035 		 * page for eligibility...
1036 		 */
1037 		mycpu->gd_cnt.v_pdpages++;
1038 
1039 		/*
1040 		 * Check to see "how much" the page has been used.
1041 		 */
1042 		actcount = 0;
1043 		if (m->object->ref_count != 0) {
1044 			if (m->flags & PG_REFERENCED) {
1045 				actcount += 1;
1046 			}
1047 			actcount += pmap_ts_referenced(m);
1048 			if (actcount) {
1049 				m->act_count += ACT_ADVANCE + actcount;
1050 				if (m->act_count > ACT_MAX)
1051 					m->act_count = ACT_MAX;
1052 			}
1053 		}
1054 
1055 		/*
1056 		 * Since we have "tested" this bit, we need to clear it now.
1057 		 */
1058 		vm_page_flag_clear(m, PG_REFERENCED);
1059 
1060 		/*
1061 		 * Only if an object is currently being used, do we use the
1062 		 * page activation count stats.
1063 		 */
1064 		if (actcount && (m->object->ref_count != 0)) {
1065 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1066 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1067 		} else {
1068 			m->act_count -= min(m->act_count, ACT_DECLINE);
1069 			if (vm_pageout_algorithm ||
1070 			    m->object->ref_count == 0 ||
1071 			    m->act_count == 0) {
1072 				page_shortage--;
1073 				if (m->object->ref_count == 0) {
1074 					vm_page_protect(m, VM_PROT_NONE);
1075 					if (m->dirty == 0)
1076 						vm_page_cache(m);
1077 					else
1078 						vm_page_deactivate(m);
1079 				} else {
1080 					vm_page_deactivate(m);
1081 				}
1082 			} else {
1083 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1084 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1085 			}
1086 		}
1087 		m = next;
1088 	}
1089 
1090 	/*
1091 	 * We try to maintain some *really* free pages, this allows interrupt
1092 	 * code to be guaranteed space.  Since both cache and free queues
1093 	 * are considered basically 'free', moving pages from cache to free
1094 	 * does not effect other calculations.
1095 	 *
1096 	 * NOTE: we are still in a critical section.
1097 	 */
1098 
1099 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1100 		static int cache_rover = 0;
1101 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1102 		if (!m)
1103 			break;
1104 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1105 		    m->busy ||
1106 		    m->hold_count ||
1107 		    m->wire_count) {
1108 #ifdef INVARIANTS
1109 			printf("Warning: busy page %p found in cache\n", m);
1110 #endif
1111 			vm_page_deactivate(m);
1112 			continue;
1113 		}
1114 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1115 		vm_pageout_page_free(m);
1116 		mycpu->gd_cnt.v_dfree++;
1117 	}
1118 
1119 	crit_exit();
1120 
1121 #if !defined(NO_SWAPPING)
1122 	/*
1123 	 * Idle process swapout -- run once per second.
1124 	 */
1125 	if (vm_swap_idle_enabled) {
1126 		static long lsec;
1127 		if (time_second != lsec) {
1128 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1129 			vm_req_vmdaemon();
1130 			lsec = time_second;
1131 		}
1132 	}
1133 #endif
1134 
1135 	/*
1136 	 * If we didn't get enough free pages, and we have skipped a vnode
1137 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1138 	 * if we did not get enough free pages.
1139 	 */
1140 	if (vm_paging_target() > 0) {
1141 		if (vnodes_skipped && vm_page_count_min())
1142 			speedup_syncer();
1143 #if !defined(NO_SWAPPING)
1144 		if (vm_swap_enabled && vm_page_count_target()) {
1145 			vm_req_vmdaemon();
1146 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1147 		}
1148 #endif
1149 	}
1150 
1151 	/*
1152 	 * If we are out of swap and were not able to reach our paging
1153 	 * target, kill the largest process.
1154 	 */
1155 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1156 	    (swap_pager_full && vm_paging_target() > 0)) {
1157 #if 0
1158 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1159 #endif
1160 		bigproc = NULL;
1161 		bigsize = 0;
1162 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1163 			/*
1164 			 * if this is a system process, skip it
1165 			 */
1166 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1167 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1168 				continue;
1169 			}
1170 			/*
1171 			 * if the process is in a non-running type state,
1172 			 * don't touch it.
1173 			 */
1174 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1175 				continue;
1176 			}
1177 			/*
1178 			 * get the process size
1179 			 */
1180 			size = vmspace_resident_count(p->p_vmspace) +
1181 				vmspace_swap_count(p->p_vmspace);
1182 			/*
1183 			 * if the this process is bigger than the biggest one
1184 			 * remember it.
1185 			 */
1186 			if (size > bigsize) {
1187 				bigproc = p;
1188 				bigsize = size;
1189 			}
1190 		}
1191 		if (bigproc != NULL) {
1192 			killproc(bigproc, "out of swap space");
1193 			bigproc->p_nice = PRIO_MIN;
1194 			bigproc->p_usched->resetpriority(&bigproc->p_lwp);
1195 			wakeup(&vmstats.v_free_count);
1196 		}
1197 	}
1198 }
1199 
1200 /*
1201  * This routine tries to maintain the pseudo LRU active queue,
1202  * so that during long periods of time where there is no paging,
1203  * that some statistic accumulation still occurs.  This code
1204  * helps the situation where paging just starts to occur.
