xref: /dragonfly/sys/vm/vm_pageout.c (revision 92fc8b5c)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
67  */
68 
69 /*
70  *	The proverbial page-out daemon.
71  */
72 
73 #include "opt_vm.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/kthread.h>
79 #include <sys/resourcevar.h>
80 #include <sys/signalvar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sysctl.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <sys/lock.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_extern.h>
95 
96 #include <sys/thread2.h>
97 #include <vm/vm_page2.h>
98 
99 /*
100  * System initialization
101  */
102 
103 /* the kernel process "vm_pageout"*/
104 static int vm_pageout_clean (vm_page_t);
105 static int vm_pageout_scan (int pass);
106 static int vm_pageout_free_page_calc (vm_size_t count);
107 struct thread *pagethread;
108 
109 #if !defined(NO_SWAPPING)
110 /* the kernel process "vm_daemon"*/
111 static void vm_daemon (void);
112 static struct	thread *vmthread;
113 
114 static struct kproc_desc vm_kp = {
115 	"vmdaemon",
116 	vm_daemon,
117 	&vmthread
118 };
119 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
120 #endif
121 
122 
123 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
124 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
125 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
126 
127 #if !defined(NO_SWAPPING)
128 static int vm_pageout_req_swapout;	/* XXX */
129 static int vm_daemon_needed;
130 #endif
131 static int vm_max_launder = 32;
132 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
133 static int vm_pageout_full_stats_interval = 0;
134 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
135 static int defer_swap_pageouts=0;
136 static int disable_swap_pageouts=0;
137 
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145 
146 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
147 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
148 
149 SYSCTL_INT(_vm, OID_AUTO, max_launder,
150 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
151 
152 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
153 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
154 
155 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
156 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
157 
158 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
159 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
160 
161 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
162 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
163 
164 #if defined(NO_SWAPPING)
165 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
166 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
167 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
168 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
169 #else
170 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
171 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
172 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
173 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
174 #endif
175 
176 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
177 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
178 
179 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
180 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
181 
182 static int pageout_lock_miss;
183 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
184 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
185 
186 int vm_load;
187 SYSCTL_INT(_vm, OID_AUTO, vm_load,
188 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
189 int vm_load_enable = 1;
190 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
191 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
192 #ifdef INVARIANTS
193 int vm_load_debug;
194 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
195 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
196 #endif
197 
198 #define VM_PAGEOUT_PAGE_COUNT 16
199 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
200 
201 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
202 
203 #if !defined(NO_SWAPPING)
204 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
205 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
206 static freeer_fcn_t vm_pageout_object_deactivate_pages;
207 static void vm_req_vmdaemon (void);
208 #endif
209 static void vm_pageout_page_stats(void);
210 
211 /*
212  * Update vm_load to slow down faulting processes.
213  *
214  * SMP races ok.
215  * No requirements.
216  */
217 void
218 vm_fault_ratecheck(void)
219 {
220 	if (vm_pages_needed) {
221 		if (vm_load < 1000)
222 			++vm_load;
223 	} else {
224 		if (vm_load > 0)
225 			--vm_load;
226 	}
227 }
228 
229 /*
230  * vm_pageout_clean:
231  *
232  * Clean the page and remove it from the laundry.  The page must not be
233  * busy on-call.
234  *
235  * We set the busy bit to cause potential page faults on this page to
236  * block.  Note the careful timing, however, the busy bit isn't set till
237  * late and we cannot do anything that will mess with the page.
238  *
239  * The caller must hold vm_token.
240  */
241 static int
242 vm_pageout_clean(vm_page_t m)
243 {
244 	vm_object_t object;
245 	vm_page_t mc[2*vm_pageout_page_count];
246 	int pageout_count;
247 	int ib, is, page_base;
248 	vm_pindex_t pindex = m->pindex;
249 
250 	object = m->object;
251 
252 	/*
253 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
254 	 * with the new swapper, but we could have serious problems paging
255 	 * out other object types if there is insufficient memory.
256 	 *
257 	 * Unfortunately, checking free memory here is far too late, so the
258 	 * check has been moved up a procedural level.
259 	 */
260 
261 	/*
262 	 * Don't mess with the page if it's busy, held, or special
263 	 */
264 	if ((m->hold_count != 0) ||
265 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
266 		return 0;
267 	}
268 
269 	mc[vm_pageout_page_count] = m;
270 	pageout_count = 1;
271 	page_base = vm_pageout_page_count;
272 	ib = 1;
273 	is = 1;
274 
275 	/*
276 	 * Scan object for clusterable pages.
277 	 *
278 	 * We can cluster ONLY if: ->> the page is NOT
279 	 * clean, wired, busy, held, or mapped into a
280 	 * buffer, and one of the following:
281 	 * 1) The page is inactive, or a seldom used
282 	 *    active page.
283 	 * -or-
284 	 * 2) we force the issue.
285 	 *
286 	 * During heavy mmap/modification loads the pageout
287 	 * daemon can really fragment the underlying file
288 	 * due to flushing pages out of order and not trying
289 	 * align the clusters (which leave sporatic out-of-order
290 	 * holes).  To solve this problem we do the reverse scan
291 	 * first and attempt to align our cluster, then do a
292 	 * forward scan if room remains.
293 	 */
294 
295 	vm_object_hold(object);
296 more:
297 	while (ib && pageout_count < vm_pageout_page_count) {
298 		vm_page_t p;
299 
300 		if (ib > pindex) {
301 			ib = 0;
302 			break;
303 		}
304 
305 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
306 			ib = 0;
307 			break;
308 		}
309 		if (((p->queue - p->pc) == PQ_CACHE) ||
310 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
311 			ib = 0;
312 			break;
313 		}
314 		vm_page_test_dirty(p);
315 		if ((p->dirty & p->valid) == 0 ||
316 		    p->queue != PQ_INACTIVE ||
317 		    p->wire_count != 0 ||	/* may be held by buf cache */
318 		    p->hold_count != 0) {	/* may be undergoing I/O */
319 			ib = 0;
320 			break;
321 		}
322 		mc[--page_base] = p;
323 		++pageout_count;
324 		++ib;
325 		/*
326 		 * alignment boundry, stop here and switch directions.  Do
327 		 * not clear ib.
328 		 */
329 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
330 			break;
331 	}
332 
333 	while (pageout_count < vm_pageout_page_count &&
334 	    pindex + is < object->size) {
335 		vm_page_t p;
336 
337 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
338 			break;
339 		if (((p->queue - p->pc) == PQ_CACHE) ||
340 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
341 			break;
342 		}
343 		vm_page_test_dirty(p);
344 		if ((p->dirty & p->valid) == 0 ||
345 		    p->queue != PQ_INACTIVE ||
346 		    p->wire_count != 0 ||	/* may be held by buf cache */
347 		    p->hold_count != 0) {	/* may be undergoing I/O */
348 			break;
349 		}
350 		mc[page_base + pageout_count] = p;
351 		++pageout_count;
352 		++is;
353 	}
354 
355 	/*
356 	 * If we exhausted our forward scan, continue with the reverse scan
357 	 * when possible, even past a page boundry.  This catches boundry
358 	 * conditions.
