xref: /dragonfly/sys/vm/vm_pageout.c (revision 77b0c609)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106 
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct	thread *vmthread;
111 
112 static struct kproc_desc vm_kp = {
113 	"vmdaemon",
114 	vm_daemon,
115 	&vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
118 #endif
119 
120 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
123 
124 #if !defined(NO_SWAPPING)
125 static int vm_pageout_req_swapout;	/* XXX */
126 static int vm_daemon_needed;
127 #endif
128 static int vm_max_launder = 32;
129 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
130 static int vm_pageout_full_stats_interval = 0;
131 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
132 static int defer_swap_pageouts=0;
133 static int disable_swap_pageouts=0;
134 
135 #if defined(NO_SWAPPING)
136 static int vm_swap_enabled=0;
137 static int vm_swap_idle_enabled=0;
138 #else
139 static int vm_swap_enabled=1;
140 static int vm_swap_idle_enabled=0;
141 #endif
142 
143 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
144 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
145 
146 SYSCTL_INT(_vm, OID_AUTO, max_launder,
147 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
148 
149 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
150 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
151 
152 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
153 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
154 
155 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
156 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
157 
158 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
159 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
160 
161 #if defined(NO_SWAPPING)
162 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
163 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
164 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
165 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
166 #else
167 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
168 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
169 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
170 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
171 #endif
172 
173 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
174 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
175 
176 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
177 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
178 
179 static int pageout_lock_miss;
180 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
181 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
182 
183 #define VM_PAGEOUT_PAGE_COUNT 16
184 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
185 
186 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
187 
188 #if !defined(NO_SWAPPING)
189 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
190 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
191 static freeer_fcn_t vm_pageout_object_deactivate_pages;
192 static void vm_req_vmdaemon (void);
193 #endif
194 static void vm_pageout_page_stats(int q);
195 
196 static __inline int
197 PQAVERAGE(int n)
198 {
199 	if (n >= 0)
200 		return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
201 	else
202 		return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
203 }
204 
205 /*
206  * vm_pageout_clean:
207  *
208  * Clean the page and remove it from the laundry.  The page must not be
209  * busy on-call.
210  *
211  * We set the busy bit to cause potential page faults on this page to
212  * block.  Note the careful timing, however, the busy bit isn't set till
213  * late and we cannot do anything that will mess with the page.
214  */
215 static int
216 vm_pageout_clean(vm_page_t m)
217 {
218 	vm_object_t object;
219 	vm_page_t mc[2*vm_pageout_page_count];
220 	int pageout_count;
221 	int error;
222 	int ib, is, page_base;
223 	vm_pindex_t pindex = m->pindex;
224 
225 	object = m->object;
226 
227 	/*
228 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
229 	 * with the new swapper, but we could have serious problems paging
230 	 * out other object types if there is insufficient memory.
231 	 *
232 	 * Unfortunately, checking free memory here is far too late, so the
233 	 * check has been moved up a procedural level.
234 	 */
235 
236 	/*
237 	 * Don't mess with the page if it's busy, held, or special
238 	 *
239 	 * XXX do we really need to check hold_count here?  hold_count
240 	 * isn't supposed to mess with vm_page ops except prevent the
241 	 * page from being reused.
242 	 */
243 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
244 		vm_page_wakeup(m);
245 		return 0;
246 	}
247 
248 	mc[vm_pageout_page_count] = m;
249 	pageout_count = 1;
250 	page_base = vm_pageout_page_count;
251 	ib = 1;
252 	is = 1;
253 
254 	/*
255 	 * Scan object for clusterable pages.
256 	 *
257 	 * We can cluster ONLY if: ->> the page is NOT
258 	 * clean, wired, busy, held, or mapped into a
259 	 * buffer, and one of the following:
260 	 * 1) The page is inactive, or a seldom used
261 	 *    active page.
262 	 * -or-
263 	 * 2) we force the issue.
264 	 *
265 	 * During heavy mmap/modification loads the pageout
266 	 * daemon can really fragment the underlying file
267 	 * due to flushing pages out of order and not trying
268 	 * align the clusters (which leave sporatic out-of-order
269 	 * holes).  To solve this problem we do the reverse scan
270 	 * first and attempt to align our cluster, then do a
271 	 * forward scan if room remains.
272 	 */
273 
274 	vm_object_hold(object);
275 more:
276 	while (ib && pageout_count < vm_pageout_page_count) {
277 		vm_page_t p;
278 
279 		if (ib > pindex) {
280 			ib = 0;
281 			break;
282 		}
283 
284 		p = vm_page_lookup_busy_try(object, pindex - ib, TRUE, &error);
285 		if (error || p == NULL) {
286 			ib = 0;
287 			break;
288 		}
289 		if ((p->queue - p->pc) == PQ_CACHE ||
290 		    (p->flags & PG_UNMANAGED)) {
291 			vm_page_wakeup(p);
292 			ib = 0;
293 			break;
294 		}
295 		vm_page_test_dirty(p);
296 		if (((p->dirty & p->valid) == 0 &&
297 		     (p->flags & PG_NEED_COMMIT) == 0) ||
298 		    p->queue - p->pc != PQ_INACTIVE ||
299 		    p->wire_count != 0 ||	/* may be held by buf cache */
300 		    p->hold_count != 0) {	/* may be undergoing I/O */
301 			vm_page_wakeup(p);
302 			ib = 0;
303 			break;
304 		}
305 		mc[--page_base] = p;
306 		++pageout_count;
307 		++ib;
308 		/*
309 		 * alignment boundry, stop here and switch directions.  Do
310 		 * not clear ib.
311 		 */
312 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
313 			break;
314 	}
315 
316 	while (pageout_count < vm_pageout_page_count &&
317 	    pindex + is < object->size) {
318 		vm_page_t p;
319 
320 		p = vm_page_lookup_busy_try(object, pindex + is, TRUE, &error);
321 		if (error || p == NULL)
322 			break;
323 		if (((p->queue - p->pc) == PQ_CACHE) ||
324 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
325 			vm_page_wakeup(p);
326 			break;
327 		}
328 		vm_page_test_dirty(p);
329 		if (((p->dirty & p->valid) == 0 &&
330 		     (p->flags & PG_NEED_COMMIT) == 0) ||
331 		    p->queue - p->pc != PQ_INACTIVE ||
332 		    p->wire_count != 0 ||	/* may be held by buf cache */
333 		    p->hold_count != 0) {	/* may be undergoing I/O */
334 			vm_page_wakeup(p);
335 			break;
336 		}
337 		mc[page_base + pageout_count] = p;
338 		++pageout_count;
339 		++is;
340 	}
341 
342 	/*
343 	 * If we exhausted our forward scan, continue with the reverse scan
344 	 * when possible, even past a page boundry.  This catches boundry
345 	 * conditions.
346 	 */
347 	if (ib && pageout_count < vm_pageout_page_count)
348 		goto more;
349 
350 	vm_object_drop(object);
351 
352 	/*
353 	 * we allow reads during pageouts...
354 	 */
355 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
356 }
357 
358 /*
359  * vm_pageout_flush() - launder the given pages
360  *
361  *	The given pages are laundered.  Note that we setup for the start of
362  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
363  *	reference count all in here rather then in the parent.  If we want
364  *	the parent to do more sophisticated things we may have to change
365  *	the ordering.
366  *
367  *	The pages in the array must be busied by the caller and will be
368  *	unbusied by this function.
369  */
370 int
371 vm_pageout_flush(vm_page_t *mc, int count, int flags)
372 {
373 	vm_object_t object;
374 	int pageout_status[count];
375 	int numpagedout = 0;
376 	int i;
377 
378 	/*
379 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
380 	 */
381 	for (i = 0; i < count; i++) {
382 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
383 			("vm_pageout_flush page %p index %d/%d: partially "
384 			 "invalid page", mc[i], i, count));
385 		vm_page_io_start(mc[i]);
386 	}
387 
388 	/*
389 	 * We must make the pages read-only.  This will also force the
390 	 * modified bit in the related pmaps to be cleared.  The pager
391 	 * cannot clear the bit for us since the I/O completion code
392 	 * typically runs from an interrupt.  The act of making the page
393 	 * read-only handles the case for us.
394 	 *
395 	 * Then we can unbusy the pages, we still hold a reference by virtue
396 	 * of our soft-busy.
