xref: /dragonfly/sys/vm/vm_pageout.c (revision 6e285212)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.2 2003/06/17 04:29:00 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 /*
100  * System initialization
101  */
102 
103 /* the kernel process "vm_pageout"*/
104 static void vm_pageout __P((void));
105 static int vm_pageout_clean __P((vm_page_t));
106 static void vm_pageout_scan __P((int pass));
107 static int vm_pageout_free_page_calc __P((vm_size_t count));
108 struct proc *pageproc;
109 
110 static struct kproc_desc page_kp = {
111 	"pagedaemon",
112 	vm_pageout,
113 	&pageproc
114 };
115 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
116 
117 #if !defined(NO_SWAPPING)
118 /* the kernel process "vm_daemon"*/
119 static void vm_daemon __P((void));
120 static struct	proc *vmproc;
121 
122 static struct kproc_desc vm_kp = {
123 	"vmdaemon",
124 	vm_daemon,
125 	&vmproc
126 };
127 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
128 #endif
129 
130 
131 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
132 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
133 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
134 
135 #if !defined(NO_SWAPPING)
136 static int vm_pageout_req_swapout;	/* XXX */
137 static int vm_daemon_needed;
138 #endif
139 extern int vm_swap_size;
140 static int vm_max_launder = 32;
141 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
142 static int vm_pageout_full_stats_interval = 0;
143 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
144 static int defer_swap_pageouts=0;
145 static int disable_swap_pageouts=0;
146 
147 #if defined(NO_SWAPPING)
148 static int vm_swap_enabled=0;
149 static int vm_swap_idle_enabled=0;
150 #else
151 static int vm_swap_enabled=1;
152 static int vm_swap_idle_enabled=0;
153 #endif
154 
155 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
156 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
157 
158 SYSCTL_INT(_vm, OID_AUTO, max_launder,
159 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
160 
161 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
162 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
165 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
171 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
172 
173 #if defined(NO_SWAPPING)
174 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
175 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
176 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
177 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
178 #else
179 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
181 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
183 #endif
184 
185 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
186 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
187 
188 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
189 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
190 
191 static int pageout_lock_miss;
192 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
193 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
194 
195 #define VM_PAGEOUT_PAGE_COUNT 16
196 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
197 
198 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
199 
200 #if !defined(NO_SWAPPING)
201 typedef void freeer_fcn_t __P((vm_map_t, vm_object_t, vm_pindex_t, int));
202 static void vm_pageout_map_deactivate_pages __P((vm_map_t, vm_pindex_t));
203 static freeer_fcn_t vm_pageout_object_deactivate_pages;
204 static void vm_req_vmdaemon __P((void));
205 #endif
206 static void vm_pageout_page_stats(void);
207 
208 /*
209  * vm_pageout_clean:
210  *
211  * Clean the page and remove it from the laundry.
212  *
213  * We set the busy bit to cause potential page faults on this page to
214  * block.  Note the careful timing, however, the busy bit isn't set till
215  * late and we cannot do anything that will mess with the page.
216  */
217 
218 static int
219 vm_pageout_clean(m)
220 	vm_page_t m;
221 {
222 	register vm_object_t object;
223 	vm_page_t mc[2*vm_pageout_page_count];
224 	int pageout_count;
225 	int ib, is, page_base;
226 	vm_pindex_t pindex = m->pindex;
227 
228 	object = m->object;
229 
230 	/*
231 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
232 	 * with the new swapper, but we could have serious problems paging
233 	 * out other object types if there is insufficient memory.
234 	 *
235 	 * Unfortunately, checking free memory here is far too late, so the
236 	 * check has been moved up a procedural level.
237 	 */
238 
239 	/*
240 	 * Don't mess with the page if it's busy, held, or special
241 	 */
242 	if ((m->hold_count != 0) ||
243 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
244 		return 0;
245 	}
246 
247 	mc[vm_pageout_page_count] = m;
248 	pageout_count = 1;
249 	page_base = vm_pageout_page_count;
250 	ib = 1;
251 	is = 1;
252 
253 	/*
254 	 * Scan object for clusterable pages.
255 	 *
256 	 * We can cluster ONLY if: ->> the page is NOT
257 	 * clean, wired, busy, held, or mapped into a
258 	 * buffer, and one of the following:
259 	 * 1) The page is inactive, or a seldom used
260 	 *    active page.
261 	 * -or-
262 	 * 2) we force the issue.
263 	 *
264 	 * During heavy mmap/modification loads the pageout
265 	 * daemon can really fragment the underlying file
266 	 * due to flushing pages out of order and not trying
267 	 * align the clusters (which leave sporatic out-of-order
268 	 * holes).  To solve this problem we do the reverse scan
269 	 * first and attempt to align our cluster, then do a
270 	 * forward scan if room remains.
271 	 */
272 
273 more:
274 	while (ib && pageout_count < vm_pageout_page_count) {
275 		vm_page_t p;
276 
277 		if (ib > pindex) {
278 			ib = 0;
279 			break;
280 		}
281 
282 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
283 			ib = 0;
284 			break;
285 		}
286 		if (((p->queue - p->pc) == PQ_CACHE) ||
287 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
288 			ib = 0;
289 			break;
290 		}
291 		vm_page_test_dirty(p);
292 		if ((p->dirty & p->valid) == 0 ||
293 		    p->queue != PQ_INACTIVE ||
294 		    p->wire_count != 0 ||	/* may be held by buf cache */
295 		    p->hold_count != 0) {	/* may be undergoing I/O */
296 			ib = 0;
297 			break;
298 		}
299 		mc[--page_base] = p;
300 		++pageout_count;
301 		++ib;
302 		/*
303 		 * alignment boundry, stop here and switch directions.  Do
304 		 * not clear ib.
