xref: /dragonfly/sys/vm/vm_pageout.c (revision 82730a9c)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106 
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct	thread *vmthread;
111 
112 static struct kproc_desc vm_kp = {
113 	"vmdaemon",
114 	vm_daemon,
115 	&vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
118 #endif
119 
120 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;	/* pageout daemon needs pages */
123 int vm_page_free_hysteresis = 16;
124 
125 #if !defined(NO_SWAPPING)
126 static int vm_pageout_req_swapout;	/* XXX */
127 static int vm_daemon_needed;
128 #endif
129 static int vm_max_launder = 4096;
130 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
131 static int vm_pageout_full_stats_interval = 0;
132 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
133 static int defer_swap_pageouts=0;
134 static int disable_swap_pageouts=0;
135 static u_int vm_anonmem_decline = ACT_DECLINE;
136 static u_int vm_filemem_decline = ACT_DECLINE * 2;
137 
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145 
146 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
147 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
148 
149 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
150 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
151 
152 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
153 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
154 	"Free more pages than the minimum required");
155 
156 SYSCTL_INT(_vm, OID_AUTO, max_launder,
157 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
158 
159 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
161 
162 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
167 
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
170 
171 #if defined(NO_SWAPPING)
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176 #else
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
185 
186 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
188 
189 static int pageout_lock_miss;
190 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
191 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
192 
193 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
194 
195 #if !defined(NO_SWAPPING)
196 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
197 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
198 static freeer_fcn_t vm_pageout_object_deactivate_pages;
199 static void vm_req_vmdaemon (void);
200 #endif
201 static void vm_pageout_page_stats(int q);
202 
203 static __inline int
204 PQAVERAGE(int n)
205 {
206 	if (n >= 0)
207 		return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
208 	else
209 		return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
210 }
211 
212 /*
213  * vm_pageout_clean:
214  *
215  * Clean the page and remove it from the laundry.  The page must not be
216  * busy on-call.
217  *
218  * We set the busy bit to cause potential page faults on this page to
219  * block.  Note the careful timing, however, the busy bit isn't set till
220  * late and we cannot do anything that will mess with the page.
221  */
222 static int
223 vm_pageout_clean(vm_page_t m)
224 {
225 	vm_object_t object;
226 	vm_page_t mc[BLIST_MAX_ALLOC];
227 	int error;
228 	int ib, is, page_base;
229 	vm_pindex_t pindex = m->pindex;
230 
231 	object = m->object;
232 
233 	/*
234 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235 	 * with the new swapper, but we could have serious problems paging
236 	 * out other object types if there is insufficient memory.
237 	 *
238 	 * Unfortunately, checking free memory here is far too late, so the
239 	 * check has been moved up a procedural level.
240 	 */
241 
242 	/*
243 	 * Don't mess with the page if it's busy, held, or special
244 	 *
245 	 * XXX do we really need to check hold_count here?  hold_count
246 	 * isn't supposed to mess with vm_page ops except prevent the
247 	 * page from being reused.
248 	 */
249 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
250 		vm_page_wakeup(m);
251 		return 0;
252 	}
253 
254 	/*
255 	 * Place page in cluster.  Align cluster for optimal swap space
256 	 * allocation (whether it is swap or not).  This is typically ~16-32
257 	 * pages, which also tends to align the cluster to multiples of the
258 	 * filesystem block size if backed by a filesystem.
259 	 */
260 	page_base = pindex % BLIST_MAX_ALLOC;
261 	mc[page_base] = m;
262 	ib = page_base - 1;
263 	is = page_base + 1;
264 
265 	/*
266 	 * Scan object for clusterable pages.
267 	 *
268 	 * We can cluster ONLY if: ->> the page is NOT
269 	 * clean, wired, busy, held, or mapped into a
270 	 * buffer, and one of the following:
271 	 * 1) The page is inactive, or a seldom used
272 	 *    active page.
273 	 * -or-
274 	 * 2) we force the issue.
275 	 *
276 	 * During heavy mmap/modification loads the pageout
277 	 * daemon can really fragment the underlying file
278 	 * due to flushing pages out of order and not trying
279 	 * align the clusters (which leave sporatic out-of-order
280 	 * holes).  To solve this problem we do the reverse scan
281 	 * first and attempt to align our cluster, then do a
282 	 * forward scan if room remains.
283 	 */
284 
285 	vm_object_hold(object);
286 	while (ib >= 0) {
287 		vm_page_t p;
288 
289 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
290 					    TRUE, &error);
291 		if (error || p == NULL)
292 			break;
293 		if ((p->queue - p->pc) == PQ_CACHE ||
294 		    (p->flags & PG_UNMANAGED)) {
295 			vm_page_wakeup(p);
296 			break;
297 		}
298 		vm_page_test_dirty(p);
299 		if (((p->dirty & p->valid) == 0 &&
300 		     (p->flags & PG_NEED_COMMIT) == 0) ||
301 		    p->queue - p->pc != PQ_INACTIVE ||
302 		    p->wire_count != 0 ||	/* may be held by buf cache */
303 		    p->hold_count != 0) {	/* may be undergoing I/O */
304 			vm_page_wakeup(p);
305 			break;
306 		}
307 		mc[ib] = p;
308 		--ib;
309 	}
310 	++ib;	/* fixup */
311 
312 	while (is < BLIST_MAX_ALLOC &&
313 	       pindex - page_base + is < object->size) {
314 		vm_page_t p;
315 
316 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
317 					    TRUE, &error);
318 		if (error || p == NULL)
319 			break;
320 		if (((p->queue - p->pc) == PQ_CACHE) ||
321 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322 			vm_page_wakeup(p);
323 			break;
324 		}
325 		vm_page_test_dirty(p);
326 		if (((p->dirty & p->valid) == 0 &&
327 		     (p->flags & PG_NEED_COMMIT) == 0) ||
328 		    p->queue - p->pc != PQ_INACTIVE ||
329 		    p->wire_count != 0 ||	/* may be held by buf cache */
330 		    p->hold_count != 0) {	/* may be undergoing I/O */
331 			vm_page_wakeup(p);
332 			break;
333 		}
334 		mc[is] = p;
335 		++is;
336 	}
337 
338 	vm_object_drop(object);
339 
340 	/*
341 	 * we allow reads during pageouts...
342 	 */
343 	return vm_pageout_flush(&mc[ib], is - ib, 0);
344 }
345 
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *	The given pages are laundered.  Note that we setup for the start of
350  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *	reference count all in here rather then in the parent.  If we want
352  *	the parent to do more sophisticated things we may have to change
353  *	the ordering.
354  *
355  *	The pages in the array must be busied by the caller and will be
356  *	unbusied by this function.
357  */
358 int
359 vm_pageout_flush(vm_page_t *mc, int count, int flags)
360 {
361 	vm_object_t object;
362 	int pageout_status[count];
363 	int numpagedout = 0;
364 	int i;
365 
366 	/*
367 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
368 	 */
369 	for (i = 0; i < count; i++) {
370 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
371 			("vm_pageout_flush page %p index %d/%d: partially "
372 			 "invalid page", mc[i], i, count));
373 		vm_page_io_start(mc[i]);
374 	}
375 
376 	/*
377 	 * We must make the pages read-only.  This will also force the
378 	 * modified bit in the related pmaps to be cleared.  The pager
379 	 * cannot clear the bit for us since the I/O completion code
380 	 * typically runs from an interrupt.  The act of making the page
381 	 * read-only handles the case for us.
382 	 *
383 	 * Then we can unbusy the pages, we still hold a reference by virtue
384 	 * of our soft-busy.
385 	 */
386 	for (i = 0; i < count; i++) {
387 		vm_page_protect(mc[i], VM_PROT_READ);
388 		vm_page_wakeup(mc[i]);
389 	}
390 
391 	object = mc[0]->object;
392 	vm_object_pip_add(object, count);
393 
394 	vm_pager_put_pages(object, mc, count,
395 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
396 	    pageout_status);
397 
398 	for (i = 0; i < count; i++) {
399 		vm_page_t mt = mc[i];
400 
401 		switch (pageout_status[i]) {
402 		case VM_PAGER_OK:
403 			numpagedout++;
404 			break;
405 		case VM_PAGER_PEND:
406 			numpagedout++;
407 			break;
408 		case VM_PAGER_BAD:
409 			/*
410 			 * Page outside of range of object. Right now we
411 			 * essentially lose the changes by pretending it
412 			 * worked.
