xref: /dragonfly/sys/vm/vm_pageout.c (revision 62f7f702)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.35 2008/05/09 07:24:48 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
396 	 */
397 	for (i = 0; i < count; i++) {
398 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
399 		vm_page_io_start(mc[i]);
400 	}
401 
402 	/*
403 	 * We must make the pages read-only.  This will also force the
404 	 * modified bit in the related pmaps to be cleared.  The pager
405 	 * cannot clear the bit for us since the I/O completion code
406 	 * typically runs from an interrupt.  The act of making the page
407 	 * read-only handles the case for us.
408 	 */
409 	for (i = 0; i < count; i++) {
410 		vm_page_protect(mc[i], VM_PROT_READ);
411 	}
412 
413 	object = mc[0]->object;
414 	vm_object_pip_add(object, count);
415 
416 	vm_pager_put_pages(object, mc, count,
417 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
418 	    pageout_status);
419 
420 	for (i = 0; i < count; i++) {
421 		vm_page_t mt = mc[i];
422 
423 		switch (pageout_status[i]) {
424 		case VM_PAGER_OK:
425 			numpagedout++;
426 			break;
427 		case VM_PAGER_PEND:
428 			numpagedout++;
429 			break;
430 		case VM_PAGER_BAD:
431 			/*
432 			 * Page outside of range of object. Right now we
433 			 * essentially lose the changes by pretending it
434 			 * worked.
435 			 */
436 			pmap_clear_modify(mt);
437 			vm_page_undirty(mt);
438 			break;
439 		case VM_PAGER_ERROR:
440 		case VM_PAGER_FAIL:
441 			/*
442 			 * If page couldn't be paged out, then reactivate the
443 			 * page so it doesn't clog the inactive list.  (We
444 			 * will try paging out it again later).
445 			 */
446 			vm_page_activate(mt);
447 			break;
448 		case VM_PAGER_AGAIN:
449 			break;
450 		}
451 
452 		/*
453 		 * If the operation is still going, leave the page busy to
454 		 * block all other accesses. Also, leave the paging in
455 		 * progress indicator set so that we don't attempt an object
456 		 * collapse.
457 		 *
458 		 * For any pages which have completed synchronously,
459 		 * deactivate the page if we are under a severe deficit.
460 		 * Do not try to enter them into the cache, though, they
461 		 * might still be read-heavy.
462 		 */
463 		if (pageout_status[i] != VM_PAGER_PEND) {
464 			vm_object_pip_wakeup(object);
465 			vm_page_io_finish(mt);
466 			if (vm_page_count_severe())
467 				vm_page_deactivate(mt);
468 #if 0
469 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
470 				vm_page_protect(mt, VM_PROT_READ);
471 #endif
472 		}
473 	}
474 	return numpagedout;
475 }
476 
477 #if !defined(NO_SWAPPING)
478 /*
479  *	vm_pageout_object_deactivate_pages
480  *
481  *	deactivate enough pages to satisfy the inactive target
482  *	requirements or if vm_page_proc_limit is set, then
483  *	deactivate all of the pages in the object and its
484  *	backing_objects.
485  *
486  *	The object and map must be locked.
487  */
488 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
489 
490 static void
491 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
492 	vm_pindex_t desired, int map_remove_only)
493 {
494 	struct rb_vm_page_scan_info info;
495 	int remove_mode;
496 
497 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
498 		return;
499 
500 	while (object) {
501 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
502 			return;
503 		if (object->paging_in_progress)
504 			return;
505 
506 		remove_mode = map_remove_only;
507 		if (object->shadow_count > 1)
508 			remove_mode = 1;
509 
510 		/*
511 		 * scan the objects entire memory queue.  spl protection is
512 		 * required to avoid an interrupt unbusy/free race against
513 		 * our busy check.