305 		 */
306 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
307 			break;
308 	}
309 
310 	while (pageout_count < vm_pageout_page_count &&
311 	    pindex + is < object->size) {
312 		vm_page_t p;
313 
314 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
315 			break;
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			break;
319 		}
320 		vm_page_test_dirty(p);
321 		if ((p->dirty & p->valid) == 0 ||
322 		    p->queue != PQ_INACTIVE ||
323 		    p->wire_count != 0 ||	/* may be held by buf cache */
324 		    p->hold_count != 0) {	/* may be undergoing I/O */
325 			break;
326 		}
327 		mc[page_base + pageout_count] = p;
328 		++pageout_count;
329 		++is;
330 	}
331 
332 	/*
333 	 * If we exhausted our forward scan, continue with the reverse scan
334 	 * when possible, even past a page boundry.  This catches boundry
335 	 * conditions.
336 	 */
337 	if (ib && pageout_count < vm_pageout_page_count)
338 		goto more;
339 
340 	/*
341 	 * we allow reads during pageouts...
342 	 */
343 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
344 }
345 
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *	The given pages are laundered.  Note that we setup for the start of
350  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *	reference count all in here rather then in the parent.  If we want
352  *	the parent to do more sophisticated things we may have to change
353  *	the ordering.
354  */
355 
356 int
357 vm_pageout_flush(mc, count, flags)
358 	vm_page_t *mc;
359 	int count;
360 	int flags;
361 {
362 	register vm_object_t object;
363 	int pageout_status[count];
364 	int numpagedout = 0;
365 	int i;
366 
367 	/*
368 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
369 	 * mark the pages read-only.
370 	 *
371 	 * We do not have to fixup the clean/dirty bits here... we can
372 	 * allow the pager to do it after the I/O completes.
373 	 */
374 
375 	for (i = 0; i < count; i++) {
376 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
377 		vm_page_io_start(mc[i]);
378 		vm_page_protect(mc[i], VM_PROT_READ);
379 	}
380 
381 	object = mc[0]->object;
382 	vm_object_pip_add(object, count);
383 
384 	vm_pager_put_pages(object, mc, count,
385 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
386 	    pageout_status);
387 
388 	for (i = 0; i < count; i++) {
389 		vm_page_t mt = mc[i];
390 
391 		switch (pageout_status[i]) {
392 		case VM_PAGER_OK:
393 			numpagedout++;
394 			break;
395 		case VM_PAGER_PEND:
396 			numpagedout++;
397 			break;
398 		case VM_PAGER_BAD:
399 			/*
400 			 * Page outside of range of object. Right now we
401 			 * essentially lose the changes by pretending it
402 			 * worked.
403 			 */
404 			pmap_clear_modify(mt);
405 			vm_page_undirty(mt);
406 			break;
407 		case VM_PAGER_ERROR:
408 		case VM_PAGER_FAIL:
409 			/*
410 			 * If page couldn't be paged out, then reactivate the
411 			 * page so it doesn't clog the inactive list.  (We
412 			 * will try paging out it again later).
413 			 */
414 			vm_page_activate(mt);
415 			break;
416 		case VM_PAGER_AGAIN:
417 			break;
418 		}
419 
420 		/*
421 		 * If the operation is still going, leave the page busy to
422 		 * block all other accesses. Also, leave the paging in
423 		 * progress indicator set so that we don't attempt an object
424 		 * collapse.
425 		 */
426 		if (pageout_status[i] != VM_PAGER_PEND) {
427 			vm_object_pip_wakeup(object);
428 			vm_page_io_finish(mt);
429 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
430 				vm_page_protect(mt, VM_PROT_READ);
431 		}
432 	}
433 	return numpagedout;
434 }
435 
436 #if !defined(NO_SWAPPING)
437 /*
438  *	vm_pageout_object_deactivate_pages
439  *
440  *	deactivate enough pages to satisfy the inactive target
441  *	requirements or if vm_page_proc_limit is set, then
442  *	deactivate all of the pages in the object and its
443  *	backing_objects.
444  *
445  *	The object and map must be locked.
