xref: /dragonfly/sys/vm/vm_pageout.c (revision 9348a738)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_page(vm_page_t m, int *max_launderp,
104 			   int *vnodes_skippedp, struct vnode **vpfailedp,
105 			   int pass, int vmflush_flags);
106 static int vm_pageout_clean_helper (vm_page_t, int);
107 static int vm_pageout_free_page_calc (vm_size_t count);
108 static void vm_pageout_page_free(vm_page_t m) ;
109 struct thread *pagethread;
110 
111 #if !defined(NO_SWAPPING)
112 /* the kernel process "vm_daemon"*/
113 static void vm_daemon (void);
114 static struct	thread *vmthread;
115 
116 static struct kproc_desc vm_kp = {
117 	"vmdaemon",
118 	vm_daemon,
119 	&vmthread
120 };
121 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
122 #endif
123 
124 int vm_pages_needed = 0;	/* Event on which pageout daemon sleeps */
125 int vm_pageout_deficit = 0;	/* Estimated number of pages deficit */
126 int vm_pageout_pages_needed = 0;/* pageout daemon needs pages */
127 int vm_page_free_hysteresis = 16;
128 
129 #if !defined(NO_SWAPPING)
130 static int vm_pageout_req_swapout;
131 static int vm_daemon_needed;
132 #endif
133 static int vm_max_launder = 4096;
134 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
135 static int vm_pageout_full_stats_interval = 0;
136 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
137 static int defer_swap_pageouts=0;
138 static int disable_swap_pageouts=0;
139 static u_int vm_anonmem_decline = ACT_DECLINE;
140 static u_int vm_filemem_decline = ACT_DECLINE * 2;
141 
142 #if defined(NO_SWAPPING)
143 static int vm_swap_enabled=0;
144 static int vm_swap_idle_enabled=0;
145 #else
146 static int vm_swap_enabled=1;
147 static int vm_swap_idle_enabled=0;
148 #endif
149 int vm_pageout_memuse_mode=1;	/* 0-disable, 1-passive, 2-active swp*/
150 
151 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
152 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
153 
154 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
155 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
156 
157 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
158 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
159 	"Free more pages than the minimum required");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 SYSCTL_INT(_vm, OID_AUTO, pageout_memuse_mode,
176 	CTLFLAG_RW, &vm_pageout_memuse_mode, 0, "memoryuse resource mode");
177 
178 #if defined(NO_SWAPPING)
179 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
180 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
181 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
182 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
183 #else
184 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
185 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
186 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
187 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
188 #endif
189 
190 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
191 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
192 
193 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
194 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
195 
196 static int pageout_lock_miss;
197 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
198 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
199 
200 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
201 
202 #if !defined(NO_SWAPPING)
203 static void vm_req_vmdaemon (void);
204 #endif
205 static void vm_pageout_page_stats(int q);
206 
207 /*
208  * Calculate approximately how many pages on each queue to try to
209  * clean.  An exact calculation creates an edge condition when the
210  * queues are unbalanced so add significant slop.  The queue scans
211  * will stop early when targets are reached and will start where they
212  * left off on the next pass.
213  *
214  * We need to be generous here because there are all sorts of loading
215  * conditions that can cause edge cases if try to average over all queues.
216  * In particular, storage subsystems have become so fast that paging
217  * activity can become quite frantic.  Eventually we will probably need
218  * two paging threads, one for dirty pages and one for clean, to deal
219  * with the bandwidth requirements.
220 
221  * So what we do is calculate a value that can be satisfied nominally by
222  * only having to scan half the queues.
223  */
224 static __inline int
225 PQAVERAGE(int n)
226 {
227 	int avg;
228 
229 	if (n >= 0) {
230 		avg = ((n + (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) + 1);
231 	} else {
232 		avg = ((n - (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) - 1);
233 	}
234 	return avg;
235 }
236 
237 /*
238  * vm_pageout_clean_helper:
239  *
240  * Clean the page and remove it from the laundry.  The page must be busied
241  * by the caller and will be disposed of (put away, flushed) by this routine.
242  */
243 static int
244 vm_pageout_clean_helper(vm_page_t m, int vmflush_flags)
245 {
246 	vm_object_t object;
247 	vm_page_t mc[BLIST_MAX_ALLOC];
248 	int error;
249 	int ib, is, page_base;
250 	vm_pindex_t pindex = m->pindex;
251 
252 	object = m->object;
253 
254 	/*
255 	 * Don't mess with the page if it's held or special.
256 	 *
257 	 * XXX do we really need to check hold_count here?  hold_count
258 	 * isn't supposed to mess with vm_page ops except prevent the
259 	 * page from being reused.
260 	 */
261 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
262 		vm_page_wakeup(m);
263 		return 0;
264 	}
265 
266 	/*
267 	 * Place page in cluster.  Align cluster for optimal swap space
268 	 * allocation (whether it is swap or not).  This is typically ~16-32
269 	 * pages, which also tends to align the cluster to multiples of the
270 	 * filesystem block size if backed by a filesystem.
271 	 */
272 	page_base = pindex % BLIST_MAX_ALLOC;
273 	mc[page_base] = m;
274 	ib = page_base - 1;
275 	is = page_base + 1;
276 
277 	/*
278 	 * Scan object for clusterable pages.