413 			 */
414 			vm_page_busy_wait(mt, FALSE, "pgbad");
415 			pmap_clear_modify(mt);
416 			vm_page_undirty(mt);
417 			vm_page_wakeup(mt);
418 			break;
419 		case VM_PAGER_ERROR:
420 		case VM_PAGER_FAIL:
421 			/*
422 			 * A page typically cannot be paged out when we
423 			 * have run out of swap.  We leave the page
424 			 * marked inactive and will try to page it out
425 			 * again later.
426 			 *
427 			 * Starvation of the active page list is used to
428 			 * determine when the system is massively memory
429 			 * starved.
430 			 */
431 			break;
432 		case VM_PAGER_AGAIN:
433 			break;
434 		}
435 
436 		/*
437 		 * If the operation is still going, leave the page busy to
438 		 * block all other accesses. Also, leave the paging in
439 		 * progress indicator set so that we don't attempt an object
440 		 * collapse.
441 		 *
442 		 * For any pages which have completed synchronously,
443 		 * deactivate the page if we are under a severe deficit.
444 		 * Do not try to enter them into the cache, though, they
445 		 * might still be read-heavy.
446 		 */
447 		if (pageout_status[i] != VM_PAGER_PEND) {
448 			vm_page_busy_wait(mt, FALSE, "pgouw");
449 			if (vm_page_count_severe())
450 				vm_page_deactivate(mt);
451 #if 0
452 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
453 				vm_page_protect(mt, VM_PROT_READ);
454 #endif
455 			vm_page_io_finish(mt);
456 			vm_page_wakeup(mt);
457 			vm_object_pip_wakeup(object);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  * deactivate enough pages to satisfy the inactive target
466  * requirements or if vm_page_proc_limit is set, then
467  * deactivate all of the pages in the object and its
468  * backing_objects.
469  *
470  * The map must be locked.
471  * The caller must hold the vm_object.
472  */
473 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
474 
475 static void
476 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
477 				   vm_pindex_t desired, int map_remove_only)
478 {
479 	struct rb_vm_page_scan_info info;
480 	vm_object_t lobject;
481 	vm_object_t tobject;
482 	int remove_mode;
483 
484 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
485 	lobject = object;
486 
487 	while (lobject) {
488 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
489 			break;
490 		if (lobject->type == OBJT_DEVICE ||
491 		    lobject->type == OBJT_MGTDEVICE ||
492 		    lobject->type == OBJT_PHYS)
493 			break;
494 		if (lobject->paging_in_progress)
495 			break;
496 
497 		remove_mode = map_remove_only;
498 		if (lobject->shadow_count > 1)
499 			remove_mode = 1;
500 
501 		/*
502 		 * scan the objects entire memory queue.  We hold the
503 		 * object's token so the scan should not race anything.
504 		 */
505 		info.limit = remove_mode;
506 		info.map = map;
507 		info.desired = desired;
508 		vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
509 				vm_pageout_object_deactivate_pages_callback,
510 				&info
511 		);
512 		while ((tobject = lobject->backing_object) != NULL) {
513 			KKASSERT(tobject != object);
514 			vm_object_hold(tobject);
515 			if (tobject == lobject->backing_object)
516 				break;
517 			vm_object_drop(tobject);
518 		}
519 		if (lobject != object) {
520 			if (tobject)
521 				vm_object_lock_swap();
522 			vm_object_drop(lobject);
523 			/* leaves tobject locked & at top */
524 		}
525 		lobject = tobject;
526 	}
527 	if (lobject != object)
528 		vm_object_drop(lobject);	/* NULL ok */
529 }
530 
531 /*
532  * The caller must hold the vm_object.
533  */
534 static int
535 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
536 {
537 	struct rb_vm_page_scan_info *info = data;
538 	int actcount;
539 
540 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
541 		return(-1);
542 	}
543 	mycpu->gd_cnt.v_pdpages++;
544 
545 	if (vm_page_busy_try(p, TRUE))
546 		return(0);
547 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
548 		vm_page_wakeup(p);
549 		return(0);
550 	}
551 	if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
552 		vm_page_wakeup(p);
553 		return(0);
554 	}
555 
556 	actcount = pmap_ts_referenced(p);
557 	if (actcount) {
558 		vm_page_flag_set(p, PG_REFERENCED);
559 	} else if (p->flags & PG_REFERENCED) {
560 		actcount = 1;
561 	}
562 
563 	vm_page_and_queue_spin_lock(p);
564 	if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
565 		vm_page_and_queue_spin_unlock(p);
566 		vm_page_activate(p);
567 		p->act_count += actcount;
568 		vm_page_flag_clear(p, PG_REFERENCED);
569 	} else if (p->queue - p->pc == PQ_ACTIVE) {
570 		if ((p->flags & PG_REFERENCED) == 0) {
571 			p->act_count -= min(p->act_count, ACT_DECLINE);
572 			if (!info->limit &&
573 			    (vm_pageout_algorithm || (p->act_count == 0))) {
574 				vm_page_and_queue_spin_unlock(p);
575 				vm_page_protect(p, VM_PROT_NONE);
576 				vm_page_deactivate(p);
577 			} else {
578 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
579 					     p, pageq);
580 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
581 						  p, pageq);
582 				vm_page_and_queue_spin_unlock(p);
583 			}
584 		} else {
585 			vm_page_and_queue_spin_unlock(p);
586 			vm_page_activate(p);
587 			vm_page_flag_clear(p, PG_REFERENCED);
588 
589 			vm_page_and_queue_spin_lock(p);
590 			if (p->queue - p->pc == PQ_ACTIVE) {
591 				if (p->act_count < (ACT_MAX - ACT_ADVANCE))
592 					p->act_count += ACT_ADVANCE;
593 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
594 					     p, pageq);
595 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
596 						  p, pageq);
597 			}
598 			vm_page_and_queue_spin_unlock(p);
599 		}
600 	} else if (p->queue - p->pc == PQ_INACTIVE) {
601 		vm_page_and_queue_spin_unlock(p);
602 		vm_page_protect(p, VM_PROT_NONE);
603 	} else {
604 		vm_page_and_queue_spin_unlock(p);
605 	}
606 	vm_page_wakeup(p);
607 	return(0);
608 }
609 
610 /*
611  * Deactivate some number of pages in a map, try to do it fairly, but
612  * that is really hard to do.
613  */
614 static void
615 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
616 {
617 	vm_map_entry_t tmpe;
618 	vm_object_t obj, bigobj;
619 	int nothingwired;
620 
621 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
622 		return;
623 	}
624 
625 	bigobj = NULL;
626 	nothingwired = TRUE;
627 
628 	/*
629 	 * first, search out the biggest object, and try to free pages from
630 	 * that.
631 	 */
632 	tmpe = map->header.next;
633 	while (tmpe != &map->header) {
634 		switch(tmpe->maptype) {
635 		case VM_MAPTYPE_NORMAL:
636 		case VM_MAPTYPE_VPAGETABLE:
637 			obj = tmpe->object.vm_object;
638 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
639 				((bigobj == NULL) ||
640 				 (bigobj->resident_page_count < obj->resident_page_count))) {
641 				bigobj = obj;
642 			}
643 			break;
644 		default:
645 			break;
646 		}
647 		if (tmpe->wired_count > 0)
648 			nothingwired = FALSE;
649 		tmpe = tmpe->next;
650 	}
651 
652 	if (bigobj)  {
653 		vm_object_hold(bigobj);
654 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
655 		vm_object_drop(bigobj);
656 	}
657 
658 	/*
659 	 * Next, hunt around for other pages to deactivate.  We actually
660 	 * do this search sort of wrong -- .text first is not the best idea.
661 	 */
662 	tmpe = map->header.next;
663 	while (tmpe != &map->header) {
664 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
665 			break;
666 		switch(tmpe->maptype) {
667 		case VM_MAPTYPE_NORMAL:
668 		case VM_MAPTYPE_VPAGETABLE:
669 			obj = tmpe->object.vm_object;
670 			if (obj) {
671 				vm_object_hold(obj);
672 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
673 				vm_object_drop(obj);
674 			}
675 			break;
676 		default:
677 			break;
678 		}
679 		tmpe = tmpe->next;
680 	}
681 
682 	/*
683 	 * Remove all mappings if a process is swapped out, this will free page
684 	 * table pages.