514 		 */
515 		crit_enter();
516 		info.limit = remove_mode;
517 		info.map = map;
518 		info.desired = desired;
519 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
520 				vm_pageout_object_deactivate_pages_callback,
521 				&info
522 		);
523 		crit_exit();
524 		object = object->backing_object;
525 	}
526 }
527 
528 static int
529 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
530 {
531 	struct rb_vm_page_scan_info *info = data;
532 	int actcount;
533 
534 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
535 		return(-1);
536 	}
537 	mycpu->gd_cnt.v_pdpages++;
538 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
539 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
540 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
541 		return(0);
542 	}
543 
544 	actcount = pmap_ts_referenced(p);
545 	if (actcount) {
546 		vm_page_flag_set(p, PG_REFERENCED);
547 	} else if (p->flags & PG_REFERENCED) {
548 		actcount = 1;
549 	}
550 
551 	if ((p->queue != PQ_ACTIVE) &&
552 		(p->flags & PG_REFERENCED)) {
553 		vm_page_activate(p);
554 		p->act_count += actcount;
555 		vm_page_flag_clear(p, PG_REFERENCED);
556 	} else if (p->queue == PQ_ACTIVE) {
557 		if ((p->flags & PG_REFERENCED) == 0) {
558 			p->act_count -= min(p->act_count, ACT_DECLINE);
559 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
560 				vm_page_busy(p);
561 				vm_page_protect(p, VM_PROT_NONE);
562 				vm_page_wakeup(p);
563 				vm_page_deactivate(p);
564 			} else {
565 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
566 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
567 			}
568 		} else {
569 			vm_page_activate(p);
570 			vm_page_flag_clear(p, PG_REFERENCED);
571 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
572 				p->act_count += ACT_ADVANCE;
573 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
574 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
575 		}
576 	} else if (p->queue == PQ_INACTIVE) {
577 		vm_page_busy(p);
578 		vm_page_protect(p, VM_PROT_NONE);
579 		vm_page_wakeup(p);
580 	}
581 	return(0);
582 }
583 
584 /*
585  * deactivate some number of pages in a map, try to do it fairly, but
586  * that is really hard to do.
587  */
588 static void
589 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
590 {
591 	vm_map_entry_t tmpe;
592 	vm_object_t obj, bigobj;
593 	int nothingwired;
594 
595 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
596 		return;
597 	}
598 
599 	bigobj = NULL;
600 	nothingwired = TRUE;
601 
602 	/*
603 	 * first, search out the biggest object, and try to free pages from
604 	 * that.
605 	 */
606 	tmpe = map->header.next;
607 	while (tmpe != &map->header) {
608 		switch(tmpe->maptype) {
609 		case VM_MAPTYPE_NORMAL:
610 		case VM_MAPTYPE_VPAGETABLE:
611 			obj = tmpe->object.vm_object;
612 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
613 				((bigobj == NULL) ||
614 				 (bigobj->resident_page_count < obj->resident_page_count))) {
615 				bigobj = obj;
616 			}
617 			break;
618 		default:
619 			break;
620 		}
621 		if (tmpe->wired_count > 0)
622 			nothingwired = FALSE;
623 		tmpe = tmpe->next;
624 	}
625 
626 	if (bigobj)
627 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
628 
629 	/*
630 	 * Next, hunt around for other pages to deactivate.  We actually
631 	 * do this search sort of wrong -- .text first is not the best idea.
632 	 */
633 	tmpe = map->header.next;
634 	while (tmpe != &map->header) {
635 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
636 			break;
637 		switch(tmpe->maptype) {
638 		case VM_MAPTYPE_NORMAL:
639 		case VM_MAPTYPE_VPAGETABLE:
640 			obj = tmpe->object.vm_object;
641 			if (obj)
642 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
643 			break;
644 		default:
645 			break;
646 		}
647 		tmpe = tmpe->next;
648 	};
649 
650 	/*
651 	 * Remove all mappings if a process is swapped out, this will free page
652 	 * table pages.
653 	 */
654 	if (desired == 0 && nothingwired)
655 		pmap_remove(vm_map_pmap(map),
656 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
657 	vm_map_unlock(map);
658 }
659 #endif
660 
661 /*
662  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
663  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
664  * be trivially freed.
665  */
666 void
667 vm_pageout_page_free(vm_page_t m)
668 {
669 	vm_object_t object = m->object;
670 	int type = object->type;
671 
672 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
673 		vm_object_reference(object);
674 	vm_page_busy(m);
675 	vm_page_protect(m, VM_PROT_NONE);
676 	vm_page_free(m);
677 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
678 		vm_object_deallocate(object);
679 }
680 
681 /*
682  *	vm_pageout_scan does the dirty work for the pageout daemon.
683  */
684 
685 struct vm_pageout_scan_info {
686 	struct proc *bigproc;
687 	vm_offset_t bigsize;
688 };
689 
690 static int vm_pageout_scan_callback(struct proc *p, void *data);
691 
692 static void
693 vm_pageout_scan(int pass)
694 {
695 	struct vm_pageout_scan_info info;
696 	vm_page_t m, next;
697 	struct vm_page marker;
698 	int page_shortage, maxscan, pcount;
699 	int addl_page_shortage, addl_page_shortage_init;
700 	vm_object_t object;
701 	int actcount;
702 	int vnodes_skipped = 0;
703 	int maxlaunder;
704 
705 	/*
706 	 * Do whatever cleanup that the pmap code can.