279 	 *
280 	 * We can cluster ONLY if: ->> the page is NOT
281 	 * clean, wired, busy, held, or mapped into a
282 	 * buffer, and one of the following:
283 	 * 1) The page is inactive, or a seldom used
284 	 *    active page.
285 	 * -or-
286 	 * 2) we force the issue.
287 	 *
288 	 * During heavy mmap/modification loads the pageout
289 	 * daemon can really fragment the underlying file
290 	 * due to flushing pages out of order and not trying
291 	 * align the clusters (which leave sporatic out-of-order
292 	 * holes).  To solve this problem we do the reverse scan
293 	 * first and attempt to align our cluster, then do a
294 	 * forward scan if room remains.
295 	 */
296 	vm_object_hold(object);
297 
298 	while (ib >= 0) {
299 		vm_page_t p;
300 
301 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
302 					    TRUE, &error);
303 		if (error || p == NULL)
304 			break;
305 		if ((p->queue - p->pc) == PQ_CACHE ||
306 		    (p->flags & PG_UNMANAGED)) {
307 			vm_page_wakeup(p);
308 			break;
309 		}
310 		vm_page_test_dirty(p);
311 		if (((p->dirty & p->valid) == 0 &&
312 		     (p->flags & PG_NEED_COMMIT) == 0) ||
313 		    p->wire_count != 0 ||	/* may be held by buf cache */
314 		    p->hold_count != 0) {	/* may be undergoing I/O */
315 			vm_page_wakeup(p);
316 			break;
317 		}
318 		if (p->queue - p->pc != PQ_INACTIVE) {
319 			if (p->queue - p->pc != PQ_ACTIVE ||
320 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
321 				vm_page_wakeup(p);
322 				break;
323 			}
324 		}
325 
326 		/*
327 		 * Try to maintain page groupings in the cluster.
328 		 */
329 		if (m->flags & PG_WINATCFLS)
330 			vm_page_flag_set(p, PG_WINATCFLS);
331 		else
332 			vm_page_flag_clear(p, PG_WINATCFLS);
333 		p->act_count = m->act_count;
334 
335 		mc[ib] = p;
336 		--ib;
337 	}
338 	++ib;	/* fixup */
339 
340 	while (is < BLIST_MAX_ALLOC &&
341 	       pindex - page_base + is < object->size) {
342 		vm_page_t p;
343 
344 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
345 					    TRUE, &error);
346 		if (error || p == NULL)
347 			break;
348 		if (((p->queue - p->pc) == PQ_CACHE) ||
349 		    (p->flags & PG_UNMANAGED)) {
350 			vm_page_wakeup(p);
351 			break;
352 		}
353 		vm_page_test_dirty(p);
354 		if (((p->dirty & p->valid) == 0 &&
355 		     (p->flags & PG_NEED_COMMIT) == 0) ||
356 		    p->wire_count != 0 ||	/* may be held by buf cache */
357 		    p->hold_count != 0) {	/* may be undergoing I/O */
358 			vm_page_wakeup(p);
359 			break;
360 		}
361 		if (p->queue - p->pc != PQ_INACTIVE) {
362 			if (p->queue - p->pc != PQ_ACTIVE ||
363 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
364 				vm_page_wakeup(p);
365 				break;
366 			}
367 		}
368 
369 		/*
370 		 * Try to maintain page groupings in the cluster.
371 		 */
372 		if (m->flags & PG_WINATCFLS)
373 			vm_page_flag_set(p, PG_WINATCFLS);
374 		else
375 			vm_page_flag_clear(p, PG_WINATCFLS);
376 		p->act_count = m->act_count;
377 
378 		mc[is] = p;
379 		++is;
380 	}
381 
382 	vm_object_drop(object);
383 
384 	/*
385 	 * we allow reads during pageouts...
386 	 */
387 	return vm_pageout_flush(&mc[ib], is - ib, vmflush_flags);
388 }
389 
390 /*
391  * vm_pageout_flush() - launder the given pages
392  *
393  *	The given pages are laundered.  Note that we setup for the start of
394  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
395  *	reference count all in here rather then in the parent.  If we want
396  *	the parent to do more sophisticated things we may have to change
397  *	the ordering.
398  *
399  *	The pages in the array must be busied by the caller and will be
400  *	unbusied by this function.
401  */
402 int
403 vm_pageout_flush(vm_page_t *mc, int count, int vmflush_flags)
404 {
405 	vm_object_t object;
406 	int pageout_status[count];
407 	int numpagedout = 0;
408 	int i;
409 
410 	/*
411 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
412 	 */
413 	for (i = 0; i < count; i++) {
414 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
415 			("vm_pageout_flush page %p index %d/%d: partially "
416 			 "invalid page", mc[i], i, count));
417 		vm_page_io_start(mc[i]);
418 	}
419 
420 	/*
421 	 * We must make the pages read-only.  This will also force the
422 	 * modified bit in the related pmaps to be cleared.  The pager
423 	 * cannot clear the bit for us since the I/O completion code
424 	 * typically runs from an interrupt.  The act of making the page
425 	 * read-only handles the case for us.
426 	 *
427 	 * Then we can unbusy the pages, we still hold a reference by virtue
428 	 * of our soft-busy.