1205  */
1206 static void
1207 vm_pageout_page_stats(void)
1208 {
1209 	vm_page_t m,next;
1210 	int pcount,tpcount;		/* Number of pages to check */
1211 	static int fullintervalcount = 0;
1212 	int page_shortage;
1213 
1214 	page_shortage =
1215 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1216 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1217 
1218 	if (page_shortage <= 0)
1219 		return;
1220 
1221 	crit_enter();
1222 
1223 	pcount = vmstats.v_active_count;
1224 	fullintervalcount += vm_pageout_stats_interval;
1225 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1226 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1227 		if (pcount > tpcount)
1228 			pcount = tpcount;
1229 	} else {
1230 		fullintervalcount = 0;
1231 	}
1232 
1233 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1234 	while ((m != NULL) && (pcount-- > 0)) {
1235 		int actcount;
1236 
1237 		if (m->queue != PQ_ACTIVE) {
1238 			break;
1239 		}
1240 
1241 		next = TAILQ_NEXT(m, pageq);
1242 		/*
1243 		 * Don't deactivate pages that are busy.
1244 		 */
1245 		if ((m->busy != 0) ||
1246 		    (m->flags & PG_BUSY) ||
1247 		    (m->hold_count != 0)) {
1248 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1249 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1250 			m = next;
1251 			continue;
1252 		}
1253 
1254 		actcount = 0;
1255 		if (m->flags & PG_REFERENCED) {
1256 			vm_page_flag_clear(m, PG_REFERENCED);
1257 			actcount += 1;
1258 		}
1259 
1260 		actcount += pmap_ts_referenced(m);
1261 		if (actcount) {
1262 			m->act_count += ACT_ADVANCE + actcount;
1263 			if (m->act_count > ACT_MAX)
1264 				m->act_count = ACT_MAX;
1265 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1266 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1267 		} else {
1268 			if (m->act_count == 0) {
1269 				/*
1270 				 * We turn off page access, so that we have
1271 				 * more accurate RSS stats.  We don't do this
1272 				 * in the normal page deactivation when the
1273 				 * system is loaded VM wise, because the
1274 				 * cost of the large number of page protect
1275 				 * operations would be higher than the value
1276 				 * of doing the operation.
1277 				 */
1278 				vm_page_protect(m, VM_PROT_NONE);
1279 				vm_page_deactivate(m);
1280 			} else {
1281 				m->act_count -= min(m->act_count, ACT_DECLINE);
1282 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1283 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1284 			}
1285 		}
1286 
1287 		m = next;
1288 	}
1289 	crit_exit();
1290 }
1291 
1292 static int
1293 vm_pageout_free_page_calc(vm_size_t count)
1294 {
1295 	if (count < vmstats.v_page_count)
1296 		 return 0;
1297 	/*
1298 	 * free_reserved needs to include enough for the largest swap pager
1299 	 * structures plus enough for any pv_entry structs when paging.
1300 	 */
1301 	if (vmstats.v_page_count > 1024)
1302 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1303 	else
1304 		vmstats.v_free_min = 4;
1305 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1306 		vmstats.v_interrupt_free_min;
1307 	vmstats.v_free_reserved = vm_pageout_page_count +
1308 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1309 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1310 	vmstats.v_free_min += vmstats.v_free_reserved;
1311 	vmstats.v_free_severe += vmstats.v_free_reserved;
1312 	return 1;
1313 }
1314 
1315 
1316 /*
1317  *	vm_pageout is the high level pageout daemon.
1318  */
1319 static void
1320 vm_pageout(void)
1321 {
1322 	int pass;
1323 
1324 	/*
1325 	 * Initialize some paging parameters.
1326 	 */
1327 
1328 	vmstats.v_interrupt_free_min = 2;
1329 	if (vmstats.v_page_count < 2000)
1330 		vm_pageout_page_count = 8;
1331 
1332 	vm_pageout_free_page_calc(vmstats.v_page_count);
1333 	/*
1334 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1335 	 * that these are more a measure of the VM cache queue hysteresis
1336 	 * then the VM free queue.  Specifically, v_free_target is the
1337 	 * high water mark (free+cache pages).
1338 	 *
1339 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1340 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1341 	 * be big enough to handle memory needs while the pageout daemon
1342 	 * is signalled and run to free more pages.