397 	 */
398 	for (i = 0; i < count; i++) {
399 		vm_page_protect(mc[i], VM_PROT_READ);
400 		vm_page_wakeup(mc[i]);
401 	}
402 
403 	object = mc[0]->object;
404 	vm_object_pip_add(object, count);
405 
406 	vm_pager_put_pages(object, mc, count,
407 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
408 	    pageout_status);
409 
410 	for (i = 0; i < count; i++) {
411 		vm_page_t mt = mc[i];
412 
413 		switch (pageout_status[i]) {
414 		case VM_PAGER_OK:
415 			numpagedout++;
416 			break;
417 		case VM_PAGER_PEND:
418 			numpagedout++;
419 			break;
420 		case VM_PAGER_BAD:
421 			/*
422 			 * Page outside of range of object. Right now we
423 			 * essentially lose the changes by pretending it
424 			 * worked.
425 			 */
426 			vm_page_busy_wait(mt, FALSE, "pgbad");
427 			pmap_clear_modify(mt);
428 			vm_page_undirty(mt);
429 			vm_page_wakeup(mt);
430 			break;
431 		case VM_PAGER_ERROR:
432 		case VM_PAGER_FAIL:
433 			/*
434 			 * A page typically cannot be paged out when we
435 			 * have run out of swap.  We leave the page
436 			 * marked inactive and will try to page it out
437 			 * again later.
438 			 *
439 			 * Starvation of the active page list is used to
440 			 * determine when the system is massively memory
441 			 * starved.
442 			 */
443 			break;
444 		case VM_PAGER_AGAIN:
445 			break;
446 		}
447 
448 		/*
449 		 * If the operation is still going, leave the page busy to
450 		 * block all other accesses. Also, leave the paging in
451 		 * progress indicator set so that we don't attempt an object
452 		 * collapse.
453 		 *
454 		 * For any pages which have completed synchronously,
455 		 * deactivate the page if we are under a severe deficit.
456 		 * Do not try to enter them into the cache, though, they
457 		 * might still be read-heavy.
458 		 */
459 		if (pageout_status[i] != VM_PAGER_PEND) {
460 			vm_page_busy_wait(mt, FALSE, "pgouw");
461 			if (vm_page_count_severe())
462 				vm_page_deactivate(mt);
463 #if 0
464 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
465 				vm_page_protect(mt, VM_PROT_READ);
466 #endif
467 			vm_page_io_finish(mt);
468 			vm_page_wakeup(mt);
469 			vm_object_pip_wakeup(object);
470 		}
471 	}
472 	return numpagedout;
473 }
474 
475 #if !defined(NO_SWAPPING)
476 /*
477  * deactivate enough pages to satisfy the inactive target
478  * requirements or if vm_page_proc_limit is set, then
479  * deactivate all of the pages in the object and its
480  * backing_objects.
481  *
482  * The map must be locked.
483  * The caller must hold the vm_object.
484  */
485 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
486 
487 static void
488 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
489 				   vm_pindex_t desired, int map_remove_only)
490 {
491 	struct rb_vm_page_scan_info info;
492 	vm_object_t lobject;
493 	vm_object_t tobject;
494 	int remove_mode;
495 
496 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
497 	lobject = object;
498 
499 	while (lobject) {
500 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
501 			break;
502 		if (lobject->type == OBJT_DEVICE || lobject->type == OBJT_PHYS)
503 			break;
504 		if (lobject->paging_in_progress)
505 			break;
506 
507 		remove_mode = map_remove_only;
508 		if (lobject->shadow_count > 1)
509 			remove_mode = 1;
510 
511 		/*
512 		 * scan the objects entire memory queue.  We hold the
513 		 * object's token so the scan should not race anything.
514 		 */
515 		info.limit = remove_mode;
516 		info.map = map;
517 		info.desired = desired;
518 		vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
519 				vm_pageout_object_deactivate_pages_callback,
520 				&info
521 		);
522 		while ((tobject = lobject->backing_object) != NULL) {
523 			KKASSERT(tobject != object);
524 			vm_object_hold(tobject);
525 			if (tobject == lobject->backing_object)
526 				break;
527 			vm_object_drop(tobject);
528 		}
529 		if (lobject != object) {
530 			vm_object_lock_swap();
531 			vm_object_drop(lobject);
532 		}
533 		lobject = tobject;
534 	}
535 	if (lobject != object)
536 		vm_object_drop(lobject);
537 }
538 
539 /*
540  * The caller must hold the vm_object.
541  */
542 static int
543 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
544 {
545 	struct rb_vm_page_scan_info *info = data;
546 	int actcount;
547 
548 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
549 		return(-1);
550 	}
551 	mycpu->gd_cnt.v_pdpages++;
552 
553 	if (vm_page_busy_try(p, TRUE))
554 		return(0);
555 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
556 		vm_page_wakeup(p);
557 		return(0);
558 	}
559 	if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
560 		vm_page_wakeup(p);
561 		return(0);
562 	}
563 
564 	actcount = pmap_ts_referenced(p);
565 	if (actcount) {
566 		vm_page_flag_set(p, PG_REFERENCED);
567 	} else if (p->flags & PG_REFERENCED) {
568 		actcount = 1;
569 	}
570 
571 	vm_page_and_queue_spin_lock(p);
572 	if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
573 		vm_page_and_queue_spin_unlock(p);
574 		vm_page_activate(p);
575 		p->act_count += actcount;
576 		vm_page_flag_clear(p, PG_REFERENCED);
577 	} else if (p->queue - p->pc == PQ_ACTIVE) {
578 		if ((p->flags & PG_REFERENCED) == 0) {
579 			p->act_count -= min(p->act_count, ACT_DECLINE);
580 			if (!info->limit &&
581 			    (vm_pageout_algorithm || (p->act_count == 0))) {
582 				vm_page_and_queue_spin_unlock(p);
583 				vm_page_protect(p, VM_PROT_NONE);
584 				vm_page_deactivate(p);
585 			} else {
586 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
587 					     p, pageq);
588 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
589 						  p, pageq);
590 				vm_page_and_queue_spin_unlock(p);
591 			}
592 		} else {
593 			vm_page_and_queue_spin_unlock(p);
594 			vm_page_activate(p);
595 			vm_page_flag_clear(p, PG_REFERENCED);
596 
597 			vm_page_and_queue_spin_lock(p);
598 			if (p->queue - p->pc == PQ_ACTIVE) {
599 				if (p->act_count < (ACT_MAX - ACT_ADVANCE))
600 					p->act_count += ACT_ADVANCE;
601 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
602 					     p, pageq);
603 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
604 						  p, pageq);
605 			}
606 			vm_page_and_queue_spin_unlock(p);
607 		}
608 	} else if (p->queue - p->pc == PQ_INACTIVE) {
609 		vm_page_and_queue_spin_unlock(p);
610 		vm_page_protect(p, VM_PROT_NONE);
611 	} else {
612 		vm_page_and_queue_spin_unlock(p);
613 	}
614 	vm_page_wakeup(p);
615 	return(0);
616 }
617 
618 /*
619  * Deactivate some number of pages in a map, try to do it fairly, but
620  * that is really hard to do.
621  */
622 static void
623 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
624 {
625 	vm_map_entry_t tmpe;
626 	vm_object_t obj, bigobj;
627 	int nothingwired;
628 
629 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
630 		return;
631 	}
632 
633 	bigobj = NULL;
634 	nothingwired = TRUE;
635 
636 	/*
637 	 * first, search out the biggest object, and try to free pages from
638 	 * that.
639 	 */
640 	tmpe = map->header.next;
641 	while (tmpe != &map->header) {
642 		switch(tmpe->maptype) {
643 		case VM_MAPTYPE_NORMAL:
644 		case VM_MAPTYPE_VPAGETABLE:
645 			obj = tmpe->object.vm_object;
646 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
647 				((bigobj == NULL) ||
648 				 (bigobj->resident_page_count < obj->resident_page_count))) {
649 				bigobj = obj;
650 			}
651 			break;
652 		default:
653 			break;
654 		}
655 		if (tmpe->wired_count > 0)
656 			nothingwired = FALSE;
657 		tmpe = tmpe->next;
658 	}
659 
660 	if (bigobj)  {
661 		vm_object_hold(bigobj);
662 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
663 		vm_object_drop(bigobj);
664 	}
665 
666 	/*
667 	 * Next, hunt around for other pages to deactivate.  We actually
668 	 * do this search sort of wrong -- .text first is not the best idea.