707 	 */
708 	pmap_collect();
709 
710 	addl_page_shortage_init = vm_pageout_deficit;
711 	vm_pageout_deficit = 0;
712 
713 	/*
714 	 * Calculate the number of pages we want to either free or move
715 	 * to the cache.
716 	 */
717 	page_shortage = vm_paging_target() + addl_page_shortage_init;
718 
719 	/*
720 	 * Initialize our marker
721 	 */
722 	bzero(&marker, sizeof(marker));
723 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
724 	marker.queue = PQ_INACTIVE;
725 	marker.wire_count = 1;
726 
727 	/*
728 	 * Start scanning the inactive queue for pages we can move to the
729 	 * cache or free.  The scan will stop when the target is reached or
730 	 * we have scanned the entire inactive queue.  Note that m->act_count
731 	 * is not used to form decisions for the inactive queue, only for the
732 	 * active queue.
733 	 *
734 	 * maxlaunder limits the number of dirty pages we flush per scan.
735 	 * For most systems a smaller value (16 or 32) is more robust under
736 	 * extreme memory and disk pressure because any unnecessary writes
737 	 * to disk can result in extreme performance degredation.  However,
738 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
739 	 * used) will die horribly with limited laundering.  If the pageout
740 	 * daemon cannot clean enough pages in the first pass, we let it go
741 	 * all out in succeeding passes.
742 	 */
743 	if ((maxlaunder = vm_max_launder) <= 1)
744 		maxlaunder = 1;
745 	if (pass)
746 		maxlaunder = 10000;
747 
748 	/*
749 	 * We will generally be in a critical section throughout the
750 	 * scan, but we can release it temporarily when we are sitting on a
751 	 * non-busy page without fear.  this is required to prevent an
752 	 * interrupt from unbusying or freeing a page prior to our busy
753 	 * check, leaving us on the wrong queue or checking the wrong
754 	 * page.
755 	 */
756 	crit_enter();
757 rescan0:
758 	addl_page_shortage = addl_page_shortage_init;
759 	maxscan = vmstats.v_inactive_count;
760 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
761 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
762 	     m = next
763 	 ) {
764 		mycpu->gd_cnt.v_pdpages++;
765 
766 		/*
767 		 * Give interrupts a chance
768 		 */
769 		crit_exit();
770 		crit_enter();
771 
772 		/*
773 		 * It's easier for some of the conditions below to just loop
774 		 * and catch queue changes here rather then check everywhere
775 		 * else.
776 		 */
777 		if (m->queue != PQ_INACTIVE)
778 			goto rescan0;
779 		next = TAILQ_NEXT(m, pageq);
780 
781 		/*
782 		 * skip marker pages
783 		 */
784 		if (m->flags & PG_MARKER)
785 			continue;
786 
787 		/*
788 		 * A held page may be undergoing I/O, so skip it.
789 		 */
790 		if (m->hold_count) {
791 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
792 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
793 			addl_page_shortage++;
794 			continue;
795 		}
796 
797 		/*
798 		 * Dont mess with busy pages, keep in the front of the
799 		 * queue, most likely are being paged out.
800 		 */
801 		if (m->busy || (m->flags & PG_BUSY)) {
802 			addl_page_shortage++;
803 			continue;
804 		}
805 
806 		if (m->object->ref_count == 0) {
807 			/*
808 			 * If the object is not being used, we ignore previous
809 			 * references.
810 			 */
811 			vm_page_flag_clear(m, PG_REFERENCED);
812 			pmap_clear_reference(m);
813 
814 		} else if (((m->flags & PG_REFERENCED) == 0) &&
815 			    (actcount = pmap_ts_referenced(m))) {
816 			/*
817 			 * Otherwise, if the page has been referenced while
818 			 * in the inactive queue, we bump the "activation
819 			 * count" upwards, making it less likely that the
820 			 * page will be added back to the inactive queue
821 			 * prematurely again.  Here we check the page tables
822 			 * (or emulated bits, if any), given the upper level
823 			 * VM system not knowing anything about existing
824 			 * references.
825 			 */
826 			vm_page_activate(m);
827 			m->act_count += (actcount + ACT_ADVANCE);
828 			continue;
829 		}
830 
831 		/*
832 		 * If the upper level VM system knows about any page
833 		 * references, we activate the page.  We also set the
834 		 * "activation count" higher than normal so that we will less
835 		 * likely place pages back onto the inactive queue again.
836 		 */
837 		if ((m->flags & PG_REFERENCED) != 0) {
838 			vm_page_flag_clear(m, PG_REFERENCED);
839 			actcount = pmap_ts_referenced(m);
840 			vm_page_activate(m);
841 			m->act_count += (actcount + ACT_ADVANCE + 1);
842 			continue;
843 		}
844 
845 		/*
846 		 * If the upper level VM system doesn't know anything about
847 		 * the page being dirty, we have to check for it again.  As
848 		 * far as the VM code knows, any partially dirty pages are
849 		 * fully dirty.