685 	 */
686 	if (desired == 0 && nothingwired)
687 		pmap_remove(vm_map_pmap(map),
688 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
689 	vm_map_unlock(map);
690 }
691 #endif
692 
693 /*
694  * Called when the pageout scan wants to free a page.  We no longer
695  * try to cycle the vm_object here with a reference & dealloc, which can
696  * cause a non-trivial object collapse in a critical path.
697  *
698  * It is unclear why we cycled the ref_count in the past, perhaps to try
699  * to optimize shadow chain collapses but I don't quite see why it would
700  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
701  * synchronously and not have to be kicked-start.
702  */
703 static void
704 vm_pageout_page_free(vm_page_t m)
705 {
706 	vm_page_protect(m, VM_PROT_NONE);
707 	vm_page_free(m);
708 }
709 
710 /*
711  * vm_pageout_scan does the dirty work for the pageout daemon.
712  */
713 struct vm_pageout_scan_info {
714 	struct proc *bigproc;
715 	vm_offset_t bigsize;
716 };
717 
718 static int vm_pageout_scan_callback(struct proc *p, void *data);
719 
720 static int
721 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
722 			 int *vnodes_skippedp)
723 {
724 	vm_page_t m;
725 	struct vm_page marker;
726 	struct vnode *vpfailed;		/* warning, allowed to be stale */
727 	int maxscan;
728 	int count;
729 	int delta = 0;
730 	vm_object_t object;
731 	int actcount;
732 	int maxlaunder;
733 
734 	/*
735 	 * Start scanning the inactive queue for pages we can move to the
736 	 * cache or free.  The scan will stop when the target is reached or
737 	 * we have scanned the entire inactive queue.  Note that m->act_count
738 	 * is not used to form decisions for the inactive queue, only for the
739 	 * active queue.
740 	 *
741 	 * maxlaunder limits the number of dirty pages we flush per scan.
742 	 * For most systems a smaller value (16 or 32) is more robust under
743 	 * extreme memory and disk pressure because any unnecessary writes
744 	 * to disk can result in extreme performance degredation.  However,
745 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
746 	 * used) will die horribly with limited laundering.  If the pageout
747 	 * daemon cannot clean enough pages in the first pass, we let it go
748 	 * all out in succeeding passes.
749 	 */
750 	if ((maxlaunder = vm_max_launder) <= 1)
751 		maxlaunder = 1;
752 	if (pass)
753 		maxlaunder = 10000;
754 
755 	/*
756 	 * Initialize our marker
757 	 */
758 	bzero(&marker, sizeof(marker));
759 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
760 	marker.queue = PQ_INACTIVE + q;
761 	marker.pc = q;
762 	marker.wire_count = 1;
763 
764 	/*
765 	 * Inactive queue scan.
766 	 *
767 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
768 	 *	 deadlocks, so it is easiest to simply iterate the loop
769 	 *	 with the queue unlocked at the top.
770 	 */
771 	vpfailed = NULL;
772 
773 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
774 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
775 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
776 
777 	/*
778 	 * Queue locked at top of loop to avoid stack marker issues.
779 	 */
780 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
781 	       maxscan-- > 0 && avail_shortage - delta > 0)
782 	{
783 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
784 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
785 			     &marker, pageq);
786 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
787 				   &marker, pageq);
788 		mycpu->gd_cnt.v_pdpages++;
789 
790 		/*
791 		 * Skip marker pages (atomic against other markers to avoid
792 		 * infinite hop-over scans).
793 		 */
794 		if (m->flags & PG_MARKER)
795 			continue;
796 
797 		/*
798 		 * Try to busy the page.  Don't mess with pages which are
799 		 * already busy or reorder them in the queue.
800 		 */
801 		if (vm_page_busy_try(m, TRUE))
802 			continue;
803 
804 		/*
805 		 * Remaining operations run with the page busy and neither
806 		 * the page or the queue will be spin-locked.
807 		 */
808 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
809 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
810 		lwkt_yield();
811 
812 		/*
813 		 * It is possible for a page to be busied ad-hoc (e.g. the
814 		 * pmap_collect() code) and wired and race against the
815 		 * allocation of a new page.  vm_page_alloc() may be forced
816 		 * to deactivate the wired page in which case it winds up
817 		 * on the inactive queue and must be handled here.  We
818 		 * correct the problem simply by unqueuing the page.
819 		 */
820 		if (m->wire_count) {
821 			vm_page_unqueue_nowakeup(m);
822 			vm_page_wakeup(m);
823 			kprintf("WARNING: pagedaemon: wired page on "
824 				"inactive queue %p\n", m);
825 			goto next;
826 		}
827 
828 		/*
829 		 * A held page may be undergoing I/O, so skip it.
830 		 */
831 		if (m->hold_count) {
832 			vm_page_and_queue_spin_lock(m);
833 			if (m->queue - m->pc == PQ_INACTIVE) {
834 				TAILQ_REMOVE(
835 					&vm_page_queues[PQ_INACTIVE + q].pl,
836 					m, pageq);
837 				TAILQ_INSERT_TAIL(
838 					&vm_page_queues[PQ_INACTIVE + q].pl,
839 					m, pageq);
840 				++vm_swapcache_inactive_heuristic;
841 			}
842 			vm_page_and_queue_spin_unlock(m);
843 			vm_page_wakeup(m);
844 			goto next;
845 		}
846 
847 		if (m->object == NULL || m->object->ref_count == 0) {
848 			/*
849 			 * If the object is not being used, we ignore previous
850 			 * references.
851 			 */
852 			vm_page_flag_clear(m, PG_REFERENCED);
853 			pmap_clear_reference(m);
854 			/* fall through to end */
855 		} else if (((m->flags & PG_REFERENCED) == 0) &&
856 			    (actcount = pmap_ts_referenced(m))) {
857 			/*
858 			 * Otherwise, if the page has been referenced while
859 			 * in the inactive queue, we bump the "activation
860 			 * count" upwards, making it less likely that the
861 			 * page will be added back to the inactive queue
862 			 * prematurely again.  Here we check the page tables
863 			 * (or emulated bits, if any), given the upper level
864 			 * VM system not knowing anything about existing
865 			 * references.
866 			 */
867 			vm_page_activate(m);
868 			m->act_count += (actcount + ACT_ADVANCE);
869 			vm_page_wakeup(m);
870 			goto next;
871 		}
872 
873 		/*
874 		 * (m) is still busied.
875 		 *
876 		 * If the upper level VM system knows about any page
877 		 * references, we activate the page.  We also set the
878 		 * "activation count" higher than normal so that we will less
879 		 * likely place pages back onto the inactive queue again.
880 		 */
881 		if ((m->flags & PG_REFERENCED) != 0) {
882 			vm_page_flag_clear(m, PG_REFERENCED);
883 			actcount = pmap_ts_referenced(m);
884 			vm_page_activate(m);
885 			m->act_count += (actcount + ACT_ADVANCE + 1);
886 			vm_page_wakeup(m);
887 			goto next;
888 		}
889 
890 		/*
891 		 * If the upper level VM system doesn't know anything about
892 		 * the page being dirty, we have to check for it again.  As
893 		 * far as the VM code knows, any partially dirty pages are
894 		 * fully dirty.
895 		 *
896 		 * Pages marked PG_WRITEABLE may be mapped into the user
897 		 * address space of a process running on another cpu.  A
898 		 * user process (without holding the MP lock) running on
899 		 * another cpu may be able to touch the page while we are
900 		 * trying to remove it.  vm_page_cache() will handle this
901 		 * case for us.
902 		 */
903 		if (m->dirty == 0) {
904 			vm_page_test_dirty(m);
905 		} else {
906 			vm_page_dirty(m);
907 		}
908 
909 		if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
910 			/*
911 			 * Invalid pages can be easily freed
912 			 */
913 			vm_pageout_page_free(m);
914 			mycpu->gd_cnt.v_dfree++;
915 			++delta;
916 		} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
917 			/*
918 			 * Clean pages can be placed onto the cache queue.
919 			 * This effectively frees them.
920 			 */
921 			vm_page_cache(m);
922 			++delta;
923 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
924 			/*
925 			 * Dirty pages need to be paged out, but flushing
926 			 * a page is extremely expensive verses freeing
927 			 * a clean page.  Rather then artificially limiting
928 			 * the number of pages we can flush, we instead give
929 			 * dirty pages extra priority on the inactive queue
930 			 * by forcing them to be cycled through the queue
931 			 * twice before being flushed, after which the
932 			 * (now clean) page will cycle through once more
933 			 * before being freed.  This significantly extends
934 			 * the thrash point for a heavily loaded machine.