669 	 */
670 	tmpe = map->header.next;
671 	while (tmpe != &map->header) {
672 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
673 			break;
674 		switch(tmpe->maptype) {
675 		case VM_MAPTYPE_NORMAL:
676 		case VM_MAPTYPE_VPAGETABLE:
677 			obj = tmpe->object.vm_object;
678 			if (obj) {
679 				vm_object_hold(obj);
680 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
681 				vm_object_drop(obj);
682 			}
683 			break;
684 		default:
685 			break;
686 		}
687 		tmpe = tmpe->next;
688 	};
689 
690 	/*
691 	 * Remove all mappings if a process is swapped out, this will free page
692 	 * table pages.
693 	 */
694 	if (desired == 0 && nothingwired)
695 		pmap_remove(vm_map_pmap(map),
696 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
697 	vm_map_unlock(map);
698 }
699 #endif
700 
701 /*
702  * Called when the pageout scan wants to free a page.  We no longer
703  * try to cycle the vm_object here with a reference & dealloc, which can
704  * cause a non-trivial object collapse in a critical path.
705  *
706  * It is unclear why we cycled the ref_count in the past, perhaps to try
707  * to optimize shadow chain collapses but I don't quite see why it would
708  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
709  * synchronously and not have to be kicked-start.
710  */
711 static void
712 vm_pageout_page_free(vm_page_t m)
713 {
714 	vm_page_protect(m, VM_PROT_NONE);
715 	vm_page_free(m);
716 }
717 
718 /*
719  * vm_pageout_scan does the dirty work for the pageout daemon.
720  */
721 struct vm_pageout_scan_info {
722 	struct proc *bigproc;
723 	vm_offset_t bigsize;
724 };
725 
726 static int vm_pageout_scan_callback(struct proc *p, void *data);
727 
728 static int
729 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
730 			 int *vnodes_skippedp)
731 {
732 	vm_page_t m;
733 	struct vm_page marker;
734 	struct vnode *vpfailed;		/* warning, allowed to be stale */
735 	int maxscan;
736 	int delta = 0;
737 	vm_object_t object;
738 	int actcount;
739 	int maxlaunder;
740 
741 	/*
742 	 * Start scanning the inactive queue for pages we can move to the
743 	 * cache or free.  The scan will stop when the target is reached or
744 	 * we have scanned the entire inactive queue.  Note that m->act_count
745 	 * is not used to form decisions for the inactive queue, only for the
746 	 * active queue.
747 	 *
748 	 * maxlaunder limits the number of dirty pages we flush per scan.
749 	 * For most systems a smaller value (16 or 32) is more robust under
750 	 * extreme memory and disk pressure because any unnecessary writes
751 	 * to disk can result in extreme performance degredation.  However,
752 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
753 	 * used) will die horribly with limited laundering.  If the pageout
754 	 * daemon cannot clean enough pages in the first pass, we let it go
755 	 * all out in succeeding passes.
756 	 */
757 	if ((maxlaunder = vm_max_launder) <= 1)
758 		maxlaunder = 1;
759 	if (pass)
760 		maxlaunder = 10000;
761 
762 	/*
763 	 * Initialize our marker
764 	 */
765 	bzero(&marker, sizeof(marker));
766 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
767 	marker.queue = PQ_INACTIVE + q;
768 	marker.pc = q;
769 	marker.wire_count = 1;
770 
771 	/*
772 	 * Inactive queue scan.
773 	 *
774 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
775 	 *	 deadlocks, so it is easiest to simply iterate the loop
776 	 *	 with the queue unlocked at the top.
777 	 */
778 	vpfailed = NULL;
779 
780 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
781 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
782 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
783 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
784 
785 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
786 	       maxscan-- > 0 && avail_shortage - delta > 0)
787 	{
788 		vm_page_and_queue_spin_lock(m);
789 		if (m != TAILQ_NEXT(&marker, pageq)) {
790 			vm_page_and_queue_spin_unlock(m);
791 			++maxscan;
792 			continue;
793 		}
794 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
795 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
796 			     &marker, pageq);
797 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
798 				   &marker, pageq);
799 		mycpu->gd_cnt.v_pdpages++;
800 
801 		/*
802 		 * Skip marker pages
803 		 */
804 		if (m->flags & PG_MARKER) {
805 			vm_page_and_queue_spin_unlock(m);
806 			continue;
807 		}
808 
809 		/*
810 		 * Try to busy the page.  Don't mess with pages which are
811 		 * already busy or reorder them in the queue.
812 		 */
813 		if (vm_page_busy_try(m, TRUE)) {
814 			vm_page_and_queue_spin_unlock(m);
815 			continue;
816 		}
817 		vm_page_and_queue_spin_unlock(m);
818 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
819 
820 		lwkt_yield();
821 
822 		/*
823 		 * The page has been successfully busied and is now no
824 		 * longer spinlocked.  The queue is no longer spinlocked
825 		 * either.
826 		 */
827 
828 		/*
829 		 * It is possible for a page to be busied ad-hoc (e.g. the
830 		 * pmap_collect() code) and wired and race against the
831 		 * allocation of a new page.  vm_page_alloc() may be forced
832 		 * to deactivate the wired page in which case it winds up
833 		 * on the inactive queue and must be handled here.  We
834 		 * correct the problem simply by unqueuing the page.
835 		 */
836 		if (m->wire_count) {
837 			vm_page_unqueue_nowakeup(m);
838 			vm_page_wakeup(m);
839 			kprintf("WARNING: pagedaemon: wired page on "
840 				"inactive queue %p\n", m);
841 			continue;
842 		}
843 
844 		/*
845 		 * A held page may be undergoing I/O, so skip it.
846 		 */
847 		if (m->hold_count) {
848 			vm_page_and_queue_spin_lock(m);
849 			if (m->queue - m->pc == PQ_INACTIVE) {
850 				TAILQ_REMOVE(
851 					&vm_page_queues[PQ_INACTIVE + q].pl,
852 					m, pageq);
853 				TAILQ_INSERT_TAIL(
854 					&vm_page_queues[PQ_INACTIVE + q].pl,
855 					m, pageq);
856 				++vm_swapcache_inactive_heuristic;
857 			}
858 			vm_page_and_queue_spin_unlock(m);
859 			vm_page_wakeup(m);
860 			continue;
861 		}
862 
863 		if (m->object == NULL || m->object->ref_count == 0) {
864 			/*
865 			 * If the object is not being used, we ignore previous
866 			 * references.
867 			 */
868 			vm_page_flag_clear(m, PG_REFERENCED);
869 			pmap_clear_reference(m);
870 			/* fall through to end */
871 		} else if (((m->flags & PG_REFERENCED) == 0) &&
872 			    (actcount = pmap_ts_referenced(m))) {
873 			/*
874 			 * Otherwise, if the page has been referenced while
875 			 * in the inactive queue, we bump the "activation
876 			 * count" upwards, making it less likely that the
877 			 * page will be added back to the inactive queue
878 			 * prematurely again.  Here we check the page tables
879 			 * (or emulated bits, if any), given the upper level
880 			 * VM system not knowing anything about existing
881 			 * references.
882 			 */
883 			vm_page_activate(m);
884 			m->act_count += (actcount + ACT_ADVANCE);
885 			vm_page_wakeup(m);
886 			continue;
887 		}
888 
889 		/*
890 		 * (m) is still busied.
891 		 *
892 		 * If the upper level VM system knows about any page
893 		 * references, we activate the page.  We also set the
894 		 * "activation count" higher than normal so that we will less
895 		 * likely place pages back onto the inactive queue again.
896 		 */
897 		if ((m->flags & PG_REFERENCED) != 0) {
898 			vm_page_flag_clear(m, PG_REFERENCED);
899 			actcount = pmap_ts_referenced(m);
900 			vm_page_activate(m);
901 			m->act_count += (actcount + ACT_ADVANCE + 1);
902 			vm_page_wakeup(m);
903 			continue;
904 		}
905 
906 		/*
907 		 * If the upper level VM system doesn't know anything about
908 		 * the page being dirty, we have to check for it again.  As
909 		 * far as the VM code knows, any partially dirty pages are
910 		 * fully dirty.