446  */
447 static void
448 vm_pageout_object_deactivate_pages(map, object, desired, map_remove_only)
449 	vm_map_t map;
450 	vm_object_t object;
451 	vm_pindex_t desired;
452 	int map_remove_only;
453 {
454 	register vm_page_t p, next;
455 	int rcount;
456 	int remove_mode;
457 	int s;
458 
459 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
460 		return;
461 
462 	while (object) {
463 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
464 			return;
465 		if (object->paging_in_progress)
466 			return;
467 
468 		remove_mode = map_remove_only;
469 		if (object->shadow_count > 1)
470 			remove_mode = 1;
471 	/*
472 	 * scan the objects entire memory queue
473 	 */
474 		rcount = object->resident_page_count;
475 		p = TAILQ_FIRST(&object->memq);
476 		while (p && (rcount-- > 0)) {
477 			int actcount;
478 			if (pmap_resident_count(vm_map_pmap(map)) <= desired)
479 				return;
480 			next = TAILQ_NEXT(p, listq);
481 			cnt.v_pdpages++;
482 			if (p->wire_count != 0 ||
483 			    p->hold_count != 0 ||
484 			    p->busy != 0 ||
485 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
486 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
487 				p = next;
488 				continue;
489 			}
490 
491 			actcount = pmap_ts_referenced(p);
492 			if (actcount) {
493 				vm_page_flag_set(p, PG_REFERENCED);
494 			} else if (p->flags & PG_REFERENCED) {
495 				actcount = 1;
496 			}
497 
498 			if ((p->queue != PQ_ACTIVE) &&
499 				(p->flags & PG_REFERENCED)) {
500 				vm_page_activate(p);
501 				p->act_count += actcount;
502 				vm_page_flag_clear(p, PG_REFERENCED);
503 			} else if (p->queue == PQ_ACTIVE) {
504 				if ((p->flags & PG_REFERENCED) == 0) {
505 					p->act_count -= min(p->act_count, ACT_DECLINE);
506 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
507 						vm_page_protect(p, VM_PROT_NONE);
508 						vm_page_deactivate(p);
509 					} else {
510 						s = splvm();
511 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
512 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
513 						splx(s);
514 					}
515 				} else {
516 					vm_page_activate(p);
517 					vm_page_flag_clear(p, PG_REFERENCED);
518 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
519 						p->act_count += ACT_ADVANCE;
520 					s = splvm();
521 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
522 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
523 					splx(s);
524 				}
525 			} else if (p->queue == PQ_INACTIVE) {
526 				vm_page_protect(p, VM_PROT_NONE);
527 			}
528 			p = next;
529 		}
530 		object = object->backing_object;
531 	}
532 	return;
533 }
534 
535 /*
536  * deactivate some number of pages in a map, try to do it fairly, but
537  * that is really hard to do.
538  */
539 static void
540 vm_pageout_map_deactivate_pages(map, desired)
541 	vm_map_t map;
542 	vm_pindex_t desired;
543 {
544 	vm_map_entry_t tmpe;
545 	vm_object_t obj, bigobj;
546 	int nothingwired;
547 
548 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, (void *)0, curproc)) {
549 		return;
550 	}
551 
552 	bigobj = NULL;
553 	nothingwired = TRUE;
554 
555 	/*
556 	 * first, search out the biggest object, and try to free pages from
557 	 * that.
558 	 */
559 	tmpe = map->header.next;
560 	while (tmpe != &map->header) {
561 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
562 			obj = tmpe->object.vm_object;
563 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
564 				((bigobj == NULL) ||
565 				 (bigobj->resident_page_count < obj->resident_page_count))) {
566 				bigobj = obj;
567 			}
568 		}
569 		if (tmpe->wired_count > 0)
570 			nothingwired = FALSE;
571 		tmpe = tmpe->next;
572 	}
573 
574 	if (bigobj)
575 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
576 
577 	/*
578 	 * Next, hunt around for other pages to deactivate.  We actually
579 	 * do this search sort of wrong -- .text first is not the best idea.
580 	 */
581 	tmpe = map->header.next;
582 	while (tmpe != &map->header) {
583 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
584 			break;
585 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586 			obj = tmpe->object.vm_object;
587 			if (obj)
588 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
589 		}
590 		tmpe = tmpe->next;
591 	};
592 
593 	/*
594 	 * Remove all mappings if a process is swapped out, this will free page
595 	 * table pages.
596 	 */
597 	if (desired == 0 && nothingwired)
598 		pmap_remove(vm_map_pmap(map),
599 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
600 	vm_map_unlock(map);
601 	return;
602 }
603 #endif
604 
605 /*
606  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
607  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
608  * which we know can be trivially freed.
609  */
610 
611 void
612 vm_pageout_page_free(vm_page_t m) {
613 	vm_object_t object = m->object;
614 	int type = object->type;
615 
616 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
617 		vm_object_reference(object);
618 	vm_page_busy(m);
619 	vm_page_protect(m, VM_PROT_NONE);
620 	vm_page_free(m);
621 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
622 		vm_object_deallocate(object);
623 }
624 
625 /*
626  *	vm_pageout_scan does the dirty work for the pageout daemon.
627  */
628 static void
629 vm_pageout_scan(int pass)
630 {
631 	vm_page_t m, next;
632 	struct vm_page marker;
633 	int page_shortage, maxscan, pcount;
634 	int addl_page_shortage, addl_page_shortage_init;
635 	struct proc *p, *bigproc;
636 	vm_offset_t size, bigsize;
637 	vm_object_t object;
638 	int actcount;
639 	int vnodes_skipped = 0;
640 	int maxlaunder;
641 	int s;
642 
643 	/*
644 	 * Do whatever cleanup that the pmap code can.
645 	 */
646 	pmap_collect();
647 
648 	addl_page_shortage_init = vm_pageout_deficit;
649 	vm_pageout_deficit = 0;
650 
651 	/*
652 	 * Calculate the number of pages we want to either free or move
653 	 * to the cache.
654 	 */
655 	page_shortage = vm_paging_target() + addl_page_shortage_init;
656 
657 	/*
658 	 * Initialize our marker
659 	 */
660 	bzero(&marker, sizeof(marker));
661 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
662 	marker.queue = PQ_INACTIVE;
663 	marker.wire_count = 1;
664 
665 	/*
666 	 * Start scanning the inactive queue for pages we can move to the
667 	 * cache or free.  The scan will stop when the target is reached or
668 	 * we have scanned the entire inactive queue.  Note that m->act_count
669 	 * is not used to form decisions for the inactive queue, only for the
670 	 * active queue.