359 	 */
360 	if (ib && pageout_count < vm_pageout_page_count)
361 		goto more;
362 
363 	vm_object_drop(object);
364 
365 	/*
366 	 * we allow reads during pageouts...
367 	 */
368 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
369 }
370 
371 /*
372  * vm_pageout_flush() - launder the given pages
373  *
374  *	The given pages are laundered.  Note that we setup for the start of
375  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
376  *	reference count all in here rather then in the parent.  If we want
377  *	the parent to do more sophisticated things we may have to change
378  *	the ordering.
379  *
380  * The caller must hold vm_token.
381  */
382 int
383 vm_pageout_flush(vm_page_t *mc, int count, int flags)
384 {
385 	vm_object_t object;
386 	int pageout_status[count];
387 	int numpagedout = 0;
388 	int i;
389 
390 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
391 
392 	/*
393 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
394 	 */
395 	for (i = 0; i < count; i++) {
396 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
397 		vm_page_io_start(mc[i]);
398 	}
399 
400 	/*
401 	 * We must make the pages read-only.  This will also force the
402 	 * modified bit in the related pmaps to be cleared.  The pager
403 	 * cannot clear the bit for us since the I/O completion code
404 	 * typically runs from an interrupt.  The act of making the page
405 	 * read-only handles the case for us.
406 	 */
407 	for (i = 0; i < count; i++) {
408 		vm_page_protect(mc[i], VM_PROT_READ);
409 	}
410 
411 	object = mc[0]->object;
412 	vm_object_pip_add(object, count);
413 
414 	vm_pager_put_pages(object, mc, count,
415 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
416 	    pageout_status);
417 
418 	for (i = 0; i < count; i++) {
419 		vm_page_t mt = mc[i];
420 
421 		switch (pageout_status[i]) {
422 		case VM_PAGER_OK:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_PEND:
426 			numpagedout++;
427 			break;
428 		case VM_PAGER_BAD:
429 			/*
430 			 * Page outside of range of object. Right now we
431 			 * essentially lose the changes by pretending it
432 			 * worked.
433 			 */
434 			pmap_clear_modify(mt);
435 			vm_page_undirty(mt);
436 			break;
437 		case VM_PAGER_ERROR:
438 		case VM_PAGER_FAIL:
439 			/*
440 			 * A page typically cannot be paged out when we
441 			 * have run out of swap.  We leave the page
442 			 * marked inactive and will try to page it out
443 			 * again later.
444 			 *
445 			 * Starvation of the active page list is used to
446 			 * determine when the system is massively memory
447 			 * starved.
448 			 */
449 			break;
450 		case VM_PAGER_AGAIN:
451 			break;
452 		}
453 
454 		/*
455 		 * If the operation is still going, leave the page busy to
456 		 * block all other accesses. Also, leave the paging in
457 		 * progress indicator set so that we don't attempt an object
458 		 * collapse.
459 		 *
460 		 * For any pages which have completed synchronously,
461 		 * deactivate the page if we are under a severe deficit.
462 		 * Do not try to enter them into the cache, though, they
463 		 * might still be read-heavy.
464 		 */
465 		if (pageout_status[i] != VM_PAGER_PEND) {
466 			if (vm_page_count_severe())
467 				vm_page_deactivate(mt);
468 #if 0
469 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
470 				vm_page_protect(mt, VM_PROT_READ);
471 #endif
472 			vm_page_io_finish(mt);
473 			vm_object_pip_wakeup(object);
474 		}
475 	}
476 	return numpagedout;
477 }
478 
479 #if !defined(NO_SWAPPING)
480 /*
481  *	vm_pageout_object_deactivate_pages
482  *
483  *	deactivate enough pages to satisfy the inactive target
484  *	requirements or if vm_page_proc_limit is set, then
485  *	deactivate all of the pages in the object and its
486  *	backing_objects.
487  *
488  * The map must be locked.
489  * The caller must hold vm_token.
490  * The caller must hold the vm_object.
491  */
492 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
493 
494 static void
495 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
496 				   vm_pindex_t desired, int map_remove_only)
497 {
498 	struct rb_vm_page_scan_info info;
499 	vm_object_t tmp;
500 	int remove_mode;
501 
502 	while (object) {
503 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
504 			return;
505 
506 		vm_object_hold(object);
507 
508 		if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS) {
509 			vm_object_drop(object);
510 			return;
511 		}
512 		if (object->paging_in_progress) {
513 			vm_object_drop(object);
514 			return;
515 		}
516 
517 		remove_mode = map_remove_only;
518 		if (object->shadow_count > 1)
519 			remove_mode = 1;
520 
521 		/*
522 		 * scan the objects entire memory queue.  spl protection is
523 		 * required to avoid an interrupt unbusy/free race against
524 		 * our busy check.
525 		 */
526 		crit_enter();
527 		info.limit = remove_mode;
528 		info.map = map;
529 		info.desired = desired;
530 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
531 				vm_pageout_object_deactivate_pages_callback,
532 				&info
533 		);
534 		crit_exit();
535 		tmp = object->backing_object;
536 		vm_object_drop(object);
537 		object = tmp;
538 	}
539 }
540 
541 /*
542  * The caller must hold vm_token.
543  * The caller must hold the vm_object.
544  */
545 static int
546 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
547 {
548 	struct rb_vm_page_scan_info *info = data;
549 	int actcount;
550 
551 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
552 		return(-1);
553 	}
554 	mycpu->gd_cnt.v_pdpages++;
555 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
556 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
557 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
558 		return(0);
559 	}
560 
561 	actcount = pmap_ts_referenced(p);
562 	if (actcount) {
563 		vm_page_flag_set(p, PG_REFERENCED);
564 	} else if (p->flags & PG_REFERENCED) {
565 		actcount = 1;
566 	}
567 
568 	if ((p->queue != PQ_ACTIVE) &&
569 		(p->flags & PG_REFERENCED)) {
570 		vm_page_activate(p);
571 		p->act_count += actcount;
572 		vm_page_flag_clear(p, PG_REFERENCED);
573 	} else if (p->queue == PQ_ACTIVE) {
574 		if ((p->flags & PG_REFERENCED) == 0) {
575 			p->act_count -= min(p->act_count, ACT_DECLINE);
576 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
577 				vm_page_busy(p);
578 				vm_page_protect(p, VM_PROT_NONE);
579 				vm_page_deactivate(p);
580 				vm_page_wakeup(p);
581 			} else {
582 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
583 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
584 			}
585 		} else {
586 			vm_page_activate(p);
587 			vm_page_flag_clear(p, PG_REFERENCED);
588 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
589 				p->act_count += ACT_ADVANCE;
590 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
591 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
592 		}
593 	} else if (p->queue == PQ_INACTIVE) {
594 		vm_page_busy(p);
595 		vm_page_protect(p, VM_PROT_NONE);
596 		vm_page_wakeup(p);
597 	}
598 	return(0);
599 }
600 
601 /*
602  * Deactivate some number of pages in a map, try to do it fairly, but
603  * that is really hard to do.