1343 	 */
1344 	if (vmstats.v_free_count > 6144)
1345 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1346 	else
1347 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1348 
1349 	if (vmstats.v_free_count > 2048) {
1350 		vmstats.v_cache_min = vmstats.v_free_target;
1351 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1352 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1353 	} else {
1354 		vmstats.v_cache_min = 0;
1355 		vmstats.v_cache_max = 0;
1356 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1357 	}
1358 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1359 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1360 
1361 	/* XXX does not really belong here */
1362 	if (vm_page_max_wired == 0)
1363 		vm_page_max_wired = vmstats.v_free_count / 3;
1364 
1365 	if (vm_pageout_stats_max == 0)
1366 		vm_pageout_stats_max = vmstats.v_free_target;
1367 
1368 	/*
1369 	 * Set interval in seconds for stats scan.
1370 	 */
1371 	if (vm_pageout_stats_interval == 0)
1372 		vm_pageout_stats_interval = 5;
1373 	if (vm_pageout_full_stats_interval == 0)
1374 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1375 
1376 
1377 	/*
1378 	 * Set maximum free per pass
1379 	 */
1380 	if (vm_pageout_stats_free_max == 0)
1381 		vm_pageout_stats_free_max = 5;
1382 
1383 	swap_pager_swap_init();
1384 	pass = 0;
1385 	/*
1386 	 * The pageout daemon is never done, so loop forever.
1387 	 */
1388 	while (TRUE) {
1389 		int error;
1390 
1391 		/*
1392 		 * If we have enough free memory, wakeup waiters.  Do
1393 		 * not clear vm_pages_needed until we reach our target,
1394 		 * otherwise we may be woken up over and over again and
1395 		 * waste a lot of cpu.
1396 		 */
1397 		crit_enter();
1398 		if (vm_pages_needed && !vm_page_count_min()) {
1399 			if (vm_paging_needed() <= 0)
1400 				vm_pages_needed = 0;
1401 			wakeup(&vmstats.v_free_count);
1402 		}
1403 		if (vm_pages_needed) {
1404 			/*
1405 			 * Still not done, take a second pass without waiting
1406 			 * (unlimited dirty cleaning), otherwise sleep a bit
1407 			 * and try again.
1408 			 */
1409 			++pass;
1410 			if (pass > 1)
1411 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1412 		} else {
1413 			/*
1414 			 * Good enough, sleep & handle stats.  Prime the pass
1415 			 * for the next run.
1416 			 */
1417 			if (pass > 1)
1418 				pass = 1;
1419 			else
1420 				pass = 0;
1421 			error = tsleep(&vm_pages_needed,
1422 				0, "psleep", vm_pageout_stats_interval * hz);
1423 			if (error && !vm_pages_needed) {
1424 				crit_exit();
1425 				pass = 0;
1426 				vm_pageout_page_stats();
1427 				continue;
1428 			}
1429 		}
1430 
1431 		if (vm_pages_needed)
1432 			mycpu->gd_cnt.v_pdwakeups++;
1433 		crit_exit();
1434 		vm_pageout_scan(pass);
1435 		vm_pageout_deficit = 0;
1436 	}
1437 }
1438 
1439 void
1440 pagedaemon_wakeup(void)
1441 {
1442 	if (!vm_pages_needed && curthread != pagethread) {
1443 		vm_pages_needed++;
1444 		wakeup(&vm_pages_needed);
1445 	}
1446 }
1447 
1448 #if !defined(NO_SWAPPING)
1449 static void
1450 vm_req_vmdaemon(void)
1451 {
1452 	static int lastrun = 0;
1453 
1454 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1455 		wakeup(&vm_daemon_needed);
1456 		lastrun = ticks;
1457 	}
1458 }
1459 
1460 static void
1461 vm_daemon(void)
1462 {
1463 	struct proc *p;
1464 
1465 	while (TRUE) {
1466 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1467 		if (vm_pageout_req_swapout) {
1468 			swapout_procs(vm_pageout_req_swapout);
1469 			vm_pageout_req_swapout = 0;
1470 		}
1471 		/*
1472 		 * scan the processes for exceeding their rlimits or if
1473 		 * process is swapped out -- deactivate pages
1474 		 */
1475 
1476 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1477 			vm_pindex_t limit, size;
1478 
1479 			/*
1480 			 * if this is a system process or if we have already
1481 			 * looked at this process, skip it.
1482 			 */
1483 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1484 				continue;
1485 			}
1486 			/*
1487 			 * if the process is in a non-running type state,
1488 			 * don't touch it.
1489 			 */
1490 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1491 				continue;
1492 			}
1493 			/*
1494 			 * get a limit
1495 			 */
1496 			limit = OFF_TO_IDX(
1497 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1498 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1499 
1500 			/*
1501 			 * let processes that are swapped out really be
1502 			 * swapped out.  Set the limit to nothing to get as
1503 			 * many pages out to swap as possible.
1504 			 */
1505 			if (p->p_flag & P_SWAPPEDOUT)
1506 				limit = 0;
1507 
1508 			size = vmspace_resident_count(p->p_vmspace);
1509 			if (limit >= 0 && size >= limit) {
1510 				vm_pageout_map_deactivate_pages(
1511 				    &p->p_vmspace->vm_map, limit);
1512 			}
1513 		}
1514 	}
1515 }
1516 #endif
1517