911 		 *
912 		 * Pages marked PG_WRITEABLE may be mapped into the user
913 		 * address space of a process running on another cpu.  A
914 		 * user process (without holding the MP lock) running on
915 		 * another cpu may be able to touch the page while we are
916 		 * trying to remove it.  vm_page_cache() will handle this
917 		 * case for us.
918 		 */
919 		if (m->dirty == 0) {
920 			vm_page_test_dirty(m);
921 		} else {
922 			vm_page_dirty(m);
923 		}
924 
925 		if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
926 			/*
927 			 * Invalid pages can be easily freed
928 			 */
929 			vm_pageout_page_free(m);
930 			mycpu->gd_cnt.v_dfree++;
931 			++delta;
932 		} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
933 			/*
934 			 * Clean pages can be placed onto the cache queue.
935 			 * This effectively frees them.
936 			 */
937 			vm_page_cache(m);
938 			++delta;
939 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
940 			/*
941 			 * Dirty pages need to be paged out, but flushing
942 			 * a page is extremely expensive verses freeing
943 			 * a clean page.  Rather then artificially limiting
944 			 * the number of pages we can flush, we instead give
945 			 * dirty pages extra priority on the inactive queue
946 			 * by forcing them to be cycled through the queue
947 			 * twice before being flushed, after which the
948 			 * (now clean) page will cycle through once more
949 			 * before being freed.  This significantly extends
950 			 * the thrash point for a heavily loaded machine.
951 			 */
952 			vm_page_flag_set(m, PG_WINATCFLS);
953 			vm_page_and_queue_spin_lock(m);
954 			if (m->queue - m->pc == PQ_INACTIVE) {
955 				TAILQ_REMOVE(
956 					&vm_page_queues[PQ_INACTIVE + q].pl,
957 					m, pageq);
958 				TAILQ_INSERT_TAIL(
959 					&vm_page_queues[PQ_INACTIVE + q].pl,
960 					m, pageq);
961 				++vm_swapcache_inactive_heuristic;
962 			}
963 			vm_page_and_queue_spin_unlock(m);
964 			vm_page_wakeup(m);
965 		} else if (maxlaunder > 0) {
966 			/*
967 			 * We always want to try to flush some dirty pages if
968 			 * we encounter them, to keep the system stable.
969 			 * Normally this number is small, but under extreme
970 			 * pressure where there are insufficient clean pages
971 			 * on the inactive queue, we may have to go all out.
972 			 */
973 			int swap_pageouts_ok;
974 			struct vnode *vp = NULL;
975 
976 			swap_pageouts_ok = 0;
977 			object = m->object;
978 			if (object &&
979 			    (object->type != OBJT_SWAP) &&
980 			    (object->type != OBJT_DEFAULT)) {
981 				swap_pageouts_ok = 1;
982 			} else {
983 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
984 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
985 				vm_page_count_min(0));
986 
987 			}
988 
989 			/*
990 			 * We don't bother paging objects that are "dead".
991 			 * Those objects are in a "rundown" state.
992 			 */
993 			if (!swap_pageouts_ok ||
994 			    (object == NULL) ||
995 			    (object->flags & OBJ_DEAD)) {
996 				vm_page_and_queue_spin_lock(m);
997 				if (m->queue - m->pc == PQ_INACTIVE) {
998 					TAILQ_REMOVE(
999 					    &vm_page_queues[PQ_INACTIVE + q].pl,
1000 					    m, pageq);
1001 					TAILQ_INSERT_TAIL(
1002 					    &vm_page_queues[PQ_INACTIVE + q].pl,
1003 					    m, pageq);
1004 					++vm_swapcache_inactive_heuristic;
1005 				}
1006 				vm_page_and_queue_spin_unlock(m);
1007 				vm_page_wakeup(m);
1008 				continue;
1009 			}
1010 
1011 			/*
1012 			 * (m) is still busied.
1013 			 *
1014 			 * The object is already known NOT to be dead.   It
1015 			 * is possible for the vget() to block the whole
1016 			 * pageout daemon, but the new low-memory handling
1017 			 * code should prevent it.
1018 			 *
1019 			 * The previous code skipped locked vnodes and, worse,
1020 			 * reordered pages in the queue.  This results in
1021 			 * completely non-deterministic operation because,
1022 			 * quite often, a vm_fault has initiated an I/O and
1023 			 * is holding a locked vnode at just the point where
1024 			 * the pageout daemon is woken up.
1025 			 *
1026 			 * We can't wait forever for the vnode lock, we might
1027 			 * deadlock due to a vn_read() getting stuck in
1028 			 * vm_wait while holding this vnode.  We skip the
1029 			 * vnode if we can't get it in a reasonable amount
1030 			 * of time.
1031 			 *
1032 			 * vpfailed is used to (try to) avoid the case where
1033 			 * a large number of pages are associated with a
1034 			 * locked vnode, which could cause the pageout daemon
1035 			 * to stall for an excessive amount of time.
1036 			 */
1037 			if (object->type == OBJT_VNODE) {
1038 				int flags;
1039 
1040 				vp = object->handle;
1041 				flags = LK_EXCLUSIVE | LK_NOOBJ;
1042 				if (vp == vpfailed)
1043 					flags |= LK_NOWAIT;
1044 				else
1045 					flags |= LK_TIMELOCK;
1046 				vm_page_hold(m);
1047 				vm_page_wakeup(m);
1048 
1049 				/*
1050 				 * We have unbusied (m) temporarily so we can
1051 				 * acquire the vp lock without deadlocking.
1052 				 * (m) is held to prevent destruction.
1053 				 */
1054 				if (vget(vp, flags) != 0) {
1055 					vpfailed = vp;
1056 					++pageout_lock_miss;
1057 					if (object->flags & OBJ_MIGHTBEDIRTY)
1058 						    ++*vnodes_skippedp;
1059 					vm_page_unhold(m);
1060 					continue;
1061 				}
1062 
1063 				/*
1064 				 * The page might have been moved to another
1065 				 * queue during potential blocking in vget()
1066 				 * above.  The page might have been freed and
1067 				 * reused for another vnode.  The object might
1068 				 * have been reused for another vnode.
1069 				 */
1070 				if (m->queue - m->pc != PQ_INACTIVE ||
1071 				    m->object != object ||
1072 				    object->handle != vp) {
1073 					if (object->flags & OBJ_MIGHTBEDIRTY)
1074 						++*vnodes_skippedp;
1075 					vput(vp);
1076 					vm_page_unhold(m);
1077 					continue;
1078 				}
1079 
1080 				/*
1081 				 * The page may have been busied during the
1082 				 * blocking in vput();  We don't move the
1083 				 * page back onto the end of the queue so that
1084 				 * statistics are more correct if we don't.
1085 				 */
1086 				if (vm_page_busy_try(m, TRUE)) {
1087 					vput(vp);
1088 					vm_page_unhold(m);
1089 					continue;
1090 				}
1091 				vm_page_unhold(m);
1092 
1093 				/*
1094 				 * (m) is busied again
1095 				 *
1096 				 * We own the busy bit and remove our hold
1097 				 * bit.  If the page is still held it
1098 				 * might be undergoing I/O, so skip it.
1099 				 */
1100 				if (m->hold_count) {
1101 					vm_page_and_queue_spin_lock(m);
1102 					if (m->queue - m->pc == PQ_INACTIVE) {
1103 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1104 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1105 						++vm_swapcache_inactive_heuristic;
1106 					}
1107 					vm_page_and_queue_spin_unlock(m);
1108 					if (object->flags & OBJ_MIGHTBEDIRTY)
1109 						++*vnodes_skippedp;
1110 					vm_page_wakeup(m);
1111 					vput(vp);
1112 					continue;
1113 				}
1114 				/* (m) is left busied as we fall through */
1115 			}
1116 
1117 			/*
1118 			 * page is busy and not held here.
1119 			 *
1120 			 * If a page is dirty, then it is either being washed
1121 			 * (but not yet cleaned) or it is still in the
1122 			 * laundry.  If it is still in the laundry, then we
1123 			 * start the cleaning operation.
1124 			 *
1125 			 * decrement inactive_shortage on success to account
1126 			 * for the (future) cleaned page.  Otherwise we
1127 			 * could wind up laundering or cleaning too many
1128 			 * pages.