604  *
605  * The caller must hold vm_token.
606  */
607 static void
608 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
609 {
610 	vm_map_entry_t tmpe;
611 	vm_object_t obj, bigobj;
612 	int nothingwired;
613 
614 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
615 		return;
616 	}
617 
618 	bigobj = NULL;
619 	nothingwired = TRUE;
620 
621 	/*
622 	 * first, search out the biggest object, and try to free pages from
623 	 * that.
624 	 */
625 	tmpe = map->header.next;
626 	while (tmpe != &map->header) {
627 		switch(tmpe->maptype) {
628 		case VM_MAPTYPE_NORMAL:
629 		case VM_MAPTYPE_VPAGETABLE:
630 			obj = tmpe->object.vm_object;
631 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
632 				((bigobj == NULL) ||
633 				 (bigobj->resident_page_count < obj->resident_page_count))) {
634 				bigobj = obj;
635 			}
636 			break;
637 		default:
638 			break;
639 		}
640 		if (tmpe->wired_count > 0)
641 			nothingwired = FALSE;
642 		tmpe = tmpe->next;
643 	}
644 
645 	if (bigobj)
646 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
647 
648 	/*
649 	 * Next, hunt around for other pages to deactivate.  We actually
650 	 * do this search sort of wrong -- .text first is not the best idea.
651 	 */
652 	tmpe = map->header.next;
653 	while (tmpe != &map->header) {
654 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
655 			break;
656 		switch(tmpe->maptype) {
657 		case VM_MAPTYPE_NORMAL:
658 		case VM_MAPTYPE_VPAGETABLE:
659 			obj = tmpe->object.vm_object;
660 			if (obj)
661 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
662 			break;
663 		default:
664 			break;
665 		}
666 		tmpe = tmpe->next;
667 	};
668 
669 	/*
670 	 * Remove all mappings if a process is swapped out, this will free page
671 	 * table pages.
672 	 */
673 	if (desired == 0 && nothingwired)
674 		pmap_remove(vm_map_pmap(map),
675 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
676 	vm_map_unlock(map);
677 }
678 #endif
679 
680 /*
681  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
682  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
683  * be trivially freed.
684  *
685  * The caller must hold vm_token.
686  *
687  * WARNING: vm_object_reference() can block.
688  */
689 static void
690 vm_pageout_page_free(vm_page_t m)
691 {
692 	vm_object_t object = m->object;
693 	int type = object->type;
694 
695 	vm_page_busy(m);
696 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
697 		vm_object_reference(object);
698 	vm_page_protect(m, VM_PROT_NONE);
699 	vm_page_free(m);
700 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
701 		vm_object_deallocate(object);
702 }
703 
704 /*
705  * vm_pageout_scan does the dirty work for the pageout daemon.
706  */
707 struct vm_pageout_scan_info {
708 	struct proc *bigproc;
709 	vm_offset_t bigsize;
710 };
711 
712 static int vm_pageout_scan_callback(struct proc *p, void *data);
713 
714 /*
715  * The caller must hold vm_token.
716  */
717 static int
718 vm_pageout_scan(int pass)
719 {
720 	struct vm_pageout_scan_info info;
721 	vm_page_t m, next;
722 	struct vm_page marker;
723 	struct vnode *vpfailed;		/* warning, allowed to be stale */
724 	int maxscan, pcount;
725 	int recycle_count;
726 	int inactive_shortage, active_shortage;
727 	int inactive_original_shortage;
728 	vm_object_t object;
729 	int actcount;
730 	int vnodes_skipped = 0;
731 	int maxlaunder;
732 
733 	/*
734 	 * Do whatever cleanup that the pmap code can.
735 	 */
736 	pmap_collect();
737 
738 	/*
739 	 * Calculate our target for the number of free+cache pages we
740 	 * want to get to.  This is higher then the number that causes
741 	 * allocations to stall (severe) in order to provide hysteresis,
742 	 * and if we don't make it all the way but get to the minimum
743 	 * we're happy.
744 	 */
745 	inactive_shortage = vm_paging_target() + vm_pageout_deficit;
746 	inactive_original_shortage = inactive_shortage;
747 	vm_pageout_deficit = 0;
748 
749 	/*
750 	 * Initialize our marker
751 	 */
752 	bzero(&marker, sizeof(marker));
753 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
754 	marker.queue = PQ_INACTIVE;
755 	marker.wire_count = 1;
756 
757 	/*
758 	 * Start scanning the inactive queue for pages we can move to the
759 	 * cache or free.  The scan will stop when the target is reached or
760 	 * we have scanned the entire inactive queue.  Note that m->act_count
761 	 * is not used to form decisions for the inactive queue, only for the
762 	 * active queue.
763 	 *
764 	 * maxlaunder limits the number of dirty pages we flush per scan.
765 	 * For most systems a smaller value (16 or 32) is more robust under
766 	 * extreme memory and disk pressure because any unnecessary writes
767 	 * to disk can result in extreme performance degredation.  However,
768 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
769 	 * used) will die horribly with limited laundering.  If the pageout
770 	 * daemon cannot clean enough pages in the first pass, we let it go
771 	 * all out in succeeding passes.
772 	 */
773 	if ((maxlaunder = vm_max_launder) <= 1)
774 		maxlaunder = 1;
775 	if (pass)
776 		maxlaunder = 10000;
777 
778 	/*
779 	 * We will generally be in a critical section throughout the
780 	 * scan, but we can release it temporarily when we are sitting on a
781 	 * non-busy page without fear.  this is required to prevent an
782 	 * interrupt from unbusying or freeing a page prior to our busy
783 	 * check, leaving us on the wrong queue or checking the wrong
784 	 * page.
785 	 */
786 	crit_enter();
787 rescan0:
788 	vpfailed = NULL;
789 	maxscan = vmstats.v_inactive_count;
790 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
791 	     m != NULL && maxscan-- > 0 && inactive_shortage > 0;
792 	     m = next
793 	 ) {
794 		mycpu->gd_cnt.v_pdpages++;
795 
796 		/*
797 		 * Give interrupts a chance
798 		 */
799 		crit_exit();
800 		crit_enter();
801 
802 		/*
803 		 * It's easier for some of the conditions below to just loop
804 		 * and catch queue changes here rather then check everywhere
805 		 * else.