935 			 */
936 			vm_page_flag_set(m, PG_WINATCFLS);
937 			vm_page_and_queue_spin_lock(m);
938 			if (m->queue - m->pc == PQ_INACTIVE) {
939 				TAILQ_REMOVE(
940 					&vm_page_queues[PQ_INACTIVE + q].pl,
941 					m, pageq);
942 				TAILQ_INSERT_TAIL(
943 					&vm_page_queues[PQ_INACTIVE + q].pl,
944 					m, pageq);
945 				++vm_swapcache_inactive_heuristic;
946 			}
947 			vm_page_and_queue_spin_unlock(m);
948 			vm_page_wakeup(m);
949 		} else if (maxlaunder > 0) {
950 			/*
951 			 * We always want to try to flush some dirty pages if
952 			 * we encounter them, to keep the system stable.
953 			 * Normally this number is small, but under extreme
954 			 * pressure where there are insufficient clean pages
955 			 * on the inactive queue, we may have to go all out.
956 			 */
957 			int swap_pageouts_ok;
958 			struct vnode *vp = NULL;
959 
960 			swap_pageouts_ok = 0;
961 			object = m->object;
962 			if (object &&
963 			    (object->type != OBJT_SWAP) &&
964 			    (object->type != OBJT_DEFAULT)) {
965 				swap_pageouts_ok = 1;
966 			} else {
967 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
968 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
969 				vm_page_count_min(0));
970 
971 			}
972 
973 			/*
974 			 * We don't bother paging objects that are "dead".
975 			 * Those objects are in a "rundown" state.
976 			 */
977 			if (!swap_pageouts_ok ||
978 			    (object == NULL) ||
979 			    (object->flags & OBJ_DEAD)) {
980 				vm_page_and_queue_spin_lock(m);
981 				if (m->queue - m->pc == PQ_INACTIVE) {
982 					TAILQ_REMOVE(
983 					    &vm_page_queues[PQ_INACTIVE + q].pl,
984 					    m, pageq);
985 					TAILQ_INSERT_TAIL(
986 					    &vm_page_queues[PQ_INACTIVE + q].pl,
987 					    m, pageq);
988 					++vm_swapcache_inactive_heuristic;
989 				}
990 				vm_page_and_queue_spin_unlock(m);
991 				vm_page_wakeup(m);
992 				goto next;
993 			}
994 
995 			/*
996 			 * (m) is still busied.
997 			 *
998 			 * The object is already known NOT to be dead.   It
999 			 * is possible for the vget() to block the whole
1000 			 * pageout daemon, but the new low-memory handling
1001 			 * code should prevent it.
1002 			 *
1003 			 * The previous code skipped locked vnodes and, worse,
1004 			 * reordered pages in the queue.  This results in
1005 			 * completely non-deterministic operation because,
1006 			 * quite often, a vm_fault has initiated an I/O and
1007 			 * is holding a locked vnode at just the point where
1008 			 * the pageout daemon is woken up.
1009 			 *
1010 			 * We can't wait forever for the vnode lock, we might
1011 			 * deadlock due to a vn_read() getting stuck in
1012 			 * vm_wait while holding this vnode.  We skip the
1013 			 * vnode if we can't get it in a reasonable amount
1014 			 * of time.
1015 			 *
1016 			 * vpfailed is used to (try to) avoid the case where
1017 			 * a large number of pages are associated with a
1018 			 * locked vnode, which could cause the pageout daemon
1019 			 * to stall for an excessive amount of time.
1020 			 */
1021 			if (object->type == OBJT_VNODE) {
1022 				int flags;
1023 
1024 				vp = object->handle;
1025 				flags = LK_EXCLUSIVE;
1026 				if (vp == vpfailed)
1027 					flags |= LK_NOWAIT;
1028 				else
1029 					flags |= LK_TIMELOCK;
1030 				vm_page_hold(m);
1031 				vm_page_wakeup(m);
1032 
1033 				/*
1034 				 * We have unbusied (m) temporarily so we can
1035 				 * acquire the vp lock without deadlocking.
1036 				 * (m) is held to prevent destruction.
1037 				 */
1038 				if (vget(vp, flags) != 0) {
1039 					vpfailed = vp;
1040 					++pageout_lock_miss;
1041 					if (object->flags & OBJ_MIGHTBEDIRTY)
1042 						    ++*vnodes_skippedp;
1043 					vm_page_unhold(m);
1044 					goto next;
1045 				}
1046 
1047 				/*
1048 				 * The page might have been moved to another
1049 				 * queue during potential blocking in vget()
1050 				 * above.  The page might have been freed and
1051 				 * reused for another vnode.  The object might
1052 				 * have been reused for another vnode.
1053 				 */
1054 				if (m->queue - m->pc != PQ_INACTIVE ||
1055 				    m->object != object ||
1056 				    object->handle != vp) {
1057 					if (object->flags & OBJ_MIGHTBEDIRTY)
1058 						++*vnodes_skippedp;
1059 					vput(vp);
1060 					vm_page_unhold(m);
1061 					goto next;
1062 				}
1063 
1064 				/*
1065 				 * The page may have been busied during the
1066 				 * blocking in vput();  We don't move the
1067 				 * page back onto the end of the queue so that
1068 				 * statistics are more correct if we don't.
1069 				 */
1070 				if (vm_page_busy_try(m, TRUE)) {
1071 					vput(vp);
1072 					vm_page_unhold(m);
1073 					goto next;
1074 				}
1075 				vm_page_unhold(m);
1076 
1077 				/*
1078 				 * (m) is busied again
1079 				 *
1080 				 * We own the busy bit and remove our hold
1081 				 * bit.  If the page is still held it
1082 				 * might be undergoing I/O, so skip it.
1083 				 */
1084 				if (m->hold_count) {
1085 					vm_page_and_queue_spin_lock(m);
1086 					if (m->queue - m->pc == PQ_INACTIVE) {
1087 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1088 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1089 						++vm_swapcache_inactive_heuristic;
1090 					}
1091 					vm_page_and_queue_spin_unlock(m);
1092 					if (object->flags & OBJ_MIGHTBEDIRTY)
1093 						++*vnodes_skippedp;
1094 					vm_page_wakeup(m);
1095 					vput(vp);
1096 					goto next;
1097 				}
1098 				/* (m) is left busied as we fall through */
1099 			}
1100 
1101 			/*
1102 			 * page is busy and not held here.
1103 			 *
1104 			 * If a page is dirty, then it is either being washed
1105 			 * (but not yet cleaned) or it is still in the
1106 			 * laundry.  If it is still in the laundry, then we
1107 			 * start the cleaning operation.
1108 			 *
1109 			 * decrement inactive_shortage on success to account
1110 			 * for the (future) cleaned page.  Otherwise we
1111 			 * could wind up laundering or cleaning too many
1112 			 * pages.
1113 			 */
1114 			count = vm_pageout_clean(m);
1115 			delta += count;
1116 			maxlaunder -= count;
1117 
1118 			/*
1119 			 * Clean ate busy, page no longer accessible
1120 			 */
1121 			if (vp != NULL)
1122 				vput(vp);
1123 		} else {
1124 			vm_page_wakeup(m);
1125 		}
1126 
1127 next:
1128 		/*
1129 		 * Systems with a ton of memory can wind up with huge
1130 		 * deactivation counts.  Because the inactive scan is
1131 		 * doing a lot of flushing, the combination can result
1132 		 * in excessive paging even in situations where other
1133 		 * unrelated threads free up sufficient VM.
1134 		 *
1135 		 * To deal with this we abort the nominal active->inactive
1136 		 * scan before we hit the inactive target when free+cache
1137 		 * levels have already reached their target.
1138 		 *
1139 		 * Note that nominally the inactive scan is not freeing or
1140 		 * caching pages, it is deactivating active pages, so it
1141 		 * will not by itself cause the abort condition.
1142 		 */
1143 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
1144 		if (vm_paging_target() < 0)
1145 			break;
1146 	}
1147 
1148 	/* page queue still spin-locked */
1149 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1150 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1151 
1152 	return (delta);
1153 }
1154 
1155 static int
1156 vm_pageout_scan_active(int pass, int q,
1157 		       int avail_shortage, int inactive_shortage,
1158 		       int *recycle_countp)
1159 {
1160 	struct vm_page marker;
1161 	vm_page_t m;
1162 	int actcount;
1163 	int delta = 0;
1164 	int maxscan;
1165 
1166 	/*
1167 	 * We want to move pages from the active queue to the inactive
1168 	 * queue to get the inactive queue to the inactive target.  If
1169 	 * we still have a page shortage from above we try to directly free
1170 	 * clean pages instead of moving them.