850 		 *
851 		 * Pages marked PG_WRITEABLE may be mapped into the user
852 		 * address space of a process running on another cpu.  A
853 		 * user process (without holding the MP lock) running on
854 		 * another cpu may be able to touch the page while we are
855 		 * trying to remove it.  vm_page_cache() will handle this
856 		 * case for us.
857 		 */
858 		if (m->dirty == 0) {
859 			vm_page_test_dirty(m);
860 #if 0
861 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
862 				pmap_remove_all(m);
863 #endif
864 		} else {
865 			vm_page_dirty(m);
866 		}
867 
868 		if (m->valid == 0) {
869 			/*
870 			 * Invalid pages can be easily freed
871 			 */
872 			vm_pageout_page_free(m);
873 			mycpu->gd_cnt.v_dfree++;
874 			--page_shortage;
875 		} else if (m->dirty == 0) {
876 			/*
877 			 * Clean pages can be placed onto the cache queue.
878 			 * This effectively frees them.
879 			 */
880 			vm_page_cache(m);
881 			--page_shortage;
882 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
883 			/*
884 			 * Dirty pages need to be paged out, but flushing
885 			 * a page is extremely expensive verses freeing
886 			 * a clean page.  Rather then artificially limiting
887 			 * the number of pages we can flush, we instead give
888 			 * dirty pages extra priority on the inactive queue
889 			 * by forcing them to be cycled through the queue
890 			 * twice before being flushed, after which the
891 			 * (now clean) page will cycle through once more
892 			 * before being freed.  This significantly extends
893 			 * the thrash point for a heavily loaded machine.
894 			 */
895 			vm_page_flag_set(m, PG_WINATCFLS);
896 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
897 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
898 		} else if (maxlaunder > 0) {
899 			/*
900 			 * We always want to try to flush some dirty pages if
901 			 * we encounter them, to keep the system stable.
902 			 * Normally this number is small, but under extreme
903 			 * pressure where there are insufficient clean pages
904 			 * on the inactive queue, we may have to go all out.
905 			 */
906 			int swap_pageouts_ok;
907 			struct vnode *vp = NULL;
908 
909 			object = m->object;
910 
911 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
912 				swap_pageouts_ok = 1;
913 			} else {
914 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
915 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
916 				vm_page_count_min());
917 
918 			}
919 
920 			/*
921 			 * We don't bother paging objects that are "dead".
922 			 * Those objects are in a "rundown" state.
923 			 */
924 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
925 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
926 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
927 				continue;
928 			}
929 
930 			/*
931 			 * The object is already known NOT to be dead.   It
932 			 * is possible for the vget() to block the whole
933 			 * pageout daemon, but the new low-memory handling
934 			 * code should prevent it.
935 			 *
936 			 * The previous code skipped locked vnodes and, worse,
937 			 * reordered pages in the queue.  This results in
938 			 * completely non-deterministic operation because,
939 			 * quite often, a vm_fault has initiated an I/O and
940 			 * is holding a locked vnode at just the point where
941 			 * the pageout daemon is woken up.
942 			 *
943 			 * We can't wait forever for the vnode lock, we might
944 			 * deadlock due to a vn_read() getting stuck in
945 			 * vm_wait while holding this vnode.  We skip the
946 			 * vnode if we can't get it in a reasonable amount
947 			 * of time.
948 			 */
949 
950 			if (object->type == OBJT_VNODE) {
951 				vp = object->handle;
952 
953 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
954 					++pageout_lock_miss;
955 					if (object->flags & OBJ_MIGHTBEDIRTY)
956 						    vnodes_skipped++;
957 					continue;
958 				}
959 
960 				/*
961 				 * The page might have been moved to another
962 				 * queue during potential blocking in vget()
963 				 * above.  The page might have been freed and
964 				 * reused for another vnode.  The object might
965 				 * have been reused for another vnode.
966 				 */
967 				if (m->queue != PQ_INACTIVE ||
968 				    m->object != object ||
969 				    object->handle != vp) {
970 					if (object->flags & OBJ_MIGHTBEDIRTY)
971 						vnodes_skipped++;
972 					vput(vp);
973 					continue;
974 				}
975 
976 				/*
977 				 * The page may have been busied during the
978 				 * blocking in vput();  We don't move the
979 				 * page back onto the end of the queue so that
980 				 * statistics are more correct if we don't.