429 	 */
430 	for (i = 0; i < count; i++) {
431 		if (vmflush_flags & VM_PAGER_TRY_TO_CACHE)
432 			vm_page_protect(mc[i], VM_PROT_NONE);
433 		else
434 			vm_page_protect(mc[i], VM_PROT_READ);
435 		vm_page_wakeup(mc[i]);
436 	}
437 
438 	object = mc[0]->object;
439 	vm_object_pip_add(object, count);
440 
441 	vm_pager_put_pages(object, mc, count,
442 			   (vmflush_flags |
443 			    ((object == &kernel_object) ?
444 				VM_PAGER_PUT_SYNC : 0)),
445 			   pageout_status);
446 
447 	for (i = 0; i < count; i++) {
448 		vm_page_t mt = mc[i];
449 
450 		switch (pageout_status[i]) {
451 		case VM_PAGER_OK:
452 			numpagedout++;
453 			break;
454 		case VM_PAGER_PEND:
455 			numpagedout++;
456 			break;
457 		case VM_PAGER_BAD:
458 			/*
459 			 * Page outside of range of object. Right now we
460 			 * essentially lose the changes by pretending it
461 			 * worked.
462 			 */
463 			vm_page_busy_wait(mt, FALSE, "pgbad");
464 			pmap_clear_modify(mt);
465 			vm_page_undirty(mt);
466 			vm_page_wakeup(mt);
467 			break;
468 		case VM_PAGER_ERROR:
469 		case VM_PAGER_FAIL:
470 			/*
471 			 * A page typically cannot be paged out when we
472 			 * have run out of swap.  We leave the page
473 			 * marked inactive and will try to page it out
474 			 * again later.
475 			 *
476 			 * Starvation of the active page list is used to
477 			 * determine when the system is massively memory
478 			 * starved.
479 			 */
480 			break;
481 		case VM_PAGER_AGAIN:
482 			break;
483 		}
484 
485 		/*
486 		 * If not PENDing this was a synchronous operation and we
487 		 * clean up after the I/O.  If it is PENDing the mess is
488 		 * cleaned up asynchronously.
489 		 *
490 		 * Also nominally act on the caller's wishes if the caller
491 		 * wants to try to really clean (cache or free) the page.
492 		 *
493 		 * Also nominally deactivate the page if the system is
494 		 * memory-stressed.
495 		 */
496 		if (pageout_status[i] != VM_PAGER_PEND) {
497 			vm_page_busy_wait(mt, FALSE, "pgouw");
498 			vm_page_io_finish(mt);
499 			if (vmflush_flags & VM_PAGER_TRY_TO_CACHE) {
500 				vm_page_try_to_cache(mt);
501 			} else if (vm_page_count_severe()) {
502 				vm_page_deactivate(mt);
503 				vm_page_wakeup(mt);
504 			} else {
505 				vm_page_wakeup(mt);
506 			}
507 			vm_object_pip_wakeup(object);
508 		}
509 	}
510 	return numpagedout;
511 }
512 
513 #if !defined(NO_SWAPPING)
514 
515 /*
516  * Callback function, page busied for us.  We must dispose of the busy
517  * condition.  Any related pmap pages may be held but will not be locked.
518  */
519 static
520 int
521 vm_pageout_mdp_callback(struct pmap_pgscan_info *info, vm_offset_t va,
522 			vm_page_t p)
523 {
524 	int actcount;
525 	int cleanit = 0;
526 
527 	/*
528 	 * Basic tests - There should never be a marker, and we can stop
529 	 *		 once the RSS is below the required level.
530 	 */
531 	KKASSERT((p->flags & PG_MARKER) == 0);
532 	if (pmap_resident_tlnw_count(info->pmap) <= info->limit) {
533 		vm_page_wakeup(p);
534 		return(-1);
535 	}
536 
537 	mycpu->gd_cnt.v_pdpages++;
538 
539 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
540 		vm_page_wakeup(p);
541 		goto done;
542 	}
543 
544 	++info->actioncount;
545 
546 	/*
547 	 * Check if the page has been referened recently.  If it has,
548 	 * activate it and skip.
549 	 */
550 	actcount = pmap_ts_referenced(p);
551 	if (actcount) {
552 		vm_page_flag_set(p, PG_REFERENCED);
553 	} else if (p->flags & PG_REFERENCED) {
554 		actcount = 1;
555 	}
556 
557 	if (actcount) {
558 		if (p->queue - p->pc != PQ_ACTIVE) {
559 			vm_page_and_queue_spin_lock(p);
560 			if (p->queue - p->pc != PQ_ACTIVE) {
561 				vm_page_and_queue_spin_unlock(p);
562 				vm_page_activate(p);
563 			} else {
564 				vm_page_and_queue_spin_unlock(p);
565 			}
566 		} else {
567 			p->act_count += actcount;
568 			if (p->act_count > ACT_MAX)
569 				p->act_count = ACT_MAX;
570 		}
571 		vm_page_flag_clear(p, PG_REFERENCED);
572 		vm_page_wakeup(p);
573 		goto done;
574 	}
575 
576 	/*
577 	 * Remove the page from this particular pmap.  Once we do this, our
578 	 * pmap scans will not see it again (unless it gets faulted in), so
579 	 * we must actively dispose of or deal with the page.