1129 			 */
1130 			if (vm_pageout_clean(m) != 0) {
1131 				++delta;
1132 				--maxlaunder;
1133 			}
1134 			/* clean ate busy, page no longer accessible */
1135 			if (vp != NULL)
1136 				vput(vp);
1137 		} else {
1138 			vm_page_wakeup(m);
1139 		}
1140 	}
1141 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
1142 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1143 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1144 	return (delta);
1145 }
1146 
1147 static int
1148 vm_pageout_scan_active(int pass, int q,
1149 		       int avail_shortage, int inactive_shortage,
1150 		       int *recycle_countp)
1151 {
1152 	struct vm_page marker;
1153 	vm_page_t m;
1154 	int actcount;
1155 	int delta = 0;
1156 	int maxscan;
1157 
1158 	/*
1159 	 * We want to move pages from the active queue to the inactive
1160 	 * queue to get the inactive queue to the inactive target.  If
1161 	 * we still have a page shortage from above we try to directly free
1162 	 * clean pages instead of moving them.
1163 	 *
1164 	 * If we do still have a shortage we keep track of the number of
1165 	 * pages we free or cache (recycle_count) as a measure of thrashing
1166 	 * between the active and inactive queues.
1167 	 *
1168 	 * If we were able to completely satisfy the free+cache targets
1169 	 * from the inactive pool we limit the number of pages we move
1170 	 * from the active pool to the inactive pool to 2x the pages we
1171 	 * had removed from the inactive pool (with a minimum of 1/5 the
1172 	 * inactive target).  If we were not able to completely satisfy
1173 	 * the free+cache targets we go for the whole target aggressively.
1174 	 *
1175 	 * NOTE: Both variables can end up negative.
1176 	 * NOTE: We are still in a critical section.
1177 	 */
1178 
1179 	bzero(&marker, sizeof(marker));
1180 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1181 	marker.queue = PQ_ACTIVE + q;
1182 	marker.pc = q;
1183 	marker.wire_count = 1;
1184 
1185 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1186 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1187 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1188 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1189 
1190 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1191 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1192 				inactive_shortage > 0))
1193 	{
1194 		vm_page_and_queue_spin_lock(m);
1195 		if (m != TAILQ_NEXT(&marker, pageq)) {
1196 			vm_page_and_queue_spin_unlock(m);
1197 			++maxscan;
1198 			continue;
1199 		}
1200 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1201 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1202 			     &marker, pageq);
1203 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1204 				   &marker, pageq);
1205 
1206 		/*
1207 		 * Skip marker pages
1208 		 */
1209 		if (m->flags & PG_MARKER) {
1210 			vm_page_and_queue_spin_unlock(m);
1211 			continue;
1212 		}
1213 
1214 		/*
1215 		 * Try to busy the page.  Don't mess with pages which are
1216 		 * already busy or reorder them in the queue.
1217 		 */
1218 		if (vm_page_busy_try(m, TRUE)) {
1219 			vm_page_and_queue_spin_unlock(m);
1220 			continue;
1221 		}
1222 
1223 		/*
1224 		 * Don't deactivate pages that are held, even if we can
1225 		 * busy them.  (XXX why not?)
1226 		 */
1227 		if (m->hold_count != 0) {
1228 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1229 				     m, pageq);
1230 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE + q].pl,
1231 					  m, pageq);
1232 			vm_page_and_queue_spin_unlock(m);
1233 			vm_page_wakeup(m);
1234 			continue;
1235 		}
1236 		vm_page_and_queue_spin_unlock(m);
1237 		lwkt_yield();
1238 
1239 		/*
1240 		 * The page has been successfully busied and the page and
1241 		 * queue are no longer locked.
1242 		 */
1243 
1244 		/*
1245 		 * The count for pagedaemon pages is done after checking the
1246 		 * page for eligibility...
1247 		 */
1248 		mycpu->gd_cnt.v_pdpages++;
1249 
1250 		/*
1251 		 * Check to see "how much" the page has been used and clear
1252 		 * the tracking access bits.  If the object has no references
1253 		 * don't bother paying the expense.
1254 		 */
1255 		actcount = 0;
1256 		if (m->object && m->object->ref_count != 0) {
1257 			if (m->flags & PG_REFERENCED)
1258 				++actcount;
1259 			actcount += pmap_ts_referenced(m);
1260 			if (actcount) {
1261 				m->act_count += ACT_ADVANCE + actcount;
1262 				if (m->act_count > ACT_MAX)
1263 					m->act_count = ACT_MAX;
1264 			}
1265 		}
1266 		vm_page_flag_clear(m, PG_REFERENCED);
1267 
1268 		/*
1269 		 * actcount is only valid if the object ref_count is non-zero.
1270 		 * If the page does not have an object, actcount will be zero.
1271 		 */
1272 		if (actcount && m->object->ref_count != 0) {
1273 			vm_page_and_queue_spin_lock(m);
1274 			if (m->queue - m->pc == PQ_ACTIVE) {
1275 				TAILQ_REMOVE(
1276 					&vm_page_queues[PQ_ACTIVE + q].pl,
1277 					m, pageq);
1278 				TAILQ_INSERT_TAIL(
1279 					&vm_page_queues[PQ_ACTIVE + q].pl,
1280 					m, pageq);
1281 			}
1282 			vm_page_and_queue_spin_unlock(m);
1283 			vm_page_wakeup(m);
1284 		} else {
1285 			m->act_count -= min(m->act_count, ACT_DECLINE);
1286 			if (vm_pageout_algorithm ||
1287 			    (m->object == NULL) ||
1288 			    (m->object && (m->object->ref_count == 0)) ||
1289 			    m->act_count < pass + 1
1290 			) {
1291 				/*
1292 				 * Deactivate the page.  If we had a
1293 				 * shortage from our inactive scan try to
1294 				 * free (cache) the page instead.
1295 				 *
1296 				 * Don't just blindly cache the page if
1297 				 * we do not have a shortage from the
1298 				 * inactive scan, that could lead to
1299 				 * gigabytes being moved.
1300 				 */
1301 				--inactive_shortage;
1302 				if (avail_shortage - delta > 0 ||
1303 				    (m->object && (m->object->ref_count == 0)))
1304 				{
1305 					if (avail_shortage - delta > 0)
1306 						++*recycle_countp;
1307 					vm_page_protect(m, VM_PROT_NONE);
1308 					if (m->dirty == 0 &&
1309 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1310 					    avail_shortage - delta > 0) {
1311 						vm_page_cache(m);
1312 					} else {
1313 						vm_page_deactivate(m);
1314 						vm_page_wakeup(m);
1315 					}
1316 				} else {
1317 					vm_page_deactivate(m);
1318 					vm_page_wakeup(m);
1319 				}
1320 				++delta;
1321 			} else {
1322 				vm_page_and_queue_spin_lock(m);
1323 				if (m->queue - m->pc == PQ_ACTIVE) {
1324 					TAILQ_REMOVE(
1325 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1326 					    m, pageq);
1327 					TAILQ_INSERT_TAIL(
1328 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1329 					    m, pageq);
1330 				}
1331 				vm_page_and_queue_spin_unlock(m);
1332 				vm_page_wakeup(m);
1333 			}
1334 		}
1335 	}
1336 
1337 	/*
1338 	 * Clean out our local marker.
1339 	 */
1340 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1341 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1342 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1343 
1344 	return (delta);
1345 }
1346 
1347 /*
1348  * The number of actually free pages can drop down to v_free_reserved,
1349  * we try to build the free count back above v_free_min.  Note that
1350  * vm_paging_needed() also returns TRUE if v_free_count is not at
1351  * least v_free_min so that is the minimum we must build the free
1352  * count to.
1353  *
1354  * We use a slightly higher target to improve hysteresis,
1355  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1356  * is usually the same as v_cache_min this maintains about
1357  * half the pages in the free queue as are in the cache queue,
1358  * providing pretty good pipelining for pageout operation.
1359  *
1360  * The system operator can manipulate vm.v_cache_min and
1361  * vm.v_free_target to tune the pageout demon.  Be sure
1362  * to keep vm.v_free_min < vm.v_free_target.
1363  *
1364  * Note that the original paging target is to get at least
1365  * (free_min + cache_min) into (free + cache).  The slightly
1366  * higher target will shift additional pages from cache to free
1367  * without effecting the original paging target in order to
1368  * maintain better hysteresis and not have the free count always
1369  * be dead-on v_free_min.
1370  *
1371  * NOTE: we are still in a critical section.