981 				 */
982 				if (m->busy || (m->flags & PG_BUSY)) {
983 					vput(vp);
984 					continue;
985 				}
986 
987 				/*
988 				 * If the page has become held it might
989 				 * be undergoing I/O, so skip it
990 				 */
991 				if (m->hold_count) {
992 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
993 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
994 					if (object->flags & OBJ_MIGHTBEDIRTY)
995 						vnodes_skipped++;
996 					vput(vp);
997 					continue;
998 				}
999 			}
1000 
1001 			/*
1002 			 * If a page is dirty, then it is either being washed
1003 			 * (but not yet cleaned) or it is still in the
1004 			 * laundry.  If it is still in the laundry, then we
1005 			 * start the cleaning operation.
1006 			 *
1007 			 * This operation may cluster, invalidating the 'next'
1008 			 * pointer.  To prevent an inordinate number of
1009 			 * restarts we use our marker to remember our place.
1010 			 *
1011 			 * decrement page_shortage on success to account for
1012 			 * the (future) cleaned page.  Otherwise we could wind
1013 			 * up laundering or cleaning too many pages.
1014 			 */
1015 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1016 			if (vm_pageout_clean(m) != 0) {
1017 				--page_shortage;
1018 				--maxlaunder;
1019 			}
1020 			next = TAILQ_NEXT(&marker, pageq);
1021 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1022 			if (vp != NULL)
1023 				vput(vp);
1024 		}
1025 	}
1026 
1027 	/*
1028 	 * Compute the number of pages we want to try to move from the
1029 	 * active queue to the inactive queue.
1030 	 */
1031 	page_shortage = vm_paging_target() +
1032 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
1033 	page_shortage += addl_page_shortage;
1034 
1035 	/*
1036 	 * Scan the active queue for things we can deactivate. We nominally
1037 	 * track the per-page activity counter and use it to locate
1038 	 * deactivation candidates.
1039 	 *
1040 	 * NOTE: we are still in a critical section.
1041 	 */
1042 	pcount = vmstats.v_active_count;
1043 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1044 
1045 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1046 		/*
1047 		 * Give interrupts a chance.
1048 		 */
1049 		crit_exit();
1050 		crit_enter();
1051 
1052 		/*
1053 		 * If the page was ripped out from under us, just stop.
1054 		 */
1055 		if (m->queue != PQ_ACTIVE)
1056 			break;
1057 		next = TAILQ_NEXT(m, pageq);
1058 
1059 		/*
1060 		 * Don't deactivate pages that are busy.
1061 		 */
1062 		if ((m->busy != 0) ||
1063 		    (m->flags & PG_BUSY) ||
1064 		    (m->hold_count != 0)) {
1065 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1066 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1067 			m = next;
1068 			continue;
1069 		}
1070 
1071 		/*
1072 		 * The count for pagedaemon pages is done after checking the
1073 		 * page for eligibility...
1074 		 */
1075 		mycpu->gd_cnt.v_pdpages++;
1076 
1077 		/*
1078 		 * Check to see "how much" the page has been used.
1079 		 */
1080 		actcount = 0;
1081 		if (m->object->ref_count != 0) {
1082 			if (m->flags & PG_REFERENCED) {
1083 				actcount += 1;
1084 			}
1085 			actcount += pmap_ts_referenced(m);
1086 			if (actcount) {
1087 				m->act_count += ACT_ADVANCE + actcount;
1088 				if (m->act_count > ACT_MAX)
1089 					m->act_count = ACT_MAX;
1090 			}
1091 		}
1092 
1093 		/*
1094 		 * Since we have "tested" this bit, we need to clear it now.
1095 		 */
1096 		vm_page_flag_clear(m, PG_REFERENCED);
1097 
1098 		/*
1099 		 * Only if an object is currently being used, do we use the
1100 		 * page activation count stats.
1101 		 */
1102 		if (actcount && (m->object->ref_count != 0)) {
1103 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1104 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1105 		} else {
1106 			m->act_count -= min(m->act_count, ACT_DECLINE);
1107 			if (vm_pageout_algorithm ||
1108 			    m->object->ref_count == 0 ||
1109 			    m->act_count < pass) {
1110 				page_shortage--;
1111 				if (m->object->ref_count == 0) {
1112 					vm_page_busy(m);
1113 					vm_page_protect(m, VM_PROT_NONE);
1114 					vm_page_wakeup(m);
1115 					if (m->dirty == 0)
1116 						vm_page_cache(m);
1117 					else
1118 						vm_page_deactivate(m);
1119 				} else {
1120 					vm_page_deactivate(m);
1121 				}
1122 			} else {
1123 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1124 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1125 			}
1126 		}
1127 		m = next;
1128 	}
1129 
1130 	/*
1131 	 * We try to maintain some *really* free pages, this allows interrupt
1132 	 * code to be guaranteed space.  Since both cache and free queues
1133 	 * are considered basically 'free', moving pages from cache to free
1134 	 * does not effect other calculations.