580 	 */
581 	pmap_remove_specific(info->pmap, p);
582 
583 	/*
584 	 * If the page is not mapped to another process (i.e. as would be
585 	 * typical if this were a shared page from a library) then deactivate
586 	 * the page and clean it in two passes only.
587 	 *
588 	 * If the page hasn't been referenced since the last check, remove it
589 	 * from the pmap.  If it is no longer mapped, deactivate it
590 	 * immediately, accelerating the normal decline.
591 	 *
592 	 * Once the page has been removed from the pmap the RSS code no
593 	 * longer tracks it so we have to make sure that it is staged for
594 	 * potential flush action.
595 	 */
596 	if ((p->flags & PG_MAPPED) == 0) {
597 		if (p->queue - p->pc == PQ_ACTIVE) {
598 			vm_page_deactivate(p);
599 		}
600 		if (p->queue - p->pc == PQ_INACTIVE) {
601 			cleanit = 1;
602 		}
603 	}
604 
605 	/*
606 	 * Ok, try to fully clean the page and any nearby pages such that at
607 	 * least the requested page is freed or moved to the cache queue.
608 	 *
609 	 * We usually do this synchronously to allow us to get the page into
610 	 * the CACHE queue quickly, which will prevent memory exhaustion if
611 	 * a process with a memoryuse limit is running away.  However, the
612 	 * sysadmin may desire to set vm.swap_user_async which relaxes this
613 	 * and improves write performance.
614 	 */
615 	if (cleanit) {
616 		int max_launder = 0x7FFF;
617 		int vnodes_skipped = 0;
618 		int vmflush_flags;
619 		struct vnode *vpfailed = NULL;
620 
621 		info->offset = va;
622 
623 		if (vm_pageout_memuse_mode >= 2) {
624 			vmflush_flags = VM_PAGER_TRY_TO_CACHE |
625 					VM_PAGER_ALLOW_ACTIVE;
626 			if (swap_user_async == 0)
627 				vmflush_flags |= VM_PAGER_PUT_SYNC;
628 			vm_page_flag_set(p, PG_WINATCFLS);
629 			info->cleancount +=
630 				vm_pageout_page(p, &max_launder,
631 						&vnodes_skipped,
632 						&vpfailed, 1, vmflush_flags);
633 		} else {
634 			vm_page_wakeup(p);
635 			++info->cleancount;
636 		}
637 	} else {
638 		vm_page_wakeup(p);
639 	}
640 
641 	/*
642 	 * Must be at end to avoid SMP races.
643 	 */
644 done:
645 	lwkt_user_yield();
646 	return 0;
647 }
648 
649 /*
650  * Deactivate some number of pages in a map due to set RLIMIT_RSS limits.
651  * that is relatively difficult to do.  We try to keep track of where we
652  * left off last time to reduce scan overhead.
653  *
654  * Called when vm_pageout_memuse_mode is >= 1.
655  */
656 void
657 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t limit)
658 {
659 	vm_offset_t pgout_offset;
660 	struct pmap_pgscan_info info;
661 	int retries = 3;
662 
663 	pgout_offset = map->pgout_offset;
664 again:
665 #if 0
666 	kprintf("%016jx ", pgout_offset);
667 #endif
668 	if (pgout_offset < VM_MIN_USER_ADDRESS)
669 		pgout_offset = VM_MIN_USER_ADDRESS;
670 	if (pgout_offset >= VM_MAX_USER_ADDRESS)
671 		pgout_offset = 0;
672 	info.pmap = vm_map_pmap(map);
673 	info.limit = limit;
674 	info.beg_addr = pgout_offset;
675 	info.end_addr = VM_MAX_USER_ADDRESS;
676 	info.callback = vm_pageout_mdp_callback;
677 	info.cleancount = 0;
678 	info.actioncount = 0;
679 	info.busycount = 0;
680 
681 	pmap_pgscan(&info);
682 	pgout_offset = info.offset;
683 #if 0
684 	kprintf("%016jx %08lx %08lx\n", pgout_offset,
685 		info.cleancount, info.actioncount);
686 #endif
687 
688 	if (pgout_offset != VM_MAX_USER_ADDRESS &&
689 	    pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
690 		goto again;
691 	} else if (retries &&
692 		   pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
693 		--retries;
694 		goto again;
695 	}
696 	map->pgout_offset = pgout_offset;
697 }
698 #endif
699 
700 /*
701  * Called when the pageout scan wants to free a page.  We no longer
702  * try to cycle the vm_object here with a reference & dealloc, which can
703  * cause a non-trivial object collapse in a critical path.
704  *
705  * It is unclear why we cycled the ref_count in the past, perhaps to try
706  * to optimize shadow chain collapses but I don't quite see why it would
707  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
708  * synchronously and not have to be kicked-start.
709  */
710 static void
711 vm_pageout_page_free(vm_page_t m)
712 {
713 	vm_page_protect(m, VM_PROT_NONE);
714 	vm_page_free(m);
715 }
716 
717 /*
718  * vm_pageout_scan does the dirty work for the pageout daemon.