1171 	 *
1172 	 * If we do still have a shortage we keep track of the number of
1173 	 * pages we free or cache (recycle_count) as a measure of thrashing
1174 	 * between the active and inactive queues.
1175 	 *
1176 	 * If we were able to completely satisfy the free+cache targets
1177 	 * from the inactive pool we limit the number of pages we move
1178 	 * from the active pool to the inactive pool to 2x the pages we
1179 	 * had removed from the inactive pool (with a minimum of 1/5 the
1180 	 * inactive target).  If we were not able to completely satisfy
1181 	 * the free+cache targets we go for the whole target aggressively.
1182 	 *
1183 	 * NOTE: Both variables can end up negative.
1184 	 * NOTE: We are still in a critical section.
1185 	 */
1186 
1187 	bzero(&marker, sizeof(marker));
1188 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1189 	marker.queue = PQ_ACTIVE + q;
1190 	marker.pc = q;
1191 	marker.wire_count = 1;
1192 
1193 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1194 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1195 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1196 
1197 	/*
1198 	 * Queue locked at top of loop to avoid stack marker issues.
1199 	 */
1200 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1201 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1202 				inactive_shortage > 0))
1203 	{
1204 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1205 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1206 			     &marker, pageq);
1207 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1208 				   &marker, pageq);
1209 
1210 		/*
1211 		 * Skip marker pages (atomic against other markers to avoid
1212 		 * infinite hop-over scans).
1213 		 */
1214 		if (m->flags & PG_MARKER)
1215 			continue;
1216 
1217 		/*
1218 		 * Try to busy the page.  Don't mess with pages which are
1219 		 * already busy or reorder them in the queue.
1220 		 */
1221 		if (vm_page_busy_try(m, TRUE))
1222 			continue;
1223 
1224 		/*
1225 		 * Remaining operations run with the page busy and neither
1226 		 * the page or the queue will be spin-locked.
1227 		 */
1228 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1229 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1230 		lwkt_yield();
1231 
1232 		/*
1233 		 * Don't deactivate pages that are held, even if we can
1234 		 * busy them.  (XXX why not?)
1235 		 */
1236 		if (m->hold_count != 0) {
1237 			vm_page_and_queue_spin_lock(m);
1238 			if (m->queue - m->pc == PQ_ACTIVE) {
1239 				TAILQ_REMOVE(
1240 					&vm_page_queues[PQ_ACTIVE + q].pl,
1241 					m, pageq);
1242 				TAILQ_INSERT_TAIL(
1243 					&vm_page_queues[PQ_ACTIVE + q].pl,
1244 					m, pageq);
1245 			}
1246 			vm_page_and_queue_spin_unlock(m);
1247 			vm_page_wakeup(m);
1248 			goto next;
1249 		}
1250 
1251 		/*
1252 		 * The count for pagedaemon pages is done after checking the
1253 		 * page for eligibility...
1254 		 */
1255 		mycpu->gd_cnt.v_pdpages++;
1256 
1257 		/*
1258 		 * Check to see "how much" the page has been used and clear
1259 		 * the tracking access bits.  If the object has no references
1260 		 * don't bother paying the expense.
1261 		 */
1262 		actcount = 0;
1263 		if (m->object && m->object->ref_count != 0) {
1264 			if (m->flags & PG_REFERENCED)
1265 				++actcount;
1266 			actcount += pmap_ts_referenced(m);
1267 			if (actcount) {
1268 				m->act_count += ACT_ADVANCE + actcount;
1269 				if (m->act_count > ACT_MAX)
1270 					m->act_count = ACT_MAX;
1271 			}
1272 		}
1273 		vm_page_flag_clear(m, PG_REFERENCED);
1274 
1275 		/*
1276 		 * actcount is only valid if the object ref_count is non-zero.
1277 		 * If the page does not have an object, actcount will be zero.
1278 		 */
1279 		if (actcount && m->object->ref_count != 0) {
1280 			vm_page_and_queue_spin_lock(m);
1281 			if (m->queue - m->pc == PQ_ACTIVE) {
1282 				TAILQ_REMOVE(
1283 					&vm_page_queues[PQ_ACTIVE + q].pl,
1284 					m, pageq);
1285 				TAILQ_INSERT_TAIL(
1286 					&vm_page_queues[PQ_ACTIVE + q].pl,
1287 					m, pageq);
1288 			}
1289 			vm_page_and_queue_spin_unlock(m);
1290 			vm_page_wakeup(m);
1291 		} else {
1292 			switch(m->object->type) {
1293 			case OBJT_DEFAULT:
1294 			case OBJT_SWAP:
1295 				m->act_count -= min(m->act_count,
1296 						    vm_anonmem_decline);
1297 				break;
1298 			default:
1299 				m->act_count -= min(m->act_count,
1300 						    vm_filemem_decline);
1301 				break;
1302 			}
1303 			if (vm_pageout_algorithm ||
1304 			    (m->object == NULL) ||
1305 			    (m->object && (m->object->ref_count == 0)) ||
1306 			    m->act_count < pass + 1
1307 			) {
1308 				/*
1309 				 * Deactivate the page.  If we had a
1310 				 * shortage from our inactive scan try to
1311 				 * free (cache) the page instead.
1312 				 *
1313 				 * Don't just blindly cache the page if
1314 				 * we do not have a shortage from the
1315 				 * inactive scan, that could lead to
1316 				 * gigabytes being moved.
1317 				 */
1318 				--inactive_shortage;
1319 				if (avail_shortage - delta > 0 ||
1320 				    (m->object && (m->object->ref_count == 0)))
1321 				{
1322 					if (avail_shortage - delta > 0)
1323 						++*recycle_countp;
1324 					vm_page_protect(m, VM_PROT_NONE);
1325 					if (m->dirty == 0 &&
1326 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1327 					    avail_shortage - delta > 0) {
1328 						vm_page_cache(m);
1329 					} else {
1330 						vm_page_deactivate(m);
1331 						vm_page_wakeup(m);
1332 					}
1333 				} else {
1334 					vm_page_deactivate(m);
1335 					vm_page_wakeup(m);
1336 				}
1337 				++delta;
1338 			} else {
1339 				vm_page_and_queue_spin_lock(m);
1340 				if (m->queue - m->pc == PQ_ACTIVE) {
1341 					TAILQ_REMOVE(
1342 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1343 					    m, pageq);
1344 					TAILQ_INSERT_TAIL(
1345 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1346 					    m, pageq);
1347 				}
1348 				vm_page_and_queue_spin_unlock(m);
1349 				vm_page_wakeup(m);
1350 			}
1351 		}
1352 next:
1353 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1354 	}
1355 
1356 	/*
1357 	 * Clean out our local marker.
1358 	 *
1359 	 * Page queue still spin-locked.
1360 	 */
1361 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1362 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1363 
1364 	return (delta);
1365 }
1366 
1367 /*
1368  * The number of actually free pages can drop down to v_free_reserved,
1369  * we try to build the free count back above v_free_min.  Note that
1370  * vm_paging_needed() also returns TRUE if v_free_count is not at
1371  * least v_free_min so that is the minimum we must build the free
1372  * count to.
1373  *
1374  * We use a slightly higher target to improve hysteresis,
1375  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1376  * is usually the same as v_cache_min this maintains about
1377  * half the pages in the free queue as are in the cache queue,
1378  * providing pretty good pipelining for pageout operation.
1379  *
1380  * The system operator can manipulate vm.v_cache_min and
1381  * vm.v_free_target to tune the pageout demon.  Be sure
1382  * to keep vm.v_free_min < vm.v_free_target.
1383  *
1384  * Note that the original paging target is to get at least
1385  * (free_min + cache_min) into (free + cache).  The slightly
1386  * higher target will shift additional pages from cache to free
1387  * without effecting the original paging target in order to
1388  * maintain better hysteresis and not have the free count always
1389  * be dead-on v_free_min.
1390  *
1391  * NOTE: we are still in a critical section.
1392  *
1393  * Pages moved from PQ_CACHE to totally free are not counted in the
1394  * pages_freed counter.