1135 	 *
1136 	 * NOTE: we are still in a critical section.
1137 	 */
1138 
1139 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1140 		static int cache_rover = 0;
1141 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1142 		if (!m)
1143 			break;
1144 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1145 		    m->busy ||
1146 		    m->hold_count ||
1147 		    m->wire_count) {
1148 #ifdef INVARIANTS
1149 			kprintf("Warning: busy page %p found in cache\n", m);
1150 #endif
1151 			vm_page_deactivate(m);
1152 			continue;
1153 		}
1154 		KKASSERT((m->flags & PG_MAPPED) == 0);
1155 		KKASSERT(m->dirty == 0);
1156 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1157 		vm_pageout_page_free(m);
1158 		mycpu->gd_cnt.v_dfree++;
1159 	}
1160 
1161 	crit_exit();
1162 
1163 #if !defined(NO_SWAPPING)
1164 	/*
1165 	 * Idle process swapout -- run once per second.
1166 	 */
1167 	if (vm_swap_idle_enabled) {
1168 		static long lsec;
1169 		if (time_second != lsec) {
1170 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1171 			vm_req_vmdaemon();
1172 			lsec = time_second;
1173 		}
1174 	}
1175 #endif
1176 
1177 	/*
1178 	 * If we didn't get enough free pages, and we have skipped a vnode
1179 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1180 	 * if we did not get enough free pages.
1181 	 */
1182 	if (vm_paging_target() > 0) {
1183 		if (vnodes_skipped && vm_page_count_min())
1184 			speedup_syncer();
1185 #if !defined(NO_SWAPPING)
1186 		if (vm_swap_enabled && vm_page_count_target()) {
1187 			vm_req_vmdaemon();
1188 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1189 		}
1190 #endif
1191 	}
1192 
1193 	/*
1194 	 * If we are out of swap and were not able to reach our paging
1195 	 * target, kill the largest process.
1196 	 */
1197 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1198 	    (swap_pager_full && vm_paging_target() > 0)) {
1199 #if 0
1200 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1201 #endif
1202 		info.bigproc = NULL;
1203 		info.bigsize = 0;
1204 		allproc_scan(vm_pageout_scan_callback, &info);
1205 		if (info.bigproc != NULL) {
1206 			killproc(info.bigproc, "out of swap space");
1207 			info.bigproc->p_nice = PRIO_MIN;
1208 			info.bigproc->p_usched->resetpriority(
1209 				FIRST_LWP_IN_PROC(info.bigproc));
1210 			wakeup(&vmstats.v_free_count);
1211 			PRELE(info.bigproc);
1212 		}
1213 	}
1214 }
1215 
1216 static int
1217 vm_pageout_scan_callback(struct proc *p, void *data)
1218 {
1219 	struct vm_pageout_scan_info *info = data;
1220 	vm_offset_t size;
1221 
1222 	/*
1223 	 * if this is a system process, skip it
1224 	 */
1225 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1226 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1227 		return (0);
1228 	}
1229 
1230 	/*
1231 	 * if the process is in a non-running type state,
1232 	 * don't touch it.
1233 	 */
1234 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1235 		return (0);
1236 	}
1237 
1238 	/*
1239 	 * get the process size
1240 	 */
1241 	size = vmspace_resident_count(p->p_vmspace) +
1242 		vmspace_swap_count(p->p_vmspace);
1243 
1244 	/*
1245 	 * If the this process is bigger than the biggest one
1246 	 * remember it.
1247 	 */
1248 	if (size > info->bigsize) {
1249 		if (info->bigproc)
1250 			PRELE(info->bigproc);
1251 		PHOLD(p);
1252 		info->bigproc = p;
1253 		info->bigsize = size;
1254 	}
1255 	return(0);
1256 }
1257 
1258 /*
1259  * This routine tries to maintain the pseudo LRU active queue,
1260  * so that during long periods of time where there is no paging,
1261  * that some statistic accumulation still occurs.  This code
1262  * helps the situation where paging just starts to occur.
1263  */
1264 static void
1265 vm_pageout_page_stats(void)
1266 {
1267 	vm_page_t m,next;
1268 	int pcount,tpcount;		/* Number of pages to check */
1269 	static int fullintervalcount = 0;
1270 	int page_shortage;
1271 
1272 	page_shortage =
1273 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1274 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1275 
1276 	if (page_shortage <= 0)
1277 		return;
1278 
1279 	crit_enter();
1280 
1281 	pcount = vmstats.v_active_count;
1282 	fullintervalcount += vm_pageout_stats_interval;
1283 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1284 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1285 		if (pcount > tpcount)
1286 			pcount = tpcount;
1287 	} else {
1288 		fullintervalcount = 0;
1289 	}
1290 
1291 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1292 	while ((m != NULL) && (pcount-- > 0)) {
1293 		int actcount;
1294 
1295 		if (m->queue != PQ_ACTIVE) {
1296 			break;
1297 		}
1298 
1299 		next = TAILQ_NEXT(m, pageq);
1300 		/*
1301 		 * Don't deactivate pages that are busy.