671 	 *
672 	 * maxlaunder limits the number of dirty pages we flush per scan.
673 	 * For most systems a smaller value (16 or 32) is more robust under
674 	 * extreme memory and disk pressure because any unnecessary writes
675 	 * to disk can result in extreme performance degredation.  However,
676 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
677 	 * used) will die horribly with limited laundering.  If the pageout
678 	 * daemon cannot clean enough pages in the first pass, we let it go
679 	 * all out in succeeding passes.
680 	 */
681 	if ((maxlaunder = vm_max_launder) <= 1)
682 		maxlaunder = 1;
683 	if (pass)
684 		maxlaunder = 10000;
685 
686 rescan0:
687 	addl_page_shortage = addl_page_shortage_init;
688 	maxscan = cnt.v_inactive_count;
689 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
690 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
691 	     m = next) {
692 
693 		cnt.v_pdpages++;
694 
695 		if (m->queue != PQ_INACTIVE) {
696 			goto rescan0;
697 		}
698 
699 		next = TAILQ_NEXT(m, pageq);
700 
701 		/*
702 		 * skip marker pages
703 		 */
704 		if (m->flags & PG_MARKER)
705 			continue;
706 
707 		/*
708 		 * A held page may be undergoing I/O, so skip it.
709 		 */
710 		if (m->hold_count) {
711 			s = splvm();
712 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
713 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
714 			splx(s);
715 			addl_page_shortage++;
716 			continue;
717 		}
718 		/*
719 		 * Dont mess with busy pages, keep in the front of the
720 		 * queue, most likely are being paged out.
721 		 */
722 		if (m->busy || (m->flags & PG_BUSY)) {
723 			addl_page_shortage++;
724 			continue;
725 		}
726 
727 		/*
728 		 * If the object is not being used, we ignore previous
729 		 * references.
730 		 */
731 		if (m->object->ref_count == 0) {
732 			vm_page_flag_clear(m, PG_REFERENCED);
733 			pmap_clear_reference(m);
734 
735 		/*
736 		 * Otherwise, if the page has been referenced while in the
737 		 * inactive queue, we bump the "activation count" upwards,
738 		 * making it less likely that the page will be added back to
739 		 * the inactive queue prematurely again.  Here we check the
740 		 * page tables (or emulated bits, if any), given the upper
741 		 * level VM system not knowing anything about existing
742 		 * references.
743 		 */
744 		} else if (((m->flags & PG_REFERENCED) == 0) &&
745 			(actcount = pmap_ts_referenced(m))) {
746 			vm_page_activate(m);
747 			m->act_count += (actcount + ACT_ADVANCE);
748 			continue;
749 		}
750 
751 		/*
752 		 * If the upper level VM system knows about any page
753 		 * references, we activate the page.  We also set the
754 		 * "activation count" higher than normal so that we will less
755 		 * likely place pages back onto the inactive queue again.
756 		 */
757 		if ((m->flags & PG_REFERENCED) != 0) {
758 			vm_page_flag_clear(m, PG_REFERENCED);
759 			actcount = pmap_ts_referenced(m);
760 			vm_page_activate(m);
761 			m->act_count += (actcount + ACT_ADVANCE + 1);
762 			continue;
763 		}
764 
765 		/*
766 		 * If the upper level VM system doesn't know anything about
767 		 * the page being dirty, we have to check for it again.  As
768 		 * far as the VM code knows, any partially dirty pages are
769 		 * fully dirty.
770 		 */
771 		if (m->dirty == 0) {
772 			vm_page_test_dirty(m);
773 		} else {
774 			vm_page_dirty(m);
775 		}
776 
777 		/*
778 		 * Invalid pages can be easily freed
779 		 */
780 		if (m->valid == 0) {
781 			vm_pageout_page_free(m);
782 			cnt.v_dfree++;
783 			--page_shortage;
784 
785 		/*
786 		 * Clean pages can be placed onto the cache queue.  This
787 		 * effectively frees them.
788 		 */
789 		} else if (m->dirty == 0) {
790 			/*
791 			 * Clean pages can be immediately freed to the cache.
792 			 */
793 			vm_page_cache(m);
794 			--page_shortage;
795 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
796 			/*
797 			 * Dirty pages need to be paged out, but flushing
798 			 * a page is extremely expensive verses freeing
799 			 * a clean page.  Rather then artificially limiting
800 			 * the number of pages we can flush, we instead give
801 			 * dirty pages extra priority on the inactive queue
802 			 * by forcing them to be cycled through the queue
803 			 * twice before being flushed, after which the
804 			 * (now clean) page will cycle through once more
805 			 * before being freed.  This significantly extends
806 			 * the thrash point for a heavily loaded machine.
807 			 */
808 			s = splvm();
809 			vm_page_flag_set(m, PG_WINATCFLS);
810 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
811 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
812 			splx(s);
813 		} else if (maxlaunder > 0) {
814 			/*
815 			 * We always want to try to flush some dirty pages if
816 			 * we encounter them, to keep the system stable.
817 			 * Normally this number is small, but under extreme
818 			 * pressure where there are insufficient clean pages
819 			 * on the inactive queue, we may have to go all out.