1395  */
1396 static void
1397 vm_pageout_scan_cache(int avail_shortage, int vnodes_skipped, int recycle_count)
1398 {
1399 	struct vm_pageout_scan_info info;
1400 	vm_page_t m;
1401 
1402 	while (vmstats.v_free_count <
1403 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1404 		/*
1405 		 * This steals some code from vm/vm_page.c
1406 		 */
1407 		static int cache_rover = 0;
1408 
1409 		m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK, FALSE);
1410 		if (m == NULL)
1411 			break;
1412 		/* page is returned removed from its queue and spinlocked */
1413 		if (vm_page_busy_try(m, TRUE)) {
1414 			vm_page_deactivate_locked(m);
1415 			vm_page_spin_unlock(m);
1416 			continue;
1417 		}
1418 		vm_page_spin_unlock(m);
1419 		pagedaemon_wakeup();
1420 		lwkt_yield();
1421 
1422 		/*
1423 		 * Remaining operations run with the page busy and neither
1424 		 * the page or the queue will be spin-locked.
1425 		 */
1426 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1427 		    m->hold_count ||
1428 		    m->wire_count) {
1429 			vm_page_deactivate(m);
1430 			vm_page_wakeup(m);
1431 			continue;
1432 		}
1433 		KKASSERT((m->flags & PG_MAPPED) == 0);
1434 		KKASSERT(m->dirty == 0);
1435 		cache_rover += PQ_PRIME2;
1436 		vm_pageout_page_free(m);
1437 		mycpu->gd_cnt.v_dfree++;
1438 	}
1439 
1440 #if !defined(NO_SWAPPING)
1441 	/*
1442 	 * Idle process swapout -- run once per second.
1443 	 */
1444 	if (vm_swap_idle_enabled) {
1445 		static time_t lsec;
1446 		if (time_uptime != lsec) {
1447 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1448 			vm_req_vmdaemon();
1449 			lsec = time_uptime;
1450 		}
1451 	}
1452 #endif
1453 
1454 	/*
1455 	 * If we didn't get enough free pages, and we have skipped a vnode
1456 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1457 	 * if we did not get enough free pages.
1458 	 */
1459 	if (vm_paging_target() > 0) {
1460 		if (vnodes_skipped && vm_page_count_min(0))
1461 			speedup_syncer(NULL);
1462 #if !defined(NO_SWAPPING)
1463 		if (vm_swap_enabled && vm_page_count_target()) {
1464 			vm_req_vmdaemon();
1465 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1466 		}
1467 #endif
1468 	}
1469 
1470 	/*
1471 	 * Handle catastrophic conditions.  Under good conditions we should
1472 	 * be at the target, well beyond our minimum.  If we could not even
1473 	 * reach our minimum the system is under heavy stress.
1474 	 *
1475 	 * Determine whether we have run out of memory.  This occurs when
1476 	 * swap_pager_full is TRUE and the only pages left in the page
1477 	 * queues are dirty.  We will still likely have page shortages.
1478 	 *
1479 	 * - swap_pager_full is set if insufficient swap was
1480 	 *   available to satisfy a requested pageout.
1481 	 *
1482 	 * - the inactive queue is bloated (4 x size of active queue),
1483 	 *   meaning it is unable to get rid of dirty pages and.
1484 	 *
1485 	 * - vm_page_count_min() without counting pages recycled from the
1486 	 *   active queue (recycle_count) means we could not recover
1487 	 *   enough pages to meet bare minimum needs.  This test only
1488 	 *   works if the inactive queue is bloated.
1489 	 *
1490 	 * - due to a positive avail_shortage we shifted the remaining
1491 	 *   dirty pages from the active queue to the inactive queue
1492 	 *   trying to find clean ones to free.
1493 	 */
1494 	if (swap_pager_full && vm_page_count_min(recycle_count))
1495 		kprintf("Warning: system low on memory+swap!\n");
1496 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1497 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1498 	    avail_shortage > 0) {
1499 		/*
1500 		 * Kill something.
1501 		 */
1502 		info.bigproc = NULL;
1503 		info.bigsize = 0;
1504 		allproc_scan(vm_pageout_scan_callback, &info);
1505 		if (info.bigproc != NULL) {
1506 			killproc(info.bigproc, "out of swap space");
1507 			info.bigproc->p_nice = PRIO_MIN;
1508 			info.bigproc->p_usched->resetpriority(
1509 				FIRST_LWP_IN_PROC(info.bigproc));
1510 			wakeup(&vmstats.v_free_count);
1511 			PRELE(info.bigproc);
1512 		}
1513 	}
1514 }
1515 
1516 static int
1517 vm_pageout_scan_callback(struct proc *p, void *data)
1518 {
1519 	struct vm_pageout_scan_info *info = data;
1520 	vm_offset_t size;
1521 
1522 	/*
1523 	 * Never kill system processes or init.  If we have configured swap
1524 	 * then try to avoid killing low-numbered pids.
1525 	 */
1526 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1527 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1528 		return (0);
1529 	}
1530 
1531 	lwkt_gettoken(&p->p_token);
1532 
1533 	/*
1534 	 * if the process is in a non-running type state,
1535 	 * don't touch it.
1536 	 */
1537 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1538 		lwkt_reltoken(&p->p_token);
1539 		return (0);
1540 	}
1541 
1542 	/*
1543 	 * Get the approximate process size.  Note that anonymous pages
1544 	 * with backing swap will be counted twice, but there should not
1545 	 * be too many such pages due to the stress the VM system is
1546 	 * under at this point.
1547 	 */
1548 	size = vmspace_anonymous_count(p->p_vmspace) +
1549 		vmspace_swap_count(p->p_vmspace);
1550 
1551 	/*
1552 	 * If the this process is bigger than the biggest one
1553 	 * remember it.
1554 	 */
1555 	if (info->bigsize < size) {
1556 		if (info->bigproc)
1557 			PRELE(info->bigproc);
1558 		PHOLD(p);
1559 		info->bigproc = p;
1560 		info->bigsize = size;
1561 	}
1562 	lwkt_reltoken(&p->p_token);
1563 	lwkt_yield();
1564 
1565 	return(0);
1566 }
1567 
1568 /*
1569  * This routine tries to maintain the pseudo LRU active queue,
1570  * so that during long periods of time where there is no paging,
1571  * that some statistic accumulation still occurs.  This code
1572  * helps the situation where paging just starts to occur.
1573  */
1574 static void
1575 vm_pageout_page_stats(int q)
1576 {
1577 	static int fullintervalcount = 0;
1578 	struct vm_page marker;
1579 	vm_page_t m;
1580 	int pcount, tpcount;		/* Number of pages to check */
1581 	int page_shortage;
1582 
1583 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1584 			 vmstats.v_free_min) -
1585 			(vmstats.v_free_count + vmstats.v_inactive_count +
1586 			 vmstats.v_cache_count);
1587 
1588 	if (page_shortage <= 0)
1589 		return;
1590 
1591 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1592 	fullintervalcount += vm_pageout_stats_interval;
1593 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1594 		tpcount = (vm_pageout_stats_max * pcount) /
1595 			  vmstats.v_page_count + 1;
1596 		if (pcount > tpcount)
1597 			pcount = tpcount;
1598 	} else {
1599 		fullintervalcount = 0;
1600 	}
1601 
1602 	bzero(&marker, sizeof(marker));
1603 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1604 	marker.queue = PQ_ACTIVE + q;
1605 	marker.pc = q;
1606 	marker.wire_count = 1;
1607 
1608 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1609 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1610 
1611 	/*
1612 	 * Queue locked at top of loop to avoid stack marker issues.
1613 	 */
1614 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1615 	       pcount-- > 0)
1616 	{
1617 		int actcount;
1618 
1619 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1620 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1621 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1622 				   &marker, pageq);
1623 
1624 		/*
1625 		 * Skip marker pages (atomic against other markers to avoid
1626 		 * infinite hop-over scans).
1627 		 */
1628 		if (m->flags & PG_MARKER)
1629 			continue;
1630 
1631 		/*
1632 		 * Ignore pages we can't busy
1633 		 */
1634 		if (vm_page_busy_try(m, TRUE))
1635 			continue;
1636 
1637 		/*
1638 		 * Remaining operations run with the page busy and neither
1639 		 * the page or the queue will be spin-locked.
1640 		 */
1641 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1642 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1643 
1644 		/*
1645 		 * We now have a safely busied page, the page and queue
1646 		 * spinlocks have been released.