806 		 */
807 		if (m->queue != PQ_INACTIVE)
808 			goto rescan0;
809 		next = TAILQ_NEXT(m, pageq);
810 
811 		/*
812 		 * skip marker pages
813 		 */
814 		if (m->flags & PG_MARKER)
815 			continue;
816 
817 		/*
818 		 * A held page may be undergoing I/O, so skip it.
819 		 */
820 		if (m->hold_count) {
821 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
822 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
823 			++vm_swapcache_inactive_heuristic;
824 			continue;
825 		}
826 
827 		/*
828 		 * Dont mess with busy pages, keep in the front of the
829 		 * queue, most likely are being paged out.
830 		 */
831 		if (m->busy || (m->flags & PG_BUSY)) {
832 			continue;
833 		}
834 
835 		if (m->object->ref_count == 0) {
836 			/*
837 			 * If the object is not being used, we ignore previous
838 			 * references.
839 			 */
840 			vm_page_flag_clear(m, PG_REFERENCED);
841 			pmap_clear_reference(m);
842 
843 		} else if (((m->flags & PG_REFERENCED) == 0) &&
844 			    (actcount = pmap_ts_referenced(m))) {
845 			/*
846 			 * Otherwise, if the page has been referenced while
847 			 * in the inactive queue, we bump the "activation
848 			 * count" upwards, making it less likely that the
849 			 * page will be added back to the inactive queue
850 			 * prematurely again.  Here we check the page tables
851 			 * (or emulated bits, if any), given the upper level
852 			 * VM system not knowing anything about existing
853 			 * references.
854 			 */
855 			vm_page_activate(m);
856 			m->act_count += (actcount + ACT_ADVANCE);
857 			continue;
858 		}
859 
860 		/*
861 		 * If the upper level VM system knows about any page
862 		 * references, we activate the page.  We also set the
863 		 * "activation count" higher than normal so that we will less
864 		 * likely place pages back onto the inactive queue again.
865 		 */
866 		if ((m->flags & PG_REFERENCED) != 0) {
867 			vm_page_flag_clear(m, PG_REFERENCED);
868 			actcount = pmap_ts_referenced(m);
869 			vm_page_activate(m);
870 			m->act_count += (actcount + ACT_ADVANCE + 1);
871 			continue;
872 		}
873 
874 		/*
875 		 * If the upper level VM system doesn't know anything about
876 		 * the page being dirty, we have to check for it again.  As
877 		 * far as the VM code knows, any partially dirty pages are
878 		 * fully dirty.
879 		 *
880 		 * Pages marked PG_WRITEABLE may be mapped into the user
881 		 * address space of a process running on another cpu.  A
882 		 * user process (without holding the MP lock) running on
883 		 * another cpu may be able to touch the page while we are
884 		 * trying to remove it.  vm_page_cache() will handle this
885 		 * case for us.
886 		 */
887 		if (m->dirty == 0) {
888 			vm_page_test_dirty(m);
889 		} else {
890 			vm_page_dirty(m);
891 		}
892 
893 		if (m->valid == 0) {
894 			/*
895 			 * Invalid pages can be easily freed
896 			 */
897 			vm_pageout_page_free(m);
898 			mycpu->gd_cnt.v_dfree++;
899 			--inactive_shortage;
900 		} else if (m->dirty == 0) {
901 			/*
902 			 * Clean pages can be placed onto the cache queue.
903 			 * This effectively frees them.
904 			 */
905 			vm_page_busy(m);
906 			vm_page_cache(m);
907 			--inactive_shortage;
908 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
909 			/*
910 			 * Dirty pages need to be paged out, but flushing
911 			 * a page is extremely expensive verses freeing
912 			 * a clean page.  Rather then artificially limiting
913 			 * the number of pages we can flush, we instead give
914 			 * dirty pages extra priority on the inactive queue
915 			 * by forcing them to be cycled through the queue
916 			 * twice before being flushed, after which the
917 			 * (now clean) page will cycle through once more
918 			 * before being freed.  This significantly extends
919 			 * the thrash point for a heavily loaded machine.
920 			 */
921 			vm_page_flag_set(m, PG_WINATCFLS);
922 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
923 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924 			++vm_swapcache_inactive_heuristic;
925 		} else if (maxlaunder > 0) {
926 			/*
927 			 * We always want to try to flush some dirty pages if
928 			 * we encounter them, to keep the system stable.
929 			 * Normally this number is small, but under extreme
930 			 * pressure where there are insufficient clean pages
931 			 * on the inactive queue, we may have to go all out.
932 			 */
933 			int swap_pageouts_ok;
934 			struct vnode *vp = NULL;
935 
936 			object = m->object;
937 
938 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
939 				swap_pageouts_ok = 1;
940 			} else {
941 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
942 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
943 				vm_page_count_min(0));
944 
945 			}
946 
947 			/*
948 			 * We don't bother paging objects that are "dead".
949 			 * Those objects are in a "rundown" state.
950 			 */
951 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
952 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
953 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
954 				++vm_swapcache_inactive_heuristic;
955 				continue;
956 			}
957 
958 			/*
959 			 * The object is already known NOT to be dead.   It
960 			 * is possible for the vget() to block the whole
961 			 * pageout daemon, but the new low-memory handling
962 			 * code should prevent it.
963 			 *
964 			 * The previous code skipped locked vnodes and, worse,
965 			 * reordered pages in the queue.  This results in
966 			 * completely non-deterministic operation because,
967 			 * quite often, a vm_fault has initiated an I/O and
968 			 * is holding a locked vnode at just the point where
969 			 * the pageout daemon is woken up.
970 			 *
971 			 * We can't wait forever for the vnode lock, we might
972 			 * deadlock due to a vn_read() getting stuck in
973 			 * vm_wait while holding this vnode.  We skip the
974 			 * vnode if we can't get it in a reasonable amount
975 			 * of time.
976 			 *
977 			 * vpfailed is used to (try to) avoid the case where
978 			 * a large number of pages are associated with a
979 			 * locked vnode, which could cause the pageout daemon
980 			 * to stall for an excessive amount of time.
981 			 */
982 			if (object->type == OBJT_VNODE) {
983 				int flags;
984 
985 				vp = object->handle;
986 				flags = LK_EXCLUSIVE | LK_NOOBJ;
987 				if (vp == vpfailed)
988 					flags |= LK_NOWAIT;
989 				else
990 					flags |= LK_TIMELOCK;
991 				if (vget(vp, flags) != 0) {
992 					vpfailed = vp;
993 					++pageout_lock_miss;
994 					if (object->flags & OBJ_MIGHTBEDIRTY)
995 						    vnodes_skipped++;
996 					continue;
997 				}
998 
999 				/*
1000 				 * The page might have been moved to another
1001 				 * queue during potential blocking in vget()
1002 				 * above.  The page might have been freed and
1003 				 * reused for another vnode.  The object might
1004 				 * have been reused for another vnode.