1372  *
1373  * Pages moved from PQ_CACHE to totally free are not counted in the
1374  * pages_freed counter.
1375  */
1376 static void
1377 vm_pageout_scan_cache(int avail_shortage, int vnodes_skipped, int recycle_count)
1378 {
1379 	struct vm_pageout_scan_info info;
1380 	vm_page_t m;
1381 
1382 	while (vmstats.v_free_count <
1383 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1384 		/*
1385 		 * This steals some code from vm/vm_page.c
1386 		 */
1387 		static int cache_rover = 0;
1388 
1389 		m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK, FALSE);
1390 		if (m == NULL)
1391 			break;
1392 		/* page is returned removed from its queue and spinlocked */
1393 		if (vm_page_busy_try(m, TRUE)) {
1394 			vm_page_deactivate_locked(m);
1395 			vm_page_spin_unlock(m);
1396 #ifdef INVARIANTS
1397 			kprintf("Warning: busy page %p found in cache\n", m);
1398 #endif
1399 			continue;
1400 		}
1401 		vm_page_spin_unlock(m);
1402 		pagedaemon_wakeup();
1403 		lwkt_yield();
1404 
1405 		/*
1406 		 * Page has been successfully busied and it and its queue
1407 		 * is no longer spinlocked.
1408 		 */
1409 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1410 		    m->hold_count ||
1411 		    m->wire_count) {
1412 			vm_page_deactivate(m);
1413 			vm_page_wakeup(m);
1414 			continue;
1415 		}
1416 		KKASSERT((m->flags & PG_MAPPED) == 0);
1417 		KKASSERT(m->dirty == 0);
1418 		cache_rover += PQ_PRIME2;
1419 		vm_pageout_page_free(m);
1420 		mycpu->gd_cnt.v_dfree++;
1421 	}
1422 
1423 #if !defined(NO_SWAPPING)
1424 	/*
1425 	 * Idle process swapout -- run once per second.
1426 	 */
1427 	if (vm_swap_idle_enabled) {
1428 		static long lsec;
1429 		if (time_second != lsec) {
1430 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1431 			vm_req_vmdaemon();
1432 			lsec = time_second;
1433 		}
1434 	}
1435 #endif
1436 
1437 	/*
1438 	 * If we didn't get enough free pages, and we have skipped a vnode
1439 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1440 	 * if we did not get enough free pages.
1441 	 */
1442 	if (vm_paging_target() > 0) {
1443 		if (vnodes_skipped && vm_page_count_min(0))
1444 			speedup_syncer();
1445 #if !defined(NO_SWAPPING)
1446 		if (vm_swap_enabled && vm_page_count_target()) {
1447 			vm_req_vmdaemon();
1448 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1449 		}
1450 #endif
1451 	}
1452 
1453 	/*
1454 	 * Handle catastrophic conditions.  Under good conditions we should
1455 	 * be at the target, well beyond our minimum.  If we could not even
1456 	 * reach our minimum the system is under heavy stress.
1457 	 *
1458 	 * Determine whether we have run out of memory.  This occurs when
1459 	 * swap_pager_full is TRUE and the only pages left in the page
1460 	 * queues are dirty.  We will still likely have page shortages.
1461 	 *
1462 	 * - swap_pager_full is set if insufficient swap was
1463 	 *   available to satisfy a requested pageout.
1464 	 *
1465 	 * - the inactive queue is bloated (4 x size of active queue),
1466 	 *   meaning it is unable to get rid of dirty pages and.
1467 	 *
1468 	 * - vm_page_count_min() without counting pages recycled from the
1469 	 *   active queue (recycle_count) means we could not recover
1470 	 *   enough pages to meet bare minimum needs.  This test only
1471 	 *   works if the inactive queue is bloated.
1472 	 *
1473 	 * - due to a positive avail_shortage we shifted the remaining
1474 	 *   dirty pages from the active queue to the inactive queue
1475 	 *   trying to find clean ones to free.
1476 	 */
1477 	if (swap_pager_full && vm_page_count_min(recycle_count))
1478 		kprintf("Warning: system low on memory+swap!\n");
1479 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1480 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1481 	    avail_shortage > 0) {
1482 		/*
1483 		 * Kill something.
1484 		 */
1485 		info.bigproc = NULL;
1486 		info.bigsize = 0;
1487 		allproc_scan(vm_pageout_scan_callback, &info);
1488 		if (info.bigproc != NULL) {
1489 			killproc(info.bigproc, "out of swap space");
1490 			info.bigproc->p_nice = PRIO_MIN;
1491 			info.bigproc->p_usched->resetpriority(
1492 				FIRST_LWP_IN_PROC(info.bigproc));
1493 			wakeup(&vmstats.v_free_count);
1494 			PRELE(info.bigproc);
1495 		}
1496 	}
1497 }
1498 
1499 /*
1500  * The caller must hold proc_token.
1501  */
1502 static int
1503 vm_pageout_scan_callback(struct proc *p, void *data)
1504 {
1505 	struct vm_pageout_scan_info *info = data;
1506 	vm_offset_t size;
1507 
1508 	/*
1509 	 * Never kill system processes or init.  If we have configured swap
1510 	 * then try to avoid killing low-numbered pids.
1511 	 */
1512 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1513 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1514 		return (0);
1515 	}
1516 
1517 	/*
1518 	 * if the process is in a non-running type state,
1519 	 * don't touch it.
1520 	 */
1521 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1522 		return (0);
1523 
1524 	/*
1525 	 * Get the approximate process size.  Note that anonymous pages
1526 	 * with backing swap will be counted twice, but there should not
1527 	 * be too many such pages due to the stress the VM system is
1528 	 * under at this point.
1529 	 */
1530 	size = vmspace_anonymous_count(p->p_vmspace) +
1531 		vmspace_swap_count(p->p_vmspace);
1532 
1533 	/*
1534 	 * If the this process is bigger than the biggest one
1535 	 * remember it.
1536 	 */
1537 	if (info->bigsize < size) {
1538 		if (info->bigproc)
1539 			PRELE(info->bigproc);
1540 		PHOLD(p);
1541 		info->bigproc = p;
1542 		info->bigsize = size;
1543 	}
1544 	lwkt_yield();
1545 	return(0);
1546 }
1547 
1548 /*
1549  * This routine tries to maintain the pseudo LRU active queue,
1550  * so that during long periods of time where there is no paging,
1551  * that some statistic accumulation still occurs.  This code
1552  * helps the situation where paging just starts to occur.
1553  */
1554 static void
1555 vm_pageout_page_stats(int q)
1556 {
1557 	static int fullintervalcount = 0;
1558 	struct vm_page marker;
1559 	vm_page_t m;
1560 	int pcount, tpcount;		/* Number of pages to check */
1561 	int page_shortage;
1562 
1563 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1564 			 vmstats.v_free_min) -
1565 			(vmstats.v_free_count + vmstats.v_inactive_count +
1566 			 vmstats.v_cache_count);
1567 
1568 	if (page_shortage <= 0)
1569 		return;
1570 
1571 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1572 	fullintervalcount += vm_pageout_stats_interval;
1573 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1574 		tpcount = (vm_pageout_stats_max * pcount) /
1575 			  vmstats.v_page_count + 1;
1576 		if (pcount > tpcount)
1577 			pcount = tpcount;
1578 	} else {
1579 		fullintervalcount = 0;
1580 	}
1581 
1582 	bzero(&marker, sizeof(marker));
1583 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1584 	marker.queue = PQ_ACTIVE + q;
1585 	marker.pc = q;
1586 	marker.wire_count = 1;
1587 
1588 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1589 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1590 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1591 
1592 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1593 	       pcount-- > 0)
1594 	{
1595 		int actcount;
1596 
1597 		vm_page_and_queue_spin_lock(m);
1598 		if (m != TAILQ_NEXT(&marker, pageq)) {
1599 			vm_page_and_queue_spin_unlock(m);
1600 			++pcount;
1601 			continue;
1602 		}
1603 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1604 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1605 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1606 				   &marker, pageq);
1607 
1608 		/*
1609 		 * Ignore markers
1610 		 */
1611 		if (m->flags & PG_MARKER) {
1612 			vm_page_and_queue_spin_unlock(m);
1613 			continue;
1614 		}
1615 
1616 		/*
1617 		 * Ignore pages we can't busy
1618 		 */
1619 		if (vm_page_busy_try(m, TRUE)) {
1620 			vm_page_and_queue_spin_unlock(m);
1621 			continue;
1622 		}
1623 		vm_page_and_queue_spin_unlock(m);
1624 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1625 
1626 		/*
1627 		 * We now have a safely busied page, the page and queue
1628 		 * spinlocks have been released.