1647 		 *
1648 		 * Ignore held pages
1649 		 */
1650 		if (m->hold_count) {
1651 			vm_page_wakeup(m);
1652 			goto next;
1653 		}
1654 
1655 		/*
1656 		 * Calculate activity
1657 		 */
1658 		actcount = 0;
1659 		if (m->flags & PG_REFERENCED) {
1660 			vm_page_flag_clear(m, PG_REFERENCED);
1661 			actcount += 1;
1662 		}
1663 		actcount += pmap_ts_referenced(m);
1664 
1665 		/*
1666 		 * Update act_count and move page to end of queue.
1667 		 */
1668 		if (actcount) {
1669 			m->act_count += ACT_ADVANCE + actcount;
1670 			if (m->act_count > ACT_MAX)
1671 				m->act_count = ACT_MAX;
1672 			vm_page_and_queue_spin_lock(m);
1673 			if (m->queue - m->pc == PQ_ACTIVE) {
1674 				TAILQ_REMOVE(
1675 					&vm_page_queues[PQ_ACTIVE + q].pl,
1676 					m, pageq);
1677 				TAILQ_INSERT_TAIL(
1678 					&vm_page_queues[PQ_ACTIVE + q].pl,
1679 					m, pageq);
1680 			}
1681 			vm_page_and_queue_spin_unlock(m);
1682 			vm_page_wakeup(m);
1683 			goto next;
1684 		}
1685 
1686 		if (m->act_count == 0) {
1687 			/*
1688 			 * We turn off page access, so that we have
1689 			 * more accurate RSS stats.  We don't do this
1690 			 * in the normal page deactivation when the
1691 			 * system is loaded VM wise, because the
1692 			 * cost of the large number of page protect
1693 			 * operations would be higher than the value
1694 			 * of doing the operation.
1695 			 *
1696 			 * We use the marker to save our place so
1697 			 * we can release the spin lock.  both (m)
1698 			 * and (next) will be invalid.
1699 			 */
1700 			vm_page_protect(m, VM_PROT_NONE);
1701 			vm_page_deactivate(m);
1702 		} else {
1703 			m->act_count -= min(m->act_count, ACT_DECLINE);
1704 			vm_page_and_queue_spin_lock(m);
1705 			if (m->queue - m->pc == PQ_ACTIVE) {
1706 				TAILQ_REMOVE(
1707 					&vm_page_queues[PQ_ACTIVE + q].pl,
1708 					m, pageq);
1709 				TAILQ_INSERT_TAIL(
1710 					&vm_page_queues[PQ_ACTIVE + q].pl,
1711 					m, pageq);
1712 			}
1713 			vm_page_and_queue_spin_unlock(m);
1714 		}
1715 		vm_page_wakeup(m);
1716 next:
1717 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1718 	}
1719 
1720 	/*
1721 	 * Remove our local marker
1722 	 *
1723 	 * Page queue still spin-locked.
1724 	 */
1725 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1726 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1727 }
1728 
1729 static int
1730 vm_pageout_free_page_calc(vm_size_t count)
1731 {
1732 	if (count < vmstats.v_page_count)
1733 		 return 0;
1734 	/*
1735 	 * free_reserved needs to include enough for the largest swap pager
1736 	 * structures plus enough for any pv_entry structs when paging.
1737 	 *
1738 	 * v_free_min		normal allocations
1739 	 * v_free_reserved	system allocations
1740 	 * v_pageout_free_min	allocations by pageout daemon
1741 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1742 	 */
1743 	if (vmstats.v_page_count > 1024)
1744 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1745 	else
1746 		vmstats.v_free_min = 64;
1747 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1748 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1749 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1750 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1751 
1752 	return 1;
1753 }
1754 
1755 
1756 /*
1757  * vm_pageout is the high level pageout daemon.
1758  *
1759  * No requirements.
1760  */
1761 static void
1762 vm_pageout_thread(void)
1763 {
1764 	int pass;
1765 	int q;
1766 	int q1iterator = 0;
1767 	int q2iterator = 0;
1768 
1769 	/*
1770 	 * Initialize some paging parameters.
1771 	 */
1772 	curthread->td_flags |= TDF_SYSTHREAD;
1773 
1774 	vm_pageout_free_page_calc(vmstats.v_page_count);
1775 
1776 	/*
1777 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1778 	 * that these are more a measure of the VM cache queue hysteresis
1779 	 * then the VM free queue.  Specifically, v_free_target is the
1780 	 * high water mark (free+cache pages).
1781 	 *
1782 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1783 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1784 	 * be big enough to handle memory needs while the pageout daemon
1785 	 * is signalled and run to free more pages.
1786 	 */
1787 	if (vmstats.v_free_count > 6144)
1788 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1789 	else
1790 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1791 
1792 	/*
1793 	 * NOTE: With the new buffer cache b_act_count we want the default
1794 	 *	 inactive target to be a percentage of available memory.
1795 	 *
1796 	 *	 The inactive target essentially determines the minimum
1797 	 *	 number of 'temporary' pages capable of caching one-time-use
1798 	 *	 files when the VM system is otherwise full of pages
1799 	 *	 belonging to multi-time-use files or active program data.
1800 	 *
1801 	 * NOTE: The inactive target is aggressively persued only if the
1802 	 *	 inactive queue becomes too small.  If the inactive queue
1803 	 *	 is large enough to satisfy page movement to free+cache
1804 	 *	 then it is repopulated more slowly from the active queue.
1805 	 *	 This allows a general inactive_target default to be set.
1806 	 *
1807 	 *	 There is an issue here for processes which sit mostly idle
1808 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1809 	 *	 the active queue will eventually cause such pages to
1810 	 *	 recycle eventually causing a lot of paging in the morning.
1811 	 *	 To reduce the incidence of this pages cycled out of the
1812 	 *	 buffer cache are moved directly to the inactive queue if
1813 	 *	 they were only used once or twice.
1814 	 *
1815 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1816 	 *	 Increasing the value (up to 64) increases the number of
1817 	 *	 buffer recyclements which go directly to the inactive queue.
1818 	 */
1819 	if (vmstats.v_free_count > 2048) {
1820 		vmstats.v_cache_min = vmstats.v_free_target;
1821 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1822 	} else {
1823 		vmstats.v_cache_min = 0;
1824 		vmstats.v_cache_max = 0;
1825 	}
1826 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1827 
1828 	/* XXX does not really belong here */
1829 	if (vm_page_max_wired == 0)
1830 		vm_page_max_wired = vmstats.v_free_count / 3;
1831 
1832 	if (vm_pageout_stats_max == 0)
1833 		vm_pageout_stats_max = vmstats.v_free_target;
1834 
1835 	/*
1836 	 * Set interval in seconds for stats scan.
1837 	 */
1838 	if (vm_pageout_stats_interval == 0)
1839 		vm_pageout_stats_interval = 5;
1840 	if (vm_pageout_full_stats_interval == 0)
1841 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1842 
1843 
1844 	/*
1845 	 * Set maximum free per pass
1846 	 */
1847 	if (vm_pageout_stats_free_max == 0)
1848 		vm_pageout_stats_free_max = 5;
1849 
1850 	swap_pager_swap_init();
1851 	pass = 0;
1852 
1853 	/*
1854 	 * The pageout daemon is never done, so loop forever.
1855 	 */
1856 	while (TRUE) {
1857 		int error;
1858 		int avail_shortage;
1859 		int inactive_shortage;
1860 		int vnodes_skipped = 0;
1861 		int recycle_count = 0;
1862 		int tmp;
1863 
1864 		/*
1865 		 * Wait for an action request.  If we timeout check to
1866 		 * see if paging is needed (in case the normal wakeup
1867 		 * code raced us).
1868 		 */
1869 		if (vm_pages_needed == 0) {
1870 			error = tsleep(&vm_pages_needed,
1871 				       0, "psleep",
1872 				       vm_pageout_stats_interval * hz);
1873 			if (error &&
1874 			    vm_paging_needed() == 0 &&
1875 			    vm_pages_needed == 0) {
1876 				for (q = 0; q < PQ_L2_SIZE; ++q)
1877 					vm_pageout_page_stats(q);
1878 				continue;
1879 			}
1880 			vm_pages_needed = 1;
1881 		}
1882 
1883 		mycpu->gd_cnt.v_pdwakeups++;
1884 
1885 		/*
1886 		 * Do whatever cleanup that the pmap code can.
1887 		 */
1888 		pmap_collect();
1889 
1890 		/*
1891 		 * Scan for pageout.  Try to avoid thrashing the system
1892 		 * with activity.