1005 				 */
1006 				if (m->queue != PQ_INACTIVE ||
1007 				    m->object != object ||
1008 				    object->handle != vp) {
1009 					if (object->flags & OBJ_MIGHTBEDIRTY)
1010 						vnodes_skipped++;
1011 					vput(vp);
1012 					continue;
1013 				}
1014 
1015 				/*
1016 				 * The page may have been busied during the
1017 				 * blocking in vput();  We don't move the
1018 				 * page back onto the end of the queue so that
1019 				 * statistics are more correct if we don't.
1020 				 */
1021 				if (m->busy || (m->flags & PG_BUSY)) {
1022 					vput(vp);
1023 					continue;
1024 				}
1025 
1026 				/*
1027 				 * If the page has become held it might
1028 				 * be undergoing I/O, so skip it
1029 				 */
1030 				if (m->hold_count) {
1031 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1032 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1033 					++vm_swapcache_inactive_heuristic;
1034 					if (object->flags & OBJ_MIGHTBEDIRTY)
1035 						vnodes_skipped++;
1036 					vput(vp);
1037 					continue;
1038 				}
1039 			}
1040 
1041 			/*
1042 			 * If a page is dirty, then it is either being washed
1043 			 * (but not yet cleaned) or it is still in the
1044 			 * laundry.  If it is still in the laundry, then we
1045 			 * start the cleaning operation.
1046 			 *
1047 			 * This operation may cluster, invalidating the 'next'
1048 			 * pointer.  To prevent an inordinate number of
1049 			 * restarts we use our marker to remember our place.
1050 			 *
1051 			 * decrement inactive_shortage on success to account
1052 			 * for the (future) cleaned page.  Otherwise we
1053 			 * could wind up laundering or cleaning too many
1054 			 * pages.
1055 			 */
1056 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1057 			if (vm_pageout_clean(m) != 0) {
1058 				--inactive_shortage;
1059 				--maxlaunder;
1060 			}
1061 			next = TAILQ_NEXT(&marker, pageq);
1062 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1063 			if (vp != NULL)
1064 				vput(vp);
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * We want to move pages from the active queue to the inactive
1070 	 * queue to get the inactive queue to the inactive target.  If
1071 	 * we still have a page shortage from above we try to directly free
1072 	 * clean pages instead of moving them.
1073 	 *
1074 	 * If we do still have a shortage we keep track of the number of
1075 	 * pages we free or cache (recycle_count) as a measure of thrashing
1076 	 * between the active and inactive queues.
1077 	 *
1078 	 * If we were able to completely satisfy the free+cache targets
1079 	 * from the inactive pool we limit the number of pages we move
1080 	 * from the active pool to the inactive pool to 2x the pages we
1081 	 * had removed from the inactive pool (with a minimum of 1/5 the
1082 	 * inactive target).  If we were not able to completely satisfy
1083 	 * the free+cache targets we go for the whole target aggressively.
1084 	 *
1085 	 * NOTE: Both variables can end up negative.
1086 	 * NOTE: We are still in a critical section.
1087 	 */
1088 	active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1089 	if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1090 		inactive_original_shortage = vmstats.v_inactive_target / 10;
1091 	if (inactive_shortage <= 0 &&
1092 	    active_shortage > inactive_original_shortage * 2) {
1093 		active_shortage = inactive_original_shortage * 2;
1094 	}
1095 
1096 	pcount = vmstats.v_active_count;
1097 	recycle_count = 0;
1098 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1099 
1100 	while ((m != NULL) && (pcount-- > 0) &&
1101 	       (inactive_shortage > 0 || active_shortage > 0)
1102 	) {
1103 		/*
1104 		 * Give interrupts a chance.
1105 		 */
1106 		crit_exit();
1107 		crit_enter();
1108 
1109 		/*
1110 		 * If the page was ripped out from under us, just stop.
1111 		 */
1112 		if (m->queue != PQ_ACTIVE)
1113 			break;
1114 		next = TAILQ_NEXT(m, pageq);
1115 
1116 		/*
1117 		 * Don't deactivate pages that are busy.
1118 		 */
1119 		if ((m->busy != 0) ||
1120 		    (m->flags & PG_BUSY) ||
1121 		    (m->hold_count != 0)) {
1122 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1123 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1124 			m = next;
1125 			continue;
1126 		}
1127 
1128 		/*
1129 		 * The count for pagedaemon pages is done after checking the
1130 		 * page for eligibility...
1131 		 */
1132 		mycpu->gd_cnt.v_pdpages++;
1133 
1134 		/*
1135 		 * Check to see "how much" the page has been used and clear
1136 		 * the tracking access bits.  If the object has no references
1137 		 * don't bother paying the expense.
1138 		 */
1139 		actcount = 0;
1140 		if (m->object->ref_count != 0) {
1141 			if (m->flags & PG_REFERENCED)
1142 				++actcount;
1143 			actcount += pmap_ts_referenced(m);
1144 			if (actcount) {
1145 				m->act_count += ACT_ADVANCE + actcount;
1146 				if (m->act_count > ACT_MAX)
1147 					m->act_count = ACT_MAX;
1148 			}
1149 		}
1150 		vm_page_flag_clear(m, PG_REFERENCED);
1151 
1152 		/*
1153 		 * actcount is only valid if the object ref_count is non-zero.
1154 		 */
1155 		if (actcount && m->object->ref_count != 0) {
1156 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1157 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1158 		} else {
1159 			m->act_count -= min(m->act_count, ACT_DECLINE);
1160 			if (vm_pageout_algorithm ||
1161 			    m->object->ref_count == 0 ||
1162 			    m->act_count < pass + 1
1163 			) {
1164 				/*
1165 				 * Deactivate the page.  If we had a
1166 				 * shortage from our inactive scan try to
1167 				 * free (cache) the page instead.
1168 				 *
1169 				 * Don't just blindly cache the page if
1170 				 * we do not have a shortage from the
1171 				 * inactive scan, that could lead to
1172 				 * gigabytes being moved.
1173 				 */
1174 				--active_shortage;
1175 				if (inactive_shortage > 0 ||
1176 				    m->object->ref_count == 0) {
1177 					if (inactive_shortage > 0)
1178 						++recycle_count;
1179 					vm_page_busy(m);
1180 					vm_page_protect(m, VM_PROT_NONE);
1181 					if (m->dirty == 0 &&
1182 					    inactive_shortage > 0) {
1183 						--inactive_shortage;
1184 						vm_page_cache(m);
1185 					} else {
1186 						vm_page_deactivate(m);
1187 						vm_page_wakeup(m);
1188 					}
1189 				} else {
1190 					vm_page_deactivate(m);
1191 				}
1192 			} else {
1193 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1194 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1195 			}
1196 		}
1197 		m = next;
1198 	}
1199 
1200 	/*
1201 	 * The number of actually free pages can drop down to v_free_reserved,
1202 	 * we try to build the free count back above v_free_min.  Note that
1203 	 * vm_paging_needed() also returns TRUE if v_free_count is not at
1204 	 * least v_free_min so that is the minimum we must build the free
1205 	 * count to.