719  */
720 struct vm_pageout_scan_info {
721 	struct proc *bigproc;
722 	vm_offset_t bigsize;
723 };
724 
725 static int vm_pageout_scan_callback(struct proc *p, void *data);
726 
727 static int
728 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
729 			 int *vnodes_skipped)
730 {
731 	vm_page_t m;
732 	struct vm_page marker;
733 	struct vnode *vpfailed;		/* warning, allowed to be stale */
734 	int maxscan;
735 	int delta = 0;
736 	int max_launder;
737 
738 	/*
739 	 * Start scanning the inactive queue for pages we can move to the
740 	 * cache or free.  The scan will stop when the target is reached or
741 	 * we have scanned the entire inactive queue.  Note that m->act_count
742 	 * is not used to form decisions for the inactive queue, only for the
743 	 * active queue.
744 	 *
745 	 * max_launder limits the number of dirty pages we flush per scan.
746 	 * For most systems a smaller value (16 or 32) is more robust under
747 	 * extreme memory and disk pressure because any unnecessary writes
748 	 * to disk can result in extreme performance degredation.  However,
749 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
750 	 * used) will die horribly with limited laundering.  If the pageout
751 	 * daemon cannot clean enough pages in the first pass, we let it go
752 	 * all out in succeeding passes.
753 	 */
754 	if ((max_launder = vm_max_launder) <= 1)
755 		max_launder = 1;
756 	if (pass)
757 		max_launder = 10000;
758 
759 	/*
760 	 * Initialize our marker
761 	 */
762 	bzero(&marker, sizeof(marker));
763 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
764 	marker.queue = PQ_INACTIVE + q;
765 	marker.pc = q;
766 	marker.wire_count = 1;
767 
768 	/*
769 	 * Inactive queue scan.
770 	 *
771 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
772 	 *	 deadlocks, so it is easiest to simply iterate the loop
773 	 *	 with the queue unlocked at the top.
774 	 */
775 	vpfailed = NULL;
776 
777 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
778 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
779 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
780 
781 	/*
782 	 * Queue locked at top of loop to avoid stack marker issues.
783 	 */
784 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
785 	       maxscan-- > 0 && avail_shortage - delta > 0)
786 	{
787 		int count;
788 
789 		KKASSERT(m->queue == PQ_INACTIVE + q);
790 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
791 			     &marker, pageq);
792 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
793 				   &marker, pageq);
794 		mycpu->gd_cnt.v_pdpages++;
795 
796 		/*
797 		 * Skip marker pages (atomic against other markers to avoid
798 		 * infinite hop-over scans).
799 		 */
800 		if (m->flags & PG_MARKER)
801 			continue;
802 
803 		/*
804 		 * Try to busy the page.  Don't mess with pages which are
805 		 * already busy or reorder them in the queue.
806 		 */
807 		if (vm_page_busy_try(m, TRUE))
808 			continue;
809 
810 		/*
811 		 * Remaining operations run with the page busy and neither
812 		 * the page or the queue will be spin-locked.
813 		 */
814 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
815 		KKASSERT(m->queue == PQ_INACTIVE + q);
816 
817 		count = vm_pageout_page(m, &max_launder, vnodes_skipped,
818 					&vpfailed, pass, 0);
819 		delta += count;
820 
821 		/*
822 		 * Systems with a ton of memory can wind up with huge
823 		 * deactivation counts.  Because the inactive scan is
824 		 * doing a lot of flushing, the combination can result
825 		 * in excessive paging even in situations where other
826 		 * unrelated threads free up sufficient VM.
827 		 *
828 		 * To deal with this we abort the nominal active->inactive
829 		 * scan before we hit the inactive target when free+cache
830 		 * levels have reached a reasonable target.
831 		 *
832 		 * When deciding to stop early we need to add some slop to
833 		 * the test and we need to return full completion to the caller
834 		 * to prevent the caller from thinking there is something
835 		 * wrong and issuing a low-memory+swap warning or pkill.
836 		 *
837 		 * A deficit forces paging regardless of the state of the
838 		 * VM page queues (used for RSS enforcement).
839 		 */
840 		lwkt_yield();
841 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
842 		if (vm_paging_target() < -vm_max_launder) {
843 			/*
844 			 * Stopping early, return full completion to caller.
845 			 */
846 			if (delta < avail_shortage)
847 				delta = avail_shortage;
848 			break;
849 		}
850 	}
851 
852 	/* page queue still spin-locked */
853 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
854 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
855 
856 	return (delta);
857 }
858 
859 /*
860  * Pageout the specified page, return the total number of pages paged out
861  * (this routine may cluster).
862  *
863  * The page must be busied and soft-busied by the caller and will be disposed
864  * of by this function.
865  */
866 static int
867 vm_pageout_page(vm_page_t m, int *max_launderp, int *vnodes_skippedp,
868 		struct vnode **vpfailedp, int pass, int vmflush_flags)
869 {
870 	vm_object_t object;
871 	int actcount;
872 	int count = 0;
873 
874 	/*
875 	 * It is possible for a page to be busied ad-hoc (e.g. the
876 	 * pmap_collect() code) and wired and race against the
877 	 * allocation of a new page.  vm_page_alloc() may be forced
878 	 * to deactivate the wired page in which case it winds up
879 	 * on the inactive queue and must be handled here.  We
880 	 * correct the problem simply by unqueuing the page.
881 	 */
882 	if (m->wire_count) {
883 		vm_page_unqueue_nowakeup(m);
884 		vm_page_wakeup(m);
885 		kprintf("WARNING: pagedaemon: wired page on "
886 			"inactive queue %p\n", m);
887 		return 0;
888 	}
889 
890 	/*
891 	 * A held page may be undergoing I/O, so skip it.