820 			 */
821 			int swap_pageouts_ok;
822 			struct vnode *vp = NULL;
823 
824 			object = m->object;
825 
826 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
827 				swap_pageouts_ok = 1;
828 			} else {
829 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
830 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
831 				vm_page_count_min());
832 
833 			}
834 
835 			/*
836 			 * We don't bother paging objects that are "dead".
837 			 * Those objects are in a "rundown" state.
838 			 */
839 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
840 				s = splvm();
841 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
842 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
843 				splx(s);
844 				continue;
845 			}
846 
847 			/*
848 			 * The object is already known NOT to be dead.   It
849 			 * is possible for the vget() to block the whole
850 			 * pageout daemon, but the new low-memory handling
851 			 * code should prevent it.
852 			 *
853 			 * The previous code skipped locked vnodes and, worse,
854 			 * reordered pages in the queue.  This results in
855 			 * completely non-deterministic operation because,
856 			 * quite often, a vm_fault has initiated an I/O and
857 			 * is holding a locked vnode at just the point where
858 			 * the pageout daemon is woken up.
859 			 *
860 			 * We can't wait forever for the vnode lock, we might
861 			 * deadlock due to a vn_read() getting stuck in
862 			 * vm_wait while holding this vnode.  We skip the
863 			 * vnode if we can't get it in a reasonable amount
864 			 * of time.
865 			 */
866 
867 			if (object->type == OBJT_VNODE) {
868 				vp = object->handle;
869 
870 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK, curproc)) {
871 					++pageout_lock_miss;
872 					if (object->flags & OBJ_MIGHTBEDIRTY)
873 						    vnodes_skipped++;
874 					continue;
875 				}
876 
877 				/*
878 				 * The page might have been moved to another
879 				 * queue during potential blocking in vget()
880 				 * above.  The page might have been freed and
881 				 * reused for another vnode.  The object might
882 				 * have been reused for another vnode.
883 				 */
884 				if (m->queue != PQ_INACTIVE ||
885 				    m->object != object ||
886 				    object->handle != vp) {
887 					if (object->flags & OBJ_MIGHTBEDIRTY)
888 						vnodes_skipped++;
889 					vput(vp);
890 					continue;
891 				}
892 
893 				/*
894 				 * The page may have been busied during the
895 				 * blocking in vput();  We don't move the
896 				 * page back onto the end of the queue so that
897 				 * statistics are more correct if we don't.
898 				 */
899 				if (m->busy || (m->flags & PG_BUSY)) {
900 					vput(vp);
901 					continue;
902 				}
903 
904 				/*
905 				 * If the page has become held it might
906 				 * be undergoing I/O, so skip it
907 				 */
908 				if (m->hold_count) {
909 					s = splvm();
910 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
911 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
912 					splx(s);
913 					if (object->flags & OBJ_MIGHTBEDIRTY)
914 						vnodes_skipped++;
915 					vput(vp);
916 					continue;
917 				}
918 			}
919 
920 			/*
921 			 * If a page is dirty, then it is either being washed
922 			 * (but not yet cleaned) or it is still in the
923 			 * laundry.  If it is still in the laundry, then we
924 			 * start the cleaning operation.
925 			 *
926 			 * This operation may cluster, invalidating the 'next'
927 			 * pointer.  To prevent an inordinate number of
928 			 * restarts we use our marker to remember our place.
929 			 *
930 			 * decrement page_shortage on success to account for
931 			 * the (future) cleaned page.  Otherwise we could wind
932 			 * up laundering or cleaning too many pages.
933 			 */
934 			s = splvm();
935 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
936 			splx(s);
937 			if (vm_pageout_clean(m) != 0) {
938 				--page_shortage;
939 				--maxlaunder;
940 			}
941 			s = splvm();
942 			next = TAILQ_NEXT(&marker, pageq);
943 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
944 			splx(s);
945 			if (vp != NULL)
946 				vput(vp);
947 		}
948 	}
949 
950 	/*
951 	 * Compute the number of pages we want to try to move from the
952 	 * active queue to the inactive queue.
953 	 */
954 	page_shortage = vm_paging_target() +
955 	    cnt.v_inactive_target - cnt.v_inactive_count;
956 	page_shortage += addl_page_shortage;
957 
958 	/*
959 	 * Scan the active queue for things we can deactivate. We nominally
960 	 * track the per-page activity counter and use it to locate
961 	 * deactivation candidates.
962 	 */
963 
964 	pcount = cnt.v_active_count;
965 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
966 
967 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
968 
969 		/*
970 		 * This is a consistency check, and should likely be a panic
971 		 * or warning.
972 		 */
973 		if (m->queue != PQ_ACTIVE) {
974 			break;
975 		}
976 
977 		next = TAILQ_NEXT(m, pageq);
978 		/*
979 		 * Don't deactivate pages that are busy.
980 		 */
981 		if ((m->busy != 0) ||
982 		    (m->flags & PG_BUSY) ||
983 		    (m->hold_count != 0)) {
984 			s = splvm();
985 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
986 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
987 			splx(s);
988 			m = next;
989 			continue;
990 		}
991 
992 		/*
993 		 * The count for pagedaemon pages is done after checking the
994 		 * page for eligibility...
995 		 */
996 		cnt.v_pdpages++;
997 
998 		/*
999 		 * Check to see "how much" the page has been used.