1206 	 *
1207 	 * We use a slightly higher target to improve hysteresis,
1208 	 * ((v_free_target + v_free_min) / 2).  Since v_free_target
1209 	 * is usually the same as v_cache_min this maintains about
1210 	 * half the pages in the free queue as are in the cache queue,
1211 	 * providing pretty good pipelining for pageout operation.
1212 	 *
1213 	 * The system operator can manipulate vm.v_cache_min and
1214 	 * vm.v_free_target to tune the pageout demon.  Be sure
1215 	 * to keep vm.v_free_min < vm.v_free_target.
1216 	 *
1217 	 * Note that the original paging target is to get at least
1218 	 * (free_min + cache_min) into (free + cache).  The slightly
1219 	 * higher target will shift additional pages from cache to free
1220 	 * without effecting the original paging target in order to
1221 	 * maintain better hysteresis and not have the free count always
1222 	 * be dead-on v_free_min.
1223 	 *
1224 	 * NOTE: we are still in a critical section.
1225 	 *
1226 	 * Pages moved from PQ_CACHE to totally free are not counted in the
1227 	 * pages_freed counter.
1228 	 */
1229 	while (vmstats.v_free_count <
1230 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1231 		/*
1232 		 *
1233 		 */
1234 		static int cache_rover = 0;
1235 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1236 		if (m == NULL)
1237 			break;
1238 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1239 		    m->busy ||
1240 		    m->hold_count ||
1241 		    m->wire_count) {
1242 #ifdef INVARIANTS
1243 			kprintf("Warning: busy page %p found in cache\n", m);
1244 #endif
1245 			vm_page_deactivate(m);
1246 			continue;
1247 		}
1248 		KKASSERT((m->flags & PG_MAPPED) == 0);
1249 		KKASSERT(m->dirty == 0);
1250 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1251 		vm_pageout_page_free(m);
1252 		mycpu->gd_cnt.v_dfree++;
1253 	}
1254 
1255 	crit_exit();
1256 
1257 #if !defined(NO_SWAPPING)
1258 	/*
1259 	 * Idle process swapout -- run once per second.
1260 	 */
1261 	if (vm_swap_idle_enabled) {
1262 		static long lsec;
1263 		if (time_second != lsec) {
1264 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1265 			vm_req_vmdaemon();
1266 			lsec = time_second;
1267 		}
1268 	}
1269 #endif
1270 
1271 	/*
1272 	 * If we didn't get enough free pages, and we have skipped a vnode
1273 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1274 	 * if we did not get enough free pages.
1275 	 */
1276 	if (vm_paging_target() > 0) {
1277 		if (vnodes_skipped && vm_page_count_min(0))
1278 			speedup_syncer();
1279 #if !defined(NO_SWAPPING)
1280 		if (vm_swap_enabled && vm_page_count_target()) {
1281 			vm_req_vmdaemon();
1282 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1283 		}
1284 #endif
1285 	}
1286 
1287 	/*
1288 	 * Handle catastrophic conditions.  Under good conditions we should
1289 	 * be at the target, well beyond our minimum.  If we could not even
1290 	 * reach our minimum the system is under heavy stress.
1291 	 *
1292 	 * Determine whether we have run out of memory.  This occurs when
1293 	 * swap_pager_full is TRUE and the only pages left in the page
1294 	 * queues are dirty.  We will still likely have page shortages.
1295 	 *
1296 	 * - swap_pager_full is set if insufficient swap was
1297 	 *   available to satisfy a requested pageout.
1298 	 *
1299 	 * - the inactive queue is bloated (4 x size of active queue),
1300 	 *   meaning it is unable to get rid of dirty pages and.
1301 	 *
1302 	 * - vm_page_count_min() without counting pages recycled from the
1303 	 *   active queue (recycle_count) means we could not recover
1304 	 *   enough pages to meet bare minimum needs.  This test only
1305 	 *   works if the inactive queue is bloated.
1306 	 *
1307 	 * - due to a positive inactive_shortage we shifted the remaining
1308 	 *   dirty pages from the active queue to the inactive queue
1309 	 *   trying to find clean ones to free.
1310 	 */
1311 	if (swap_pager_full && vm_page_count_min(recycle_count))
1312 		kprintf("Warning: system low on memory+swap!\n");
1313 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1314 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1315 	    inactive_shortage > 0) {
1316 		/*
1317 		 * Kill something.
1318 		 */
1319 		info.bigproc = NULL;
1320 		info.bigsize = 0;
1321 		allproc_scan(vm_pageout_scan_callback, &info);
1322 		if (info.bigproc != NULL) {
1323 			killproc(info.bigproc, "out of swap space");
1324 			info.bigproc->p_nice = PRIO_MIN;
1325 			info.bigproc->p_usched->resetpriority(
1326 				FIRST_LWP_IN_PROC(info.bigproc));
1327 			wakeup(&vmstats.v_free_count);
1328 			PRELE(info.bigproc);
1329 		}
1330 	}
1331 	return(inactive_shortage);
1332 }
1333 
1334 /*
1335  * The caller must hold vm_token and proc_token.
1336  */
1337 static int
1338 vm_pageout_scan_callback(struct proc *p, void *data)
1339 {
1340 	struct vm_pageout_scan_info *info = data;
1341 	vm_offset_t size;
1342 
1343 	/*
1344 	 * Never kill system processes or init.  If we have configured swap
1345 	 * then try to avoid killing low-numbered pids.
1346 	 */
1347 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1348 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1349 		return (0);
1350 	}
1351 
1352 	/*
1353 	 * if the process is in a non-running type state,
1354 	 * don't touch it.
1355 	 */
1356 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1357 		return (0);
1358 
1359 	/*
1360 	 * Get the approximate process size.  Note that anonymous pages
1361 	 * with backing swap will be counted twice, but there should not
1362 	 * be too many such pages due to the stress the VM system is
1363 	 * under at this point.
1364 	 */
1365 	size = vmspace_anonymous_count(p->p_vmspace) +
1366 		vmspace_swap_count(p->p_vmspace);
1367 
1368 	/*
1369 	 * If the this process is bigger than the biggest one
1370 	 * remember it.
1371 	 */
1372 	if (info->bigsize < size) {
1373 		if (info->bigproc)
1374 			PRELE(info->bigproc);
1375 		PHOLD(p);
1376 		info->bigproc = p;
1377 		info->bigsize = size;
1378 	}
1379 	return(0);
1380 }
1381 
1382 /*
1383  * This routine tries to maintain the pseudo LRU active queue,
1384  * so that during long periods of time where there is no paging,
1385  * that some statistic accumulation still occurs.  This code
1386  * helps the situation where paging just starts to occur.