1629 		 *
1630 		 * Ignore held pages
1631 		 */
1632 		if (m->hold_count) {
1633 			vm_page_wakeup(m);
1634 			continue;
1635 		}
1636 
1637 		/*
1638 		 * Calculate activity
1639 		 */
1640 		actcount = 0;
1641 		if (m->flags & PG_REFERENCED) {
1642 			vm_page_flag_clear(m, PG_REFERENCED);
1643 			actcount += 1;
1644 		}
1645 		actcount += pmap_ts_referenced(m);
1646 
1647 		/*
1648 		 * Update act_count and move page to end of queue.
1649 		 */
1650 		if (actcount) {
1651 			m->act_count += ACT_ADVANCE + actcount;
1652 			if (m->act_count > ACT_MAX)
1653 				m->act_count = ACT_MAX;
1654 			vm_page_and_queue_spin_lock(m);
1655 			if (m->queue - m->pc == PQ_ACTIVE) {
1656 				TAILQ_REMOVE(
1657 					&vm_page_queues[PQ_ACTIVE + q].pl,
1658 					m, pageq);
1659 				TAILQ_INSERT_TAIL(
1660 					&vm_page_queues[PQ_ACTIVE + q].pl,
1661 					m, pageq);
1662 			}
1663 			vm_page_and_queue_spin_unlock(m);
1664 			vm_page_wakeup(m);
1665 			continue;
1666 		}
1667 
1668 		if (m->act_count == 0) {
1669 			/*
1670 			 * We turn off page access, so that we have
1671 			 * more accurate RSS stats.  We don't do this
1672 			 * in the normal page deactivation when the
1673 			 * system is loaded VM wise, because the
1674 			 * cost of the large number of page protect
1675 			 * operations would be higher than the value
1676 			 * of doing the operation.
1677 			 *
1678 			 * We use the marker to save our place so
1679 			 * we can release the spin lock.  both (m)
1680 			 * and (next) will be invalid.
1681 			 */
1682 			vm_page_protect(m, VM_PROT_NONE);
1683 			vm_page_deactivate(m);
1684 		} else {
1685 			m->act_count -= min(m->act_count, ACT_DECLINE);
1686 			vm_page_and_queue_spin_lock(m);
1687 			if (m->queue - m->pc == PQ_ACTIVE) {
1688 				TAILQ_REMOVE(
1689 					&vm_page_queues[PQ_ACTIVE + q].pl,
1690 					m, pageq);
1691 				TAILQ_INSERT_TAIL(
1692 					&vm_page_queues[PQ_ACTIVE + q].pl,
1693 					m, pageq);
1694 			}
1695 			vm_page_and_queue_spin_unlock(m);
1696 		}
1697 		vm_page_wakeup(m);
1698 	}
1699 
1700 	/*
1701 	 * Remove our local marker
1702 	 */
1703 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1704 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1705 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1706 }
1707 
1708 static int
1709 vm_pageout_free_page_calc(vm_size_t count)
1710 {
1711 	if (count < vmstats.v_page_count)
1712 		 return 0;
1713 	/*
1714 	 * free_reserved needs to include enough for the largest swap pager
1715 	 * structures plus enough for any pv_entry structs when paging.
1716 	 *
1717 	 * v_free_min		normal allocations
1718 	 * v_free_reserved	system allocations
1719 	 * v_pageout_free_min	allocations by pageout daemon
1720 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1721 	 */
1722 	if (vmstats.v_page_count > 1024)
1723 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1724 	else
1725 		vmstats.v_free_min = 64;
1726 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1727 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1728 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1729 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1730 
1731 	return 1;
1732 }
1733 
1734 
1735 /*
1736  * vm_pageout is the high level pageout daemon.
1737  *
1738  * No requirements.
1739  */
1740 static void
1741 vm_pageout_thread(void)
1742 {
1743 	int pass;
1744 	int q;
1745 
1746 	/*
1747 	 * Initialize some paging parameters.
1748 	 */
1749 	curthread->td_flags |= TDF_SYSTHREAD;
1750 
1751 	if (vmstats.v_page_count < 2000)
1752 		vm_pageout_page_count = 8;
1753 
1754 	vm_pageout_free_page_calc(vmstats.v_page_count);
1755 
1756 	/*
1757 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1758 	 * that these are more a measure of the VM cache queue hysteresis
1759 	 * then the VM free queue.  Specifically, v_free_target is the
1760 	 * high water mark (free+cache pages).
1761 	 *
1762 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1763 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1764 	 * be big enough to handle memory needs while the pageout daemon
1765 	 * is signalled and run to free more pages.
1766 	 */
1767 	if (vmstats.v_free_count > 6144)
1768 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1769 	else
1770 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1771 
1772 	/*
1773 	 * NOTE: With the new buffer cache b_act_count we want the default
1774 	 *	 inactive target to be a percentage of available memory.
1775 	 *
1776 	 *	 The inactive target essentially determines the minimum
1777 	 *	 number of 'temporary' pages capable of caching one-time-use
1778 	 *	 files when the VM system is otherwise full of pages
1779 	 *	 belonging to multi-time-use files or active program data.
1780 	 *
1781 	 * NOTE: The inactive target is aggressively persued only if the
1782 	 *	 inactive queue becomes too small.  If the inactive queue
1783 	 *	 is large enough to satisfy page movement to free+cache
1784 	 *	 then it is repopulated more slowly from the active queue.
1785 	 *	 This allows a general inactive_target default to be set.
1786 	 *
1787 	 *	 There is an issue here for processes which sit mostly idle
1788 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1789 	 *	 the active queue will eventually cause such pages to
1790 	 *	 recycle eventually causing a lot of paging in the morning.
1791 	 *	 To reduce the incidence of this pages cycled out of the
1792 	 *	 buffer cache are moved directly to the inactive queue if
1793 	 *	 they were only used once or twice.
1794 	 *
1795 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1796 	 *	 Increasing the value (up to 64) increases the number of
1797 	 *	 buffer recyclements which go directly to the inactive queue.
1798 	 */
1799 	if (vmstats.v_free_count > 2048) {
1800 		vmstats.v_cache_min = vmstats.v_free_target;
1801 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1802 	} else {
1803 		vmstats.v_cache_min = 0;
1804 		vmstats.v_cache_max = 0;
1805 	}
1806 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1807 
1808 	/* XXX does not really belong here */
1809 	if (vm_page_max_wired == 0)
1810 		vm_page_max_wired = vmstats.v_free_count / 3;
1811 
1812 	if (vm_pageout_stats_max == 0)
1813 		vm_pageout_stats_max = vmstats.v_free_target;
1814 
1815 	/*
1816 	 * Set interval in seconds for stats scan.
1817 	 */
1818 	if (vm_pageout_stats_interval == 0)
1819 		vm_pageout_stats_interval = 5;
1820 	if (vm_pageout_full_stats_interval == 0)
1821 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1822 
1823 
1824 	/*
1825 	 * Set maximum free per pass
1826 	 */
1827 	if (vm_pageout_stats_free_max == 0)
1828 		vm_pageout_stats_free_max = 5;
1829 
1830 	swap_pager_swap_init();
1831 	pass = 0;
1832 
1833 	/*
1834 	 * The pageout daemon is never done, so loop forever.
1835 	 */
1836 	while (TRUE) {
1837 		int error;
1838 		int delta1;
1839 		int delta2;
1840 		int avail_shortage;
1841 		int inactive_shortage;
1842 		int vnodes_skipped = 0;
1843 		int recycle_count = 0;
1844 		int tmp;
1845 
1846 		/*
1847 		 * Wait for an action request.  If we timeout check to
1848 		 * see if paging is needed (in case the normal wakeup
1849 		 * code raced us).