1000 		 */
1001 		actcount = 0;
1002 		if (m->object->ref_count != 0) {
1003 			if (m->flags & PG_REFERENCED) {
1004 				actcount += 1;
1005 			}
1006 			actcount += pmap_ts_referenced(m);
1007 			if (actcount) {
1008 				m->act_count += ACT_ADVANCE + actcount;
1009 				if (m->act_count > ACT_MAX)
1010 					m->act_count = ACT_MAX;
1011 			}
1012 		}
1013 
1014 		/*
1015 		 * Since we have "tested" this bit, we need to clear it now.
1016 		 */
1017 		vm_page_flag_clear(m, PG_REFERENCED);
1018 
1019 		/*
1020 		 * Only if an object is currently being used, do we use the
1021 		 * page activation count stats.
1022 		 */
1023 		if (actcount && (m->object->ref_count != 0)) {
1024 			s = splvm();
1025 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1026 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1027 			splx(s);
1028 		} else {
1029 			m->act_count -= min(m->act_count, ACT_DECLINE);
1030 			if (vm_pageout_algorithm ||
1031 			    m->object->ref_count == 0 ||
1032 			    m->act_count == 0) {
1033 				page_shortage--;
1034 				if (m->object->ref_count == 0) {
1035 					vm_page_protect(m, VM_PROT_NONE);
1036 					if (m->dirty == 0)
1037 						vm_page_cache(m);
1038 					else
1039 						vm_page_deactivate(m);
1040 				} else {
1041 					vm_page_deactivate(m);
1042 				}
1043 			} else {
1044 				s = splvm();
1045 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1046 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1047 				splx(s);
1048 			}
1049 		}
1050 		m = next;
1051 	}
1052 
1053 	s = splvm();
1054 
1055 	/*
1056 	 * We try to maintain some *really* free pages, this allows interrupt
1057 	 * code to be guaranteed space.  Since both cache and free queues
1058 	 * are considered basically 'free', moving pages from cache to free
1059 	 * does not effect other calculations.
1060 	 */
1061 
1062 	while (cnt.v_free_count < cnt.v_free_reserved) {
1063 		static int cache_rover = 0;
1064 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1065 		if (!m)
1066 			break;
1067 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1068 		    m->busy ||
1069 		    m->hold_count ||
1070 		    m->wire_count) {
1071 #ifdef INVARIANTS
1072 			printf("Warning: busy page %p found in cache\n", m);
1073 #endif
1074 			vm_page_deactivate(m);
1075 			continue;
1076 		}
1077 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1078 		vm_pageout_page_free(m);
1079 		cnt.v_dfree++;
1080 	}
1081 	splx(s);
1082 
1083 #if !defined(NO_SWAPPING)
1084 	/*
1085 	 * Idle process swapout -- run once per second.
1086 	 */
1087 	if (vm_swap_idle_enabled) {
1088 		static long lsec;
1089 		if (time_second != lsec) {
1090 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1091 			vm_req_vmdaemon();
1092 			lsec = time_second;
1093 		}
1094 	}
1095 #endif
1096 
1097 	/*
1098 	 * If we didn't get enough free pages, and we have skipped a vnode
1099 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1100 	 * if we did not get enough free pages.
1101 	 */
1102 	if (vm_paging_target() > 0) {
1103 		if (vnodes_skipped && vm_page_count_min())
1104 			(void) speedup_syncer();
1105 #if !defined(NO_SWAPPING)
1106 		if (vm_swap_enabled && vm_page_count_target()) {
1107 			vm_req_vmdaemon();
1108 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1109 		}
1110 #endif
1111 	}
1112 
1113 	/*
1114 	 * If we are out of swap and were not able to reach our paging
1115 	 * target, kill the largest process.
1116 	 */
1117 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1118 	    (swap_pager_full && vm_paging_target() > 0)) {
1119 #if 0
1120 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1121 #endif
1122 		bigproc = NULL;
1123 		bigsize = 0;
1124 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1125 			/*
1126 			 * if this is a system process, skip it
1127 			 */
1128 			if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1129 			    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1130 				continue;
1131 			}
1132 			/*
1133 			 * if the process is in a non-running type state,
1134 			 * don't touch it.
1135 			 */
1136 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1137 				continue;
1138 			}
1139 			/*
1140 			 * get the process size
1141 			 */
1142 			size = vmspace_resident_count(p->p_vmspace) +
1143 				vmspace_swap_count(p->p_vmspace);
1144 			/*
1145 			 * if the this process is bigger than the biggest one
1146 			 * remember it.
1147 			 */
1148 			if (size > bigsize) {
1149 				bigproc = p;
1150 				bigsize = size;
1151 			}
1152 		}
1153 		if (bigproc != NULL) {
1154 			killproc(bigproc, "out of swap space");
1155 			bigproc->p_estcpu = 0;
1156 			bigproc->p_nice = PRIO_MIN;
1157 			resetpriority(bigproc);
1158 			wakeup(&cnt.v_free_count);
1159 		}
1160 	}
1161 }
1162 
1163 /*
1164  * This routine tries to maintain the pseudo LRU active queue,
1165  * so that during long periods of time where there is no paging,
1166  * that some statistic accumulation still occurs.  This code
1167  * helps the situation where paging just starts to occur.