892 	 */
893 	if (m->hold_count) {
894 		vm_page_and_queue_spin_lock(m);
895 		if (m->queue - m->pc == PQ_INACTIVE) {
896 			TAILQ_REMOVE(
897 				&vm_page_queues[m->queue].pl, m, pageq);
898 			TAILQ_INSERT_TAIL(
899 				&vm_page_queues[m->queue].pl, m, pageq);
900 			++vm_swapcache_inactive_heuristic;
901 		}
902 		vm_page_and_queue_spin_unlock(m);
903 		vm_page_wakeup(m);
904 		return 0;
905 	}
906 
907 	if (m->object == NULL || m->object->ref_count == 0) {
908 		/*
909 		 * If the object is not being used, we ignore previous
910 		 * references.
911 		 */
912 		vm_page_flag_clear(m, PG_REFERENCED);
913 		pmap_clear_reference(m);
914 		/* fall through to end */
915 	} else if (((m->flags & PG_REFERENCED) == 0) &&
916 		    (actcount = pmap_ts_referenced(m))) {
917 		/*
918 		 * Otherwise, if the page has been referenced while
919 		 * in the inactive queue, we bump the "activation
920 		 * count" upwards, making it less likely that the
921 		 * page will be added back to the inactive queue
922 		 * prematurely again.  Here we check the page tables
923 		 * (or emulated bits, if any), given the upper level
924 		 * VM system not knowing anything about existing
925 		 * references.
926 		 */
927 		vm_page_activate(m);
928 		m->act_count += (actcount + ACT_ADVANCE);
929 		vm_page_wakeup(m);
930 		return 0;
931 	}
932 
933 	/*
934 	 * (m) is still busied.
935 	 *
936 	 * If the upper level VM system knows about any page
937 	 * references, we activate the page.  We also set the
938 	 * "activation count" higher than normal so that we will less
939 	 * likely place pages back onto the inactive queue again.
940 	 */
941 	if ((m->flags & PG_REFERENCED) != 0) {
942 		vm_page_flag_clear(m, PG_REFERENCED);
943 		actcount = pmap_ts_referenced(m);
944 		vm_page_activate(m);
945 		m->act_count += (actcount + ACT_ADVANCE + 1);
946 		vm_page_wakeup(m);
947 		return 0;
948 	}
949 
950 	/*
951 	 * If the upper level VM system doesn't know anything about
952 	 * the page being dirty, we have to check for it again.  As
953 	 * far as the VM code knows, any partially dirty pages are
954 	 * fully dirty.
955 	 *
956 	 * Pages marked PG_WRITEABLE may be mapped into the user
957 	 * address space of a process running on another cpu.  A
958 	 * user process (without holding the MP lock) running on
959 	 * another cpu may be able to touch the page while we are
960 	 * trying to remove it.  vm_page_cache() will handle this
961 	 * case for us.
962 	 */
963 	if (m->dirty == 0) {
964 		vm_page_test_dirty(m);
965 	} else {
966 		vm_page_dirty(m);
967 	}
968 
969 	if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
970 		/*
971 		 * Invalid pages can be easily freed
972 		 */
973 		vm_pageout_page_free(m);
974 		mycpu->gd_cnt.v_dfree++;
975 		++count;
976 	} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
977 		/*
978 		 * Clean pages can be placed onto the cache queue.
979 		 * This effectively frees them.
980 		 */
981 		vm_page_cache(m);
982 		++count;
983 	} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
984 		/*
985 		 * Dirty pages need to be paged out, but flushing
986 		 * a page is extremely expensive verses freeing
987 		 * a clean page.  Rather then artificially limiting
988 		 * the number of pages we can flush, we instead give
989 		 * dirty pages extra priority on the inactive queue
990 		 * by forcing them to be cycled through the queue
991 		 * twice before being flushed, after which the
992 		 * (now clean) page will cycle through once more
993 		 * before being freed.  This significantly extends
994 		 * the thrash point for a heavily loaded machine.
995 		 */
996 		vm_page_flag_set(m, PG_WINATCFLS);
997 		vm_page_and_queue_spin_lock(m);
998 		if (m->queue - m->pc == PQ_INACTIVE) {
999 			TAILQ_REMOVE(
1000 				&vm_page_queues[m->queue].pl, m, pageq);
1001 			TAILQ_INSERT_TAIL(
1002 				&vm_page_queues[m->queue].pl, m, pageq);
1003 			++vm_swapcache_inactive_heuristic;
1004 		}
1005 		vm_page_and_queue_spin_unlock(m);
1006 		vm_page_wakeup(m);
1007 	} else if (*max_launderp > 0) {
1008 		/*
1009 		 * We always want to try to flush some dirty pages if
1010 		 * we encounter them, to keep the system stable.
1011 		 * Normally this number is small, but under extreme
1012 		 * pressure where there are insufficient clean pages
1013 		 * on the inactive queue, we may have to go all out.