1302 		 */
1303 		if ((m->busy != 0) ||
1304 		    (m->flags & PG_BUSY) ||
1305 		    (m->hold_count != 0)) {
1306 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1307 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1308 			m = next;
1309 			continue;
1310 		}
1311 
1312 		actcount = 0;
1313 		if (m->flags & PG_REFERENCED) {
1314 			vm_page_flag_clear(m, PG_REFERENCED);
1315 			actcount += 1;
1316 		}
1317 
1318 		actcount += pmap_ts_referenced(m);
1319 		if (actcount) {
1320 			m->act_count += ACT_ADVANCE + actcount;
1321 			if (m->act_count > ACT_MAX)
1322 				m->act_count = ACT_MAX;
1323 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1324 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1325 		} else {
1326 			if (m->act_count == 0) {
1327 				/*
1328 				 * We turn off page access, so that we have
1329 				 * more accurate RSS stats.  We don't do this
1330 				 * in the normal page deactivation when the
1331 				 * system is loaded VM wise, because the
1332 				 * cost of the large number of page protect
1333 				 * operations would be higher than the value
1334 				 * of doing the operation.
1335 				 */
1336 				vm_page_busy(m);
1337 				vm_page_protect(m, VM_PROT_NONE);
1338 				vm_page_wakeup(m);
1339 				vm_page_deactivate(m);
1340 			} else {
1341 				m->act_count -= min(m->act_count, ACT_DECLINE);
1342 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1343 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1344 			}
1345 		}
1346 
1347 		m = next;
1348 	}
1349 	crit_exit();
1350 }
1351 
1352 static int
1353 vm_pageout_free_page_calc(vm_size_t count)
1354 {
1355 	if (count < vmstats.v_page_count)
1356 		 return 0;
1357 	/*
1358 	 * free_reserved needs to include enough for the largest swap pager
1359 	 * structures plus enough for any pv_entry structs when paging.
1360 	 */
1361 	if (vmstats.v_page_count > 1024)
1362 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1363 	else
1364 		vmstats.v_free_min = 4;
1365 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1366 		vmstats.v_interrupt_free_min;
1367 	vmstats.v_free_reserved = vm_pageout_page_count +
1368 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1369 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1370 	vmstats.v_free_min += vmstats.v_free_reserved;
1371 	vmstats.v_free_severe += vmstats.v_free_reserved;
1372 	return 1;
1373 }
1374 
1375 
1376 /*
1377  *	vm_pageout is the high level pageout daemon.
1378  */
1379 static void
1380 vm_pageout(void)
1381 {
1382 	int pass;
1383 
1384 	/*
1385 	 * Initialize some paging parameters.
1386 	 */
1387 
1388 	vmstats.v_interrupt_free_min = 2;
1389 	if (vmstats.v_page_count < 2000)
1390 		vm_pageout_page_count = 8;
1391 
1392 	vm_pageout_free_page_calc(vmstats.v_page_count);
1393 	/*
1394 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1395 	 * that these are more a measure of the VM cache queue hysteresis
1396 	 * then the VM free queue.  Specifically, v_free_target is the
1397 	 * high water mark (free+cache pages).
1398 	 *
1399 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1400 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1401 	 * be big enough to handle memory needs while the pageout daemon
1402 	 * is signalled and run to free more pages.
1403 	 */
1404 	if (vmstats.v_free_count > 6144)
1405 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1406 	else
1407 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1408 
1409 	if (vmstats.v_free_count > 2048) {
1410 		vmstats.v_cache_min = vmstats.v_free_target;
1411 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1412 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1413 	} else {
1414 		vmstats.v_cache_min = 0;
1415 		vmstats.v_cache_max = 0;
1416 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1417 	}
1418 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1419 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1420 
1421 	/* XXX does not really belong here */
1422 	if (vm_page_max_wired == 0)
1423 		vm_page_max_wired = vmstats.v_free_count / 3;
1424 
1425 	if (vm_pageout_stats_max == 0)
1426 		vm_pageout_stats_max = vmstats.v_free_target;
1427 
1428 	/*
1429 	 * Set interval in seconds for stats scan.