1168  */
1169 static void
1170 vm_pageout_page_stats()
1171 {
1172 	int s;
1173 	vm_page_t m,next;
1174 	int pcount,tpcount;		/* Number of pages to check */
1175 	static int fullintervalcount = 0;
1176 	int page_shortage;
1177 	int s0;
1178 
1179 	page_shortage =
1180 	    (cnt.v_inactive_target + cnt.v_cache_max + cnt.v_free_min) -
1181 	    (cnt.v_free_count + cnt.v_inactive_count + cnt.v_cache_count);
1182 
1183 	if (page_shortage <= 0)
1184 		return;
1185 
1186 	s0 = splvm();
1187 
1188 	pcount = cnt.v_active_count;
1189 	fullintervalcount += vm_pageout_stats_interval;
1190 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1191 		tpcount = (vm_pageout_stats_max * cnt.v_active_count) / cnt.v_page_count;
1192 		if (pcount > tpcount)
1193 			pcount = tpcount;
1194 	} else {
1195 		fullintervalcount = 0;
1196 	}
1197 
1198 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1199 	while ((m != NULL) && (pcount-- > 0)) {
1200 		int actcount;
1201 
1202 		if (m->queue != PQ_ACTIVE) {
1203 			break;
1204 		}
1205 
1206 		next = TAILQ_NEXT(m, pageq);
1207 		/*
1208 		 * Don't deactivate pages that are busy.
1209 		 */
1210 		if ((m->busy != 0) ||
1211 		    (m->flags & PG_BUSY) ||
1212 		    (m->hold_count != 0)) {
1213 			s = splvm();
1214 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1215 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1216 			splx(s);
1217 			m = next;
1218 			continue;
1219 		}
1220 
1221 		actcount = 0;
1222 		if (m->flags & PG_REFERENCED) {
1223 			vm_page_flag_clear(m, PG_REFERENCED);
1224 			actcount += 1;
1225 		}
1226 
1227 		actcount += pmap_ts_referenced(m);
1228 		if (actcount) {
1229 			m->act_count += ACT_ADVANCE + actcount;
1230 			if (m->act_count > ACT_MAX)
1231 				m->act_count = ACT_MAX;
1232 			s = splvm();
1233 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1234 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1235 			splx(s);
1236 		} else {
1237 			if (m->act_count == 0) {
1238 				/*
1239 				 * We turn off page access, so that we have
1240 				 * more accurate RSS stats.  We don't do this
1241 				 * in the normal page deactivation when the
1242 				 * system is loaded VM wise, because the
1243 				 * cost of the large number of page protect
1244 				 * operations would be higher than the value
1245 				 * of doing the operation.
1246 				 */
1247 				vm_page_protect(m, VM_PROT_NONE);
1248 				vm_page_deactivate(m);
1249 			} else {
1250 				m->act_count -= min(m->act_count, ACT_DECLINE);
1251 				s = splvm();
1252 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1253 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1254 				splx(s);
1255 			}
1256 		}
1257 
1258 		m = next;
1259 	}
1260 	splx(s0);
1261 }
1262 
1263 static int
1264 vm_pageout_free_page_calc(count)
1265 vm_size_t count;
1266 {
1267 	if (count < cnt.v_page_count)
1268 		 return 0;
1269 	/*
1270 	 * free_reserved needs to include enough for the largest swap pager
1271 	 * structures plus enough for any pv_entry structs when paging.
1272 	 */
1273 	if (cnt.v_page_count > 1024)
1274 		cnt.v_free_min = 4 + (cnt.v_page_count - 1024) / 200;
1275 	else
1276 		cnt.v_free_min = 4;
1277 	cnt.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1278 		cnt.v_interrupt_free_min;
1279 	cnt.v_free_reserved = vm_pageout_page_count +
1280 		cnt.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1281 	cnt.v_free_severe = cnt.v_free_min / 2;
1282 	cnt.v_free_min += cnt.v_free_reserved;
1283 	cnt.v_free_severe += cnt.v_free_reserved;
1284 	return 1;
1285 }
1286 
1287 
1288 /*
1289  *	vm_pageout is the high level pageout daemon.
1290  */
1291 static void
1292 vm_pageout()
1293 {
1294 	int pass;
1295 
1296 	/*
1297 	 * Initialize some paging parameters.
1298 	 */
1299 
1300 	cnt.v_interrupt_free_min = 2;
1301 	if (cnt.v_page_count < 2000)
1302 		vm_pageout_page_count = 8;
1303 
1304 	vm_pageout_free_page_calc(cnt.v_page_count);
1305 	/*
1306 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1307 	 * that these are more a measure of the VM cache queue hysteresis
1308 	 * then the VM free queue.  Specifically, v_free_target is the
1309 	 * high water mark (free+cache pages).
1310 	 *
1311 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1312 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1313 	 * be big enough to handle memory needs while the pageout daemon
1314 	 * is signalled and run to free more pages.
1315 	 */
1316 	if (cnt.v_free_count > 6144)
1317 		cnt.v_free_target = 4 * cnt.v_free_min + cnt.v_free_reserved;
1318 	else
1319 		cnt.v_free_target = 2 * cnt.v_free_min + cnt.v_free_reserved;
1320 
1321 	if (cnt.v_free_count > 2048) {
1322 		cnt.v_cache_min = cnt.v_free_target;
1323 		cnt.v_cache_max = 2 * cnt.v_cache_min;
1324 		cnt.v_inactive_target = (3 * cnt.v_free_target) / 2;
1325 	} else {
1326 		cnt.v_cache_min = 0;
1327 		cnt.v_cache_max = 0;
1328 		cnt.v_inactive_target = cnt.v_free_count / 4;
1329 	}
1330 	if (cnt.v_inactive_target > cnt.v_free_count / 3)
1331 		cnt.v_inactive_target = cnt.v_free_count / 3;
1332 
1333 	/* XXX does not really belong here */
1334 	if (vm_page_max_wired == 0)
1335 		vm_page_max_wired = cnt.v_free_count / 3;
1336 
1337 	if (vm_pageout_stats_max == 0)
1338 		vm_pageout_stats_max = cnt.v_free_target;
1339 
1340 	/*
1341 	 * Set interval in seconds for stats scan.