1893 		 *
1894 		 * Calculate our target for the number of free+cache pages we
1895 		 * want to get to.  This is higher then the number that causes
1896 		 * allocations to stall (severe) in order to provide hysteresis,
1897 		 * and if we don't make it all the way but get to the minimum
1898 		 * we're happy.  Goose it a bit if there are multipler
1899 		 * requests for memory.
1900 		 */
1901 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1902 		vm_pageout_deficit = 0;
1903 
1904 		if (avail_shortage > 0) {
1905 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1906 				avail_shortage -=
1907 					vm_pageout_scan_inactive(
1908 					    pass,
1909 					    (q + q1iterator) & PQ_L2_MASK,
1910 					    PQAVERAGE(avail_shortage),
1911 					    &vnodes_skipped);
1912 				if (avail_shortage <= 0)
1913 					break;
1914 			}
1915 			q1iterator = q + 1;
1916 		}
1917 
1918 		/*
1919 		 * Figure out how many active pages we must deactivate.  If
1920 		 * we were able to reach our target with just the inactive
1921 		 * scan above we limit the number of active pages we
1922 		 * deactivate to reduce unnecessary work.
1923 		 */
1924 		inactive_shortage = vmstats.v_inactive_target -
1925 				    vmstats.v_inactive_count;
1926 
1927 		/*
1928 		 * If we were unable to free sufficient inactive pages to
1929 		 * satisfy the free/cache queue requirements then simply
1930 		 * reaching the inactive target may not be good enough.
1931 		 * Try to deactivate pages in excess of the target based
1932 		 * on the shortfall.
1933 		 *
1934 		 * However to prevent thrashing the VM system do not
1935 		 * deactivate more than an additional 1/10 the inactive
1936 		 * target's worth of active pages.
1937 		 */
1938 		if (avail_shortage > 0) {
1939 			tmp = avail_shortage * 2;
1940 			if (tmp > vmstats.v_inactive_target / 10)
1941 				tmp = vmstats.v_inactive_target / 10;
1942 			inactive_shortage += tmp;
1943 		}
1944 
1945 		/*
1946 		 * Only trigger on inactive shortage.  Triggering on
1947 		 * avail_shortage can starve the active queue with
1948 		 * unnecessary active->inactive transitions and destroy
1949 		 * performance.
1950 		 */
1951 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
1952 			int delta;
1953 
1954 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1955 				delta = vm_pageout_scan_active(
1956 						pass,
1957 						(q + q2iterator) & PQ_L2_MASK,
1958 						PQAVERAGE(avail_shortage),
1959 						PQAVERAGE(inactive_shortage),
1960 						&recycle_count);
1961 				inactive_shortage -= delta;
1962 				avail_shortage -= delta;
1963 				if (inactive_shortage <= 0 &&
1964 				    avail_shortage <= 0) {
1965 					break;
1966 				}
1967 			}
1968 			q2iterator = q + 1;
1969 		}
1970 
1971 		/*
1972 		 * Finally free enough cache pages to meet our free page
1973 		 * requirement and take more drastic measures if we are
1974 		 * still in trouble.
1975 		 */
1976 		vm_pageout_scan_cache(avail_shortage, vnodes_skipped,
1977 				      recycle_count);
1978 
1979 		/*
1980 		 * Wait for more work.
1981 		 */
1982 		if (avail_shortage > 0) {
1983 			++pass;
1984 			if (swap_pager_full) {
1985 				/*
1986 				 * Running out of memory, catastrophic back-off
1987 				 * to one-second intervals.
1988 				 */
1989 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1990 			} else if (pass < 10 && vm_pages_needed > 1) {
1991 				/*
1992 				 * Normal operation, additional processes
1993 				 * have already kicked us.  Retry immediately.
1994 				 */
1995 			} else if (pass < 10) {
1996 				/*
1997 				 * Normal operation, fewer processes.  Delay
1998 				 * a bit but allow wakeups.
1999 				 */
2000 				vm_pages_needed = 0;
2001 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2002 				vm_pages_needed = 1;
2003 			} else {
2004 				/*
2005 				 * We've taken too many passes, forced delay.
2006 				 */
2007 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2008 			}
2009 		} else if (vm_pages_needed) {
2010 			/*
2011 			 * Interlocked wakeup of waiters (non-optional).
2012 			 *
2013 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2014 			 * wake
2015 			 */
2016 			pass = 0;
2017 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2018 			    !vm_page_count_target()) {
2019 				vm_pages_needed = 0;
2020 				wakeup(&vmstats.v_free_count);
2021 			}
2022 		} else {
2023 			pass = 0;
2024 		}
2025 	}
2026 }
2027 
2028 static struct kproc_desc page_kp = {
2029 	"pagedaemon",
2030 	vm_pageout_thread,
2031 	&pagethread
2032 };
2033 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
2034 
2035 
2036 /*
2037  * Called after allocating a page out of the cache or free queue
2038  * to possibly wake the pagedaemon up to replentish our supply.
2039  *
2040  * We try to generate some hysteresis by waking the pagedaemon up
2041  * when our free+cache pages go below the free_min+cache_min level.
2042  * The pagedaemon tries to get the count back up to at least the
2043  * minimum, and through to the target level if possible.
2044  *
2045  * If the pagedaemon is already active bump vm_pages_needed as a hint
2046  * that there are even more requests pending.
2047  *
2048  * SMP races ok?
2049  * No requirements.
2050  */
2051 void
2052 pagedaemon_wakeup(void)
2053 {
2054 	if (vm_paging_needed() && curthread != pagethread) {
2055 		if (vm_pages_needed == 0) {
2056 			vm_pages_needed = 1;	/* SMP race ok */
2057 			wakeup(&vm_pages_needed);
2058 		} else if (vm_page_count_min(0)) {
2059 			++vm_pages_needed;	/* SMP race ok */
2060 		}
2061 	}
2062 }
2063 
2064 #if !defined(NO_SWAPPING)
2065 
2066 /*
2067  * SMP races ok?
2068  * No requirements.
2069  */
2070 static void
2071 vm_req_vmdaemon(void)
2072 {
2073 	static int lastrun = 0;
2074 
2075 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2076 		wakeup(&vm_daemon_needed);
2077 		lastrun = ticks;
2078 	}
2079 }
2080 
2081 static int vm_daemon_callback(struct proc *p, void *data __unused);
2082 
2083 /*
2084  * No requirements.
2085  */
2086 static void
2087 vm_daemon(void)
2088 {
2089 	/*
2090 	 * XXX vm_daemon_needed specific token?
2091 	 */
2092 	while (TRUE) {
2093 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2094 		if (vm_pageout_req_swapout) {
2095 			swapout_procs(vm_pageout_req_swapout);
2096 			vm_pageout_req_swapout = 0;
2097 		}
2098 		/*
2099 		 * scan the processes for exceeding their rlimits or if
2100 		 * process is swapped out -- deactivate pages
2101 		 */
2102 		allproc_scan(vm_daemon_callback, NULL);
2103 	}
2104 }
2105 
2106 static int
2107 vm_daemon_callback(struct proc *p, void *data __unused)
2108 {
2109 	struct vmspace *vm;
2110 	vm_pindex_t limit, size;
2111 
2112 	/*
2113 	 * if this is a system process or if we have already
2114 	 * looked at this process, skip it.
2115 	 */
2116 	lwkt_gettoken(&p->p_token);
2117 
2118 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2119 		lwkt_reltoken(&p->p_token);
2120 		return (0);
2121 	}
2122 
2123 	/*
2124 	 * if the process is in a non-running type state,
2125 	 * don't touch it.
2126 	 */
2127 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
2128 		lwkt_reltoken(&p->p_token);
2129 		return (0);
2130 	}
2131 
2132 	/*
2133 	 * get a limit
2134 	 */
2135 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2136 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2137 
2138 	/*
2139 	 * let processes that are swapped out really be
2140 	 * swapped out.  Set the limit to nothing to get as
2141 	 * many pages out to swap as possible.
2142 	 */
2143 	if (p->p_flags & P_SWAPPEDOUT)
2144 		limit = 0;
2145 
2146 	vm = p->p_vmspace;
2147 	vmspace_hold(vm);
2148 	size = vmspace_resident_count(vm);
2149 	if (limit >= 0 && size >= limit) {
2150 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2151 	}
2152 	vmspace_drop(vm);
2153 
2154 	lwkt_reltoken(&p->p_token);
2155 
2156 	return (0);
2157 }
2158 
2159 #endif
2160