1014 		 */
1015 		int swap_pageouts_ok;
1016 		struct vnode *vp = NULL;
1017 
1018 		swap_pageouts_ok = 0;
1019 		object = m->object;
1020 		if (object &&
1021 		    (object->type != OBJT_SWAP) &&
1022 		    (object->type != OBJT_DEFAULT)) {
1023 			swap_pageouts_ok = 1;
1024 		} else {
1025 			swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
1026 			swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
1027 			vm_page_count_min(0));
1028 		}
1029 
1030 		/*
1031 		 * We don't bother paging objects that are "dead".
1032 		 * Those objects are in a "rundown" state.
1033 		 */
1034 		if (!swap_pageouts_ok ||
1035 		    (object == NULL) ||
1036 		    (object->flags & OBJ_DEAD)) {
1037 			vm_page_and_queue_spin_lock(m);
1038 			if (m->queue - m->pc == PQ_INACTIVE) {
1039 				TAILQ_REMOVE(
1040 				    &vm_page_queues[m->queue].pl,
1041 				    m, pageq);
1042 				TAILQ_INSERT_TAIL(
1043 				    &vm_page_queues[m->queue].pl,
1044 				    m, pageq);
1045 				++vm_swapcache_inactive_heuristic;
1046 			}
1047 			vm_page_and_queue_spin_unlock(m);
1048 			vm_page_wakeup(m);
1049 			return 0;
1050 		}
1051 
1052 		/*
1053 		 * (m) is still busied.
1054 		 *
1055 		 * The object is already known NOT to be dead.   It
1056 		 * is possible for the vget() to block the whole
1057 		 * pageout daemon, but the new low-memory handling
1058 		 * code should prevent it.
1059 		 *
1060 		 * The previous code skipped locked vnodes and, worse,
1061 		 * reordered pages in the queue.  This results in
1062 		 * completely non-deterministic operation because,
1063 		 * quite often, a vm_fault has initiated an I/O and
1064 		 * is holding a locked vnode at just the point where
1065 		 * the pageout daemon is woken up.
1066 		 *
1067 		 * We can't wait forever for the vnode lock, we might
1068 		 * deadlock due to a vn_read() getting stuck in
1069 		 * vm_wait while holding this vnode.  We skip the
1070 		 * vnode if we can't get it in a reasonable amount
1071 		 * of time.
1072 		 *
1073 		 * vpfailed is used to (try to) avoid the case where
1074 		 * a large number of pages are associated with a
1075 		 * locked vnode, which could cause the pageout daemon
1076 		 * to stall for an excessive amount of time.
1077 		 */
1078 		if (object->type == OBJT_VNODE) {
1079 			int flags;
1080 
1081 			vp = object->handle;
1082 			flags = LK_EXCLUSIVE;
1083 			if (vp == *vpfailedp)
1084 				flags |= LK_NOWAIT;
1085 			else
1086 				flags |= LK_TIMELOCK;
1087 			vm_page_hold(m);
1088 			vm_page_wakeup(m);
1089 
1090 			/*
1091 			 * We have unbusied (m) temporarily so we can
1092 			 * acquire the vp lock without deadlocking.
1093 			 * (m) is held to prevent destruction.
1094 			 */
1095 			if (vget(vp, flags) != 0) {
1096 				*vpfailedp = vp;
1097 				++pageout_lock_miss;
1098 				if (object->flags & OBJ_MIGHTBEDIRTY)
1099 					    ++*vnodes_skippedp;
1100 				vm_page_unhold(m);
1101 				return 0;
1102 			}
1103 
1104 			/*
1105 			 * The page might have been moved to another
1106 			 * queue during potential blocking in vget()
1107 			 * above.  The page might have been freed and
1108 			 * reused for another vnode.  The object might
1109 			 * have been reused for another vnode.
1110 			 */
1111 			if (m->queue - m->pc != PQ_INACTIVE ||
1112 			    m->object != object ||
1113 			    object->handle != vp) {
1114 				if (object->flags & OBJ_MIGHTBEDIRTY)
1115 					++*vnodes_skippedp;
1116 				vput(vp);
1117 				vm_page_unhold(m);
1118 				return 0;
1119 			}
1120 
1121 			/*
1122 			 * The page may have been busied during the
1123 			 * blocking in vput();  We don't move the
1124 			 * page back onto the end of the queue so that
1125 			 * statistics are more correct if we don't.
1126 			 */
1127 			if (vm_page_busy_try(m, TRUE)) {
1128 				vput(vp);
1129 				vm_page_unhold(m);
1130 				return 0;
1131 			}
1132 			vm_page_unhold(m);
1133 
1134 			/*
1135 			 * (m) is busied again
1136 			 *
1137 			 * We own the busy bit and remove our hold
1138 			 * bit.  If the page is still held it
1139 			 * might be undergoing I/O, so skip it.
1140 			 */
1141 			if (m->hold_count) {
1142 				vm_page_and_queue_spin_lock(m);
1143 				if (m->queue - m->pc == PQ_INACTIVE) {
1144 					TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1145 					TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1146 					++vm_swapcache_inactive_heuristic;
1147 				}
1148 				vm_page_and_queue_spin_unlock(m);
1149 				if (object->flags & OBJ_MIGHTBEDIRTY)
1150 					++*vnodes_skippedp;
1151 				vm_page_wakeup(m);
1152 				vput(vp);
1153 				return 0;
1154 			}
1155 			/* (m) is left busied as we fall through */
1156 		}
1157 
1158 		/*
1159 		 * page is busy and not held here.