1342 	 */
1343 	if (vm_pageout_stats_interval == 0)
1344 		vm_pageout_stats_interval = 5;
1345 	if (vm_pageout_full_stats_interval == 0)
1346 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1347 
1348 
1349 	/*
1350 	 * Set maximum free per pass
1351 	 */
1352 	if (vm_pageout_stats_free_max == 0)
1353 		vm_pageout_stats_free_max = 5;
1354 
1355 	swap_pager_swap_init();
1356 	pass = 0;
1357 	/*
1358 	 * The pageout daemon is never done, so loop forever.
1359 	 */
1360 	while (TRUE) {
1361 		int error;
1362 		int s = splvm();
1363 
1364 		/*
1365 		 * If we have enough free memory, wakeup waiters.  Do
1366 		 * not clear vm_pages_needed until we reach our target,
1367 		 * otherwise we may be woken up over and over again and
1368 		 * waste a lot of cpu.
1369 		 */
1370 		if (vm_pages_needed && !vm_page_count_min()) {
1371 			if (vm_paging_needed() <= 0)
1372 				vm_pages_needed = 0;
1373 			wakeup(&cnt.v_free_count);
1374 		}
1375 		if (vm_pages_needed) {
1376 			/*
1377 			 * Still not done, take a second pass without waiting
1378 			 * (unlimited dirty cleaning), otherwise sleep a bit
1379 			 * and try again.
1380 			 */
1381 			++pass;
1382 			if (pass > 1)
1383 				tsleep(&vm_pages_needed, PVM, "psleep", hz/2);
1384 		} else {
1385 			/*
1386 			 * Good enough, sleep & handle stats.  Prime the pass
1387 			 * for the next run.
1388 			 */
1389 			if (pass > 1)
1390 				pass = 1;
1391 			else
1392 				pass = 0;
1393 			error = tsleep(&vm_pages_needed,
1394 				PVM, "psleep", vm_pageout_stats_interval * hz);
1395 			if (error && !vm_pages_needed) {
1396 				splx(s);
1397 				pass = 0;
1398 				vm_pageout_page_stats();
1399 				continue;
1400 			}
1401 		}
1402 
1403 		if (vm_pages_needed)
1404 			cnt.v_pdwakeups++;
1405 		splx(s);
1406 		vm_pageout_scan(pass);
1407 		vm_pageout_deficit = 0;
1408 	}
1409 }
1410 
1411 void
1412 pagedaemon_wakeup()
1413 {
1414 	if (!vm_pages_needed && curproc != pageproc) {
1415 		vm_pages_needed++;
1416 		wakeup(&vm_pages_needed);
1417 	}
1418 }
1419 
1420 #if !defined(NO_SWAPPING)
1421 static void
1422 vm_req_vmdaemon()
1423 {
1424 	static int lastrun = 0;
1425 
1426 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1427 		wakeup(&vm_daemon_needed);
1428 		lastrun = ticks;
1429 	}
1430 }
1431 
1432 static void
1433 vm_daemon()
1434 {
1435 	struct proc *p;
1436 
1437 	while (TRUE) {
1438 		tsleep(&vm_daemon_needed, PPAUSE, "psleep", 0);
1439 		if (vm_pageout_req_swapout) {
1440 			swapout_procs(vm_pageout_req_swapout);
1441 			vm_pageout_req_swapout = 0;
1442 		}
1443 		/*
1444 		 * scan the processes for exceeding their rlimits or if
1445 		 * process is swapped out -- deactivate pages
1446 		 */
1447 
1448 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
1449 			vm_pindex_t limit, size;
1450 
1451 			/*
1452 			 * if this is a system process or if we have already
1453 			 * looked at this process, skip it.
1454 			 */
1455 			if (p->p_flag & (P_SYSTEM | P_WEXIT)) {
1456 				continue;
1457 			}
1458 			/*
1459 			 * if the process is in a non-running type state,
1460 			 * don't touch it.
1461 			 */
1462 			if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1463 				continue;
1464 			}
1465 			/*
1466 			 * get a limit
1467 			 */
1468 			limit = OFF_TO_IDX(
1469 			    qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1470 				p->p_rlimit[RLIMIT_RSS].rlim_max));
1471 
1472 			/*
1473 			 * let processes that are swapped out really be
1474 			 * swapped out set the limit to nothing (will force a
1475 			 * swap-out.)
1476 			 */
1477 			if ((p->p_flag & P_INMEM) == 0)
1478 				limit = 0;	/* XXX */
1479 
1480 			size = vmspace_resident_count(p->p_vmspace);
1481 			if (limit >= 0 && size >= limit) {
1482 				vm_pageout_map_deactivate_pages(
1483 				    &p->p_vmspace->vm_map, limit);
1484 			}
1485 		}
1486 	}
1487 }
1488 #endif
1489