1430 	 */
1431 	if (vm_pageout_stats_interval == 0)
1432 		vm_pageout_stats_interval = 5;
1433 	if (vm_pageout_full_stats_interval == 0)
1434 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1435 
1436 
1437 	/*
1438 	 * Set maximum free per pass
1439 	 */
1440 	if (vm_pageout_stats_free_max == 0)
1441 		vm_pageout_stats_free_max = 5;
1442 
1443 	swap_pager_swap_init();
1444 	pass = 0;
1445 	/*
1446 	 * The pageout daemon is never done, so loop forever.
1447 	 */
1448 	while (TRUE) {
1449 		int error;
1450 
1451 		/*
1452 		 * If we have enough free memory, wakeup waiters.  Do
1453 		 * not clear vm_pages_needed until we reach our target,
1454 		 * otherwise we may be woken up over and over again and
1455 		 * waste a lot of cpu.
1456 		 */
1457 		crit_enter();
1458 		if (vm_pages_needed && !vm_page_count_min()) {
1459 			if (vm_paging_needed() <= 0)
1460 				vm_pages_needed = 0;
1461 			wakeup(&vmstats.v_free_count);
1462 		}
1463 		if (vm_pages_needed) {
1464 			/*
1465 			 * Still not done, take a second pass without waiting
1466 			 * (unlimited dirty cleaning), otherwise sleep a bit
1467 			 * and try again.
1468 			 */
1469 			++pass;
1470 			if (pass > 1)
1471 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1472 		} else {
1473 			/*
1474 			 * Good enough, sleep & handle stats.  Prime the pass
1475 			 * for the next run.
1476 			 */
1477 			if (pass > 1)
1478 				pass = 1;
1479 			else
1480 				pass = 0;
1481 			error = tsleep(&vm_pages_needed,
1482 				0, "psleep", vm_pageout_stats_interval * hz);
1483 			if (error && !vm_pages_needed) {
1484 				crit_exit();
1485 				pass = 0;
1486 				vm_pageout_page_stats();
1487 				continue;
1488 			}
1489 		}
1490 
1491 		if (vm_pages_needed)
1492 			mycpu->gd_cnt.v_pdwakeups++;
1493 		crit_exit();
1494 		vm_pageout_scan(pass);
1495 		vm_pageout_deficit = 0;
1496 	}
1497 }
1498 
1499 void
1500 pagedaemon_wakeup(void)
1501 {
1502 	if (!vm_pages_needed && curthread != pagethread) {
1503 		vm_pages_needed++;
1504 		wakeup(&vm_pages_needed);
1505 	}
1506 }
1507 
1508 #if !defined(NO_SWAPPING)
1509 static void
1510 vm_req_vmdaemon(void)
1511 {
1512 	static int lastrun = 0;
1513 
1514 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1515 		wakeup(&vm_daemon_needed);
1516 		lastrun = ticks;
1517 	}
1518 }
1519 
1520 static int vm_daemon_callback(struct proc *p, void *data __unused);
1521 
1522 static void
1523 vm_daemon(void)
1524 {
1525 	while (TRUE) {
1526 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1527 		if (vm_pageout_req_swapout) {
1528 			swapout_procs(vm_pageout_req_swapout);
1529 			vm_pageout_req_swapout = 0;
1530 		}
1531 		/*
1532 		 * scan the processes for exceeding their rlimits or if
1533 		 * process is swapped out -- deactivate pages
1534 		 */
1535 		allproc_scan(vm_daemon_callback, NULL);
1536 	}
1537 }
1538 
1539 static int
1540 vm_daemon_callback(struct proc *p, void *data __unused)
1541 {
1542 	vm_pindex_t limit, size;
1543 
1544 	/*
1545 	 * if this is a system process or if we have already
1546 	 * looked at this process, skip it.
1547 	 */
1548 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1549 		return (0);
1550 
1551 	/*
1552 	 * if the process is in a non-running type state,
1553 	 * don't touch it.
1554 	 */
1555 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1556 		return (0);
1557 
1558 	/*
1559 	 * get a limit
1560 	 */
1561 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1562 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1563 
1564 	/*
1565 	 * let processes that are swapped out really be
1566 	 * swapped out.  Set the limit to nothing to get as
1567 	 * many pages out to swap as possible.
1568 	 */
1569 	if (p->p_flag & P_SWAPPEDOUT)
1570 		limit = 0;
1571 
1572 	size = vmspace_resident_count(p->p_vmspace);
1573 	if (limit >= 0 && size >= limit) {
1574 		vm_pageout_map_deactivate_pages(
1575 		    &p->p_vmspace->vm_map, limit);
1576 	}
1577 	return (0);
1578 }
1579 
1580 #endif
1581