1850 		 */
1851 		if (vm_pages_needed == 0) {
1852 			error = tsleep(&vm_pages_needed,
1853 				       0, "psleep",
1854 				       vm_pageout_stats_interval * hz);
1855 			if (error &&
1856 			    vm_paging_needed() == 0 &&
1857 			    vm_pages_needed == 0) {
1858 				for (q = 0; q < PQ_L2_SIZE; ++q)
1859 					vm_pageout_page_stats(q);
1860 				continue;
1861 			}
1862 			vm_pages_needed = 1;
1863 		}
1864 
1865 		mycpu->gd_cnt.v_pdwakeups++;
1866 
1867 		/*
1868 		 * Do whatever cleanup that the pmap code can.
1869 		 */
1870 		pmap_collect();
1871 
1872 		/*
1873 		 * Scan for pageout.  Try to avoid thrashing the system
1874 		 * with activity.
1875 		 *
1876 		 * Calculate our target for the number of free+cache pages we
1877 		 * want to get to.  This is higher then the number that causes
1878 		 * allocations to stall (severe) in order to provide hysteresis,
1879 		 * and if we don't make it all the way but get to the minimum
1880 		 * we're happy.  Goose it a bit if there are multipler
1881 		 * requests for memory.
1882 		 */
1883 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1884 		vm_pageout_deficit = 0;
1885 		delta1 = 0;
1886 		if (avail_shortage > 0) {
1887 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1888 				delta1 += vm_pageout_scan_inactive(
1889 					    pass, q,
1890 					    PQAVERAGE(avail_shortage),
1891 					    &vnodes_skipped);
1892 			}
1893 			avail_shortage -= delta1;
1894 		}
1895 
1896 		/*
1897 		 * Figure out how many active pages we must deactivate.  If
1898 		 * we were able to reach our target with just the inactive
1899 		 * scan above we limit the number of active pages we
1900 		 * deactivate to reduce unnecessary work.
1901 		 */
1902 		inactive_shortage = vmstats.v_inactive_target -
1903 				    vmstats.v_inactive_count;
1904 
1905 		/*
1906 		 * If we were unable to free sufficient inactive pages to
1907 		 * satisfy the free/cache queue requirements then simply
1908 		 * reaching the inactive target may not be good enough.
1909 		 * Try to deactivate pages in excess of the target based
1910 		 * on the shortfall.
1911 		 *
1912 		 * However to prevent thrashing the VM system do not
1913 		 * deactivate more than an additional 1/10 the inactive
1914 		 * target's worth of active pages.
1915 		 */
1916 		if (avail_shortage > 0) {
1917 			tmp = avail_shortage * 2;
1918 			if (tmp > vmstats.v_inactive_target / 10)
1919 				tmp = vmstats.v_inactive_target / 10;
1920 			inactive_shortage += tmp;
1921 		}
1922 
1923 		if (avail_shortage > 0 || inactive_shortage > 0) {
1924 			delta2 = 0;
1925 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1926 				delta2 += vm_pageout_scan_active(
1927 						pass, q,
1928 						PQAVERAGE(avail_shortage),
1929 						PQAVERAGE(inactive_shortage),
1930 						&recycle_count);
1931 			}
1932 			inactive_shortage -= delta2;
1933 			avail_shortage -= delta2;
1934 		}
1935 
1936 		/*
1937 		 * Finally free enough cache pages to meet our free page
1938 		 * requirement and take more drastic measures if we are
1939 		 * still in trouble.
1940 		 */
1941 		vm_pageout_scan_cache(avail_shortage, vnodes_skipped,
1942 				      recycle_count);
1943 
1944 		/*
1945 		 * Wait for more work.
1946 		 */
1947 		if (avail_shortage > 0) {
1948 			++pass;
1949 			if (swap_pager_full) {
1950 				/*
1951 				 * Running out of memory, catastrophic back-off
1952 				 * to one-second intervals.
1953 				 */
1954 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1955 			} else if (pass < 10 && vm_pages_needed > 1) {
1956 				/*
1957 				 * Normal operation, additional processes
1958 				 * have already kicked us.  Retry immediately.
1959 				 */
1960 			} else if (pass < 10) {
1961 				/*
1962 				 * Normal operation, fewer processes.  Delay
1963 				 * a bit but allow wakeups.
1964 				 */
1965 				vm_pages_needed = 0;
1966 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1967 				vm_pages_needed = 1;
1968 			} else {
1969 				/*
1970 				 * We've taken too many passes, forced delay.
1971 				 */
1972 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1973 			}
1974 		} else {
1975 			/*
1976 			 * Interlocked wakeup of waiters (non-optional)
1977 			 */
1978 			pass = 0;
1979 			if (vm_pages_needed && !vm_page_count_min(0)) {
1980 				wakeup(&vmstats.v_free_count);
1981 				vm_pages_needed = 0;
1982 			}
1983 		}
1984 	}
1985 }
1986 
1987 static struct kproc_desc page_kp = {
1988 	"pagedaemon",
1989 	vm_pageout_thread,
1990 	&pagethread
1991 };
1992 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1993 
1994 
1995 /*
1996  * Called after allocating a page out of the cache or free queue
1997  * to possibly wake the pagedaemon up to replentish our supply.
1998  *
1999  * We try to generate some hysteresis by waking the pagedaemon up
2000  * when our free+cache pages go below the free_min+cache_min level.
2001  * The pagedaemon tries to get the count back up to at least the
2002  * minimum, and through to the target level if possible.
2003  *
2004  * If the pagedaemon is already active bump vm_pages_needed as a hint
2005  * that there are even more requests pending.
2006  *
2007  * SMP races ok?
2008  * No requirements.
2009  */
2010 void
2011 pagedaemon_wakeup(void)
2012 {
2013 	if (vm_paging_needed() && curthread != pagethread) {
2014 		if (vm_pages_needed == 0) {
2015 			vm_pages_needed = 1;	/* SMP race ok */
2016 			wakeup(&vm_pages_needed);
2017 		} else if (vm_page_count_min(0)) {
2018 			++vm_pages_needed;	/* SMP race ok */
2019 		}
2020 	}
2021 }
2022 
2023 #if !defined(NO_SWAPPING)
2024 
2025 /*
2026  * SMP races ok?
2027  * No requirements.
2028  */
2029 static void
2030 vm_req_vmdaemon(void)
2031 {
2032 	static int lastrun = 0;
2033 
2034 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2035 		wakeup(&vm_daemon_needed);
2036 		lastrun = ticks;
2037 	}
2038 }
2039 
2040 static int vm_daemon_callback(struct proc *p, void *data __unused);
2041 
2042 /*
2043  * No requirements.
2044  */
2045 static void
2046 vm_daemon(void)
2047 {
2048 	/*
2049 	 * XXX vm_daemon_needed specific token?
2050 	 */
2051 	while (TRUE) {
2052 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2053 		if (vm_pageout_req_swapout) {
2054 			swapout_procs(vm_pageout_req_swapout);
2055 			vm_pageout_req_swapout = 0;
2056 		}
2057 		/*
2058 		 * scan the processes for exceeding their rlimits or if
2059 		 * process is swapped out -- deactivate pages
2060 		 */
2061 		allproc_scan(vm_daemon_callback, NULL);
2062 	}
2063 }
2064 
2065 /*
2066  * Caller must hold proc_token.
2067  */
2068 static int
2069 vm_daemon_callback(struct proc *p, void *data __unused)
2070 {
2071 	vm_pindex_t limit, size;
2072 
2073 	/*
2074 	 * if this is a system process or if we have already
2075 	 * looked at this process, skip it.
2076 	 */
2077 	if (p->p_flags & (P_SYSTEM | P_WEXIT))
2078 		return (0);
2079 
2080 	/*
2081 	 * if the process is in a non-running type state,
2082 	 * don't touch it.
2083 	 */
2084 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
2085 		return (0);
2086 
2087 	/*
2088 	 * get a limit
2089 	 */
2090 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2091 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2092 
2093 	/*
2094 	 * let processes that are swapped out really be
2095 	 * swapped out.  Set the limit to nothing to get as
2096 	 * many pages out to swap as possible.
2097 	 */
2098 	if (p->p_flags & P_SWAPPEDOUT)
2099 		limit = 0;
2100 
2101 	lwkt_gettoken(&p->p_vmspace->vm_map.token);
2102 	size = vmspace_resident_count(p->p_vmspace);
2103 	if (limit >= 0 && size >= limit) {
2104 		vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map, limit);
2105 	}
2106 	lwkt_reltoken(&p->p_vmspace->vm_map.token);
2107 	return (0);
2108 }
2109 
2110 #endif
2111