1387  *
1388  * The caller must hold vm_token.
1389  */
1390 static void
1391 vm_pageout_page_stats(void)
1392 {
1393 	vm_page_t m,next;
1394 	int pcount,tpcount;		/* Number of pages to check */
1395 	static int fullintervalcount = 0;
1396 	int page_shortage;
1397 
1398 	page_shortage =
1399 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1400 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1401 
1402 	if (page_shortage <= 0)
1403 		return;
1404 
1405 	crit_enter();
1406 
1407 	pcount = vmstats.v_active_count;
1408 	fullintervalcount += vm_pageout_stats_interval;
1409 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1410 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1411 		if (pcount > tpcount)
1412 			pcount = tpcount;
1413 	} else {
1414 		fullintervalcount = 0;
1415 	}
1416 
1417 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1418 	while ((m != NULL) && (pcount-- > 0)) {
1419 		int actcount;
1420 
1421 		if (m->queue != PQ_ACTIVE) {
1422 			break;
1423 		}
1424 
1425 		next = TAILQ_NEXT(m, pageq);
1426 		/*
1427 		 * Don't deactivate pages that are busy.
1428 		 */
1429 		if ((m->busy != 0) ||
1430 		    (m->flags & PG_BUSY) ||
1431 		    (m->hold_count != 0)) {
1432 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1433 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1434 			m = next;
1435 			continue;
1436 		}
1437 
1438 		actcount = 0;
1439 		if (m->flags & PG_REFERENCED) {
1440 			vm_page_flag_clear(m, PG_REFERENCED);
1441 			actcount += 1;
1442 		}
1443 
1444 		actcount += pmap_ts_referenced(m);
1445 		if (actcount) {
1446 			m->act_count += ACT_ADVANCE + actcount;
1447 			if (m->act_count > ACT_MAX)
1448 				m->act_count = ACT_MAX;
1449 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1450 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1451 		} else {
1452 			if (m->act_count == 0) {
1453 				/*
1454 				 * We turn off page access, so that we have
1455 				 * more accurate RSS stats.  We don't do this
1456 				 * in the normal page deactivation when the
1457 				 * system is loaded VM wise, because the
1458 				 * cost of the large number of page protect
1459 				 * operations would be higher than the value
1460 				 * of doing the operation.
1461 				 */
1462 				vm_page_busy(m);
1463 				vm_page_protect(m, VM_PROT_NONE);
1464 				vm_page_deactivate(m);
1465 				vm_page_wakeup(m);
1466 			} else {
1467 				m->act_count -= min(m->act_count, ACT_DECLINE);
1468 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1469 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1470 			}
1471 		}
1472 
1473 		m = next;
1474 	}
1475 	crit_exit();
1476 }
1477 
1478 /*
1479  * The caller must hold vm_token.
1480  */
1481 static int
1482 vm_pageout_free_page_calc(vm_size_t count)
1483 {
1484 	if (count < vmstats.v_page_count)
1485 		 return 0;
1486 	/*
1487 	 * free_reserved needs to include enough for the largest swap pager
1488 	 * structures plus enough for any pv_entry structs when paging.
1489 	 */
1490 	if (vmstats.v_page_count > 1024)
1491 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1492 	else
1493 		vmstats.v_free_min = 4;
1494 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1495 		vmstats.v_interrupt_free_min;
1496 	vmstats.v_free_reserved = vm_pageout_page_count +
1497 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1498 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1499 	vmstats.v_free_min += vmstats.v_free_reserved;
1500 	vmstats.v_free_severe += vmstats.v_free_reserved;
1501 	return 1;
1502 }
1503 
1504 
1505 /*
1506  * vm_pageout is the high level pageout daemon.
1507  *
1508  * No requirements.
1509  */
1510 static void
1511 vm_pageout_thread(void)
1512 {
1513 	int pass;
1514 	int inactive_shortage;
1515 
1516 	/*
1517 	 * Permanently hold vm_token.
1518 	 */
1519 	lwkt_gettoken(&vm_token);
1520 
1521 	/*
1522 	 * Initialize some paging parameters.
1523 	 */
1524 	curthread->td_flags |= TDF_SYSTHREAD;
1525 
1526 	vmstats.v_interrupt_free_min = 2;
1527 	if (vmstats.v_page_count < 2000)
1528 		vm_pageout_page_count = 8;
1529 
1530 	vm_pageout_free_page_calc(vmstats.v_page_count);
1531 
1532 	/*
1533 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1534 	 * that these are more a measure of the VM cache queue hysteresis
1535 	 * then the VM free queue.  Specifically, v_free_target is the
1536 	 * high water mark (free+cache pages).
1537 	 *
1538 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1539 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1540 	 * be big enough to handle memory needs while the pageout daemon
1541 	 * is signalled and run to free more pages.
1542 	 */
1543 	if (vmstats.v_free_count > 6144)
1544 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1545 	else
1546 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1547 
1548 	/*
1549 	 * NOTE: With the new buffer cache b_act_count we want the default
1550 	 *	 inactive target to be a percentage of available memory.
1551 	 *
1552 	 *	 The inactive target essentially determines the minimum
1553 	 *	 number of 'temporary' pages capable of caching one-time-use
1554 	 *	 files when the VM system is otherwise full of pages
1555 	 *	 belonging to multi-time-use files or active program data.
1556 	 *
1557 	 * NOTE: The inactive target is aggressively persued only if the
1558 	 *	 inactive queue becomes too small.  If the inactive queue
1559 	 *	 is large enough to satisfy page movement to free+cache
1560 	 *	 then it is repopulated more slowly from the active queue.
1561 	 *	 This allows a general inactive_target default to be set.
1562 	 *
1563 	 *	 There is an issue here for processes which sit mostly idle
1564 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1565 	 *	 the active queue will eventually cause such pages to
1566 	 *	 recycle eventually causing a lot of paging in the morning.
1567 	 *	 To reduce the incidence of this pages cycled out of the
1568 	 *	 buffer cache are moved directly to the inactive queue if
1569 	 *	 they were only used once or twice.
1570 	 *
1571 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1572 	 *	 Increasing the value (up to 64) increases the number of
1573 	 *	 buffer recyclements which go directly to the inactive queue.
1574 	 */
1575 	if (vmstats.v_free_count > 2048) {
1576 		vmstats.v_cache_min = vmstats.v_free_target;
1577 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1578 	} else {
1579 		vmstats.v_cache_min = 0;
1580 		vmstats.v_cache_max = 0;
1581 	}
1582 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1583 
1584 	/* XXX does not really belong here */
1585 	if (vm_page_max_wired == 0)
1586 		vm_page_max_wired = vmstats.v_free_count / 3;
1587 
1588 	if (vm_pageout_stats_max == 0)
1589 		vm_pageout_stats_max = vmstats.v_free_target;
1590 
1591 	/*
1592 	 * Set interval in seconds for stats scan.