1160 		 *
1161 		 * If a page is dirty, then it is either being washed
1162 		 * (but not yet cleaned) or it is still in the
1163 		 * laundry.  If it is still in the laundry, then we
1164 		 * start the cleaning operation.
1165 		 *
1166 		 * decrement inactive_shortage on success to account
1167 		 * for the (future) cleaned page.  Otherwise we
1168 		 * could wind up laundering or cleaning too many
1169 		 * pages.
1170 		 *
1171 		 * NOTE: Cleaning the page here does not cause
1172 		 *	 force_deficit to be adjusted, because the
1173 		 *	 page is not being freed or moved to the
1174 		 *	 cache.
1175 		 */
1176 		count = vm_pageout_clean_helper(m, vmflush_flags);
1177 		*max_launderp -= count;
1178 
1179 		/*
1180 		 * Clean ate busy, page no longer accessible
1181 		 */
1182 		if (vp != NULL)
1183 			vput(vp);
1184 	} else {
1185 		vm_page_wakeup(m);
1186 	}
1187 	return count;
1188 }
1189 
1190 static int
1191 vm_pageout_scan_active(int pass, int q,
1192 		       int avail_shortage, int inactive_shortage,
1193 		       int *recycle_countp)
1194 {
1195 	struct vm_page marker;
1196 	vm_page_t m;
1197 	int actcount;
1198 	int delta = 0;
1199 	int maxscan;
1200 
1201 	/*
1202 	 * We want to move pages from the active queue to the inactive
1203 	 * queue to get the inactive queue to the inactive target.  If
1204 	 * we still have a page shortage from above we try to directly free
1205 	 * clean pages instead of moving them.
1206 	 *
1207 	 * If we do still have a shortage we keep track of the number of
1208 	 * pages we free or cache (recycle_count) as a measure of thrashing
1209 	 * between the active and inactive queues.
1210 	 *
1211 	 * If we were able to completely satisfy the free+cache targets
1212 	 * from the inactive pool we limit the number of pages we move
1213 	 * from the active pool to the inactive pool to 2x the pages we
1214 	 * had removed from the inactive pool (with a minimum of 1/5 the
1215 	 * inactive target).  If we were not able to completely satisfy
1216 	 * the free+cache targets we go for the whole target aggressively.
1217 	 *
1218 	 * NOTE: Both variables can end up negative.
1219 	 * NOTE: We are still in a critical section.
1220 	 */
1221 
1222 	bzero(&marker, sizeof(marker));
1223 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1224 	marker.queue = PQ_ACTIVE + q;
1225 	marker.pc = q;
1226 	marker.wire_count = 1;
1227 
1228 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1229 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1230 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1231 
1232 	/*
1233 	 * Queue locked at top of loop to avoid stack marker issues.
1234 	 */
1235 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1236 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1237 				inactive_shortage > 0))
1238 	{
1239 		KKASSERT(m->queue == PQ_ACTIVE + q);
1240 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1241 			     &marker, pageq);
1242 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1243 				   &marker, pageq);
1244 
1245 		/*
1246 		 * Skip marker pages (atomic against other markers to avoid
1247 		 * infinite hop-over scans).
1248 		 */
1249 		if (m->flags & PG_MARKER)
1250 			continue;
1251 
1252 		/*
1253 		 * Try to busy the page.  Don't mess with pages which are
1254 		 * already busy or reorder them in the queue.
1255 		 */
1256 		if (vm_page_busy_try(m, TRUE))
1257 			continue;
1258 
1259 		/*
1260 		 * Remaining operations run with the page busy and neither
1261 		 * the page or the queue will be spin-locked.
1262 		 */
1263 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1264 		KKASSERT(m->queue == PQ_ACTIVE + q);
1265 
1266 		/*
1267 		 * Don't deactivate pages that are held, even if we can
1268 		 * busy them.  (XXX why not?)
1269 		 */
1270 		if (m->hold_count != 0) {
1271 			vm_page_and_queue_spin_lock(m);
1272 			if (m->queue - m->pc == PQ_ACTIVE) {
1273 				TAILQ_REMOVE(
1274 					&vm_page_queues[PQ_ACTIVE + q].pl,
1275 					m, pageq);
1276 				TAILQ_INSERT_TAIL(
1277 					&vm_page_queues[PQ_ACTIVE + q].pl,
1278 					m, pageq);
1279 			}
1280 			vm_page_and_queue_spin_unlock(m);
1281 			vm_page_wakeup(m);
1282 			goto next;
1283 		}
1284 
1285 		/*
1286 		 * The count for pagedaemon pages is done after checking the
1287 		 * page for eligibility...
1288 		 */
1289 		mycpu->gd_cnt.v_pdpages++;
1290 
1291 		/*
1292 		 * Check to see "how much" the page has been used and clear
1293 		 * the tracking access bits.  If the object has no references
1294 		 * don't bother paying the expense.
1295 		 */
1296 		actcount = 0;
1297 		if (m->object && m->object->ref_count != 0) {
1298 			if (m->flags & PG_REFERENCED)
1299 				++actcount;
1300 			actcount += pmap_ts_referenced(m);
1301 			if (actcount) {
1302 				m->act_count += ACT_ADVANCE + actcount;
1303 				if (m->act_count > ACT_MAX)
1304 					m->act_count = ACT_MAX