1593 	 */
1594 	if (vm_pageout_stats_interval == 0)
1595 		vm_pageout_stats_interval = 5;
1596 	if (vm_pageout_full_stats_interval == 0)
1597 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1598 
1599 
1600 	/*
1601 	 * Set maximum free per pass
1602 	 */
1603 	if (vm_pageout_stats_free_max == 0)
1604 		vm_pageout_stats_free_max = 5;
1605 
1606 	swap_pager_swap_init();
1607 	pass = 0;
1608 
1609 	/*
1610 	 * The pageout daemon is never done, so loop forever.
1611 	 */
1612 	while (TRUE) {
1613 		int error;
1614 
1615 		/*
1616 		 * Wait for an action request.  If we timeout check to
1617 		 * see if paging is needed (in case the normal wakeup
1618 		 * code raced us).
1619 		 */
1620 		if (vm_pages_needed == 0) {
1621 			error = tsleep(&vm_pages_needed,
1622 				       0, "psleep",
1623 				       vm_pageout_stats_interval * hz);
1624 			if (error &&
1625 			    vm_paging_needed() == 0 &&
1626 			    vm_pages_needed == 0) {
1627 				vm_pageout_page_stats();
1628 				continue;
1629 			}
1630 			vm_pages_needed = 1;
1631 		}
1632 
1633 		mycpu->gd_cnt.v_pdwakeups++;
1634 
1635 		/*
1636 		 * Scan for pageout.  Try to avoid thrashing the system
1637 		 * with activity.
1638 		 */
1639 		inactive_shortage = vm_pageout_scan(pass);
1640 		if (inactive_shortage > 0) {
1641 			++pass;
1642 			if (swap_pager_full) {
1643 				/*
1644 				 * Running out of memory, catastrophic back-off
1645 				 * to one-second intervals.
1646 				 */
1647 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1648 			} else if (pass < 10 && vm_pages_needed > 1) {
1649 				/*
1650 				 * Normal operation, additional processes
1651 				 * have already kicked us.  Retry immediately.
1652 				 */
1653 			} else if (pass < 10) {
1654 				/*
1655 				 * Normal operation, fewer processes.  Delay
1656 				 * a bit but allow wakeups.
1657 				 */
1658 				vm_pages_needed = 0;
1659 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1660 				vm_pages_needed = 1;
1661 			} else {
1662 				/*
1663 				 * We've taken too many passes, forced delay.
1664 				 */
1665 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1666 			}
1667 		} else {
1668 			/*
1669 			 * Interlocked wakeup of waiters (non-optional)
1670 			 */
1671 			pass = 0;
1672 			if (vm_pages_needed && !vm_page_count_min(0)) {
1673 				wakeup(&vmstats.v_free_count);
1674 				vm_pages_needed = 0;
1675 			}
1676 		}
1677 	}
1678 }
1679 
1680 static struct kproc_desc page_kp = {
1681 	"pagedaemon",
1682 	vm_pageout_thread,
1683 	&pagethread
1684 };
1685 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1686 
1687 
1688 /*
1689  * Called after allocating a page out of the cache or free queue
1690  * to possibly wake the pagedaemon up to replentish our supply.
1691  *
1692  * We try to generate some hysteresis by waking the pagedaemon up
1693  * when our free+cache pages go below the free_min+cache_min level.
1694  * The pagedaemon tries to get the count back up to at least the
1695  * minimum, and through to the target level if possible.
1696  *
1697  * If the pagedaemon is already active bump vm_pages_needed as a hint
1698  * that there are even more requests pending.
1699  *
1700  * SMP races ok?
1701  * No requirements.
1702  */
1703 void
1704 pagedaemon_wakeup(void)
1705 {
1706 	if (vm_paging_needed() && curthread != pagethread) {
1707 		if (vm_pages_needed == 0) {
1708 			vm_pages_needed = 1;	/* SMP race ok */
1709 			wakeup(&vm_pages_needed);
1710 		} else if (vm_page_count_min(0)) {
1711 			++vm_pages_needed;	/* SMP race ok */
1712 		}
1713 	}
1714 }
1715 
1716 #if !defined(NO_SWAPPING)
1717 
1718 /*
1719  * SMP races ok?
1720  * No requirements.
1721  */
1722 static void
1723 vm_req_vmdaemon(void)
1724 {
1725 	static int lastrun = 0;
1726 
1727 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1728 		wakeup(&vm_daemon_needed);
1729 		lastrun = ticks;
1730 	}
1731 }
1732 
1733 static int vm_daemon_callback(struct proc *p, void *data __unused);
1734 
1735 /*
1736  * No requirements.
1737  */
1738 static void
1739 vm_daemon(void)
1740 {
1741 	/*
1742 	 * Permanently hold vm_token.
1743 	 */
1744 	lwkt_gettoken(&vm_token);
1745 
1746 	while (TRUE) {
1747 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1748 		if (vm_pageout_req_swapout) {
1749 			swapout_procs(vm_pageout_req_swapout);
1750 			vm_pageout_req_swapout = 0;
1751 		}
1752 		/*
1753 		 * scan the processes for exceeding their rlimits or if
1754 		 * process is swapped out -- deactivate pages
1755 		 */
1756 		allproc_scan(vm_daemon_callback, NULL);
1757 	}
1758 }
1759 
1760 /*
1761  * Caller must hold vm_token and proc_token.
1762  */
1763 static int
1764 vm_daemon_callback(struct proc *p, void *data __unused)
1765 {
1766 	vm_pindex_t limit, size;
1767 
1768 	/*
1769 	 * if this is a system process or if we have already
1770 	 * looked at this process, skip it.
1771 	 */
1772 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1773 		return (0);
1774 
1775 	/*
1776 	 * if the process is in a non-running type state,
1777 	 * don't touch it.
1778 	 */
1779 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1780 		return (0);
1781 
1782 	/*
1783 	 * get a limit
1784 	 */
1785 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1786 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1787 
1788 	/*
1789 	 * let processes that are swapped out really be
1790 	 * swapped out.  Set the limit to nothing to get as
1791 	 * many pages out to swap as possible.
1792 	 */
1793 	if (p->p_flag & P_SWAPPEDOUT)
1794 		limit = 0;
1795 
1796 	size = vmspace_resident_count(p->p_vmspace);
1797 	if (limit >= 0 && size >= limit) {
1798 		vm_pageout_map_deactivate_pages(
1799 		    &p->p_vmspace->vm_map, limit);
1800 	}
1801 	return (0);
1802 }
1803 
1804 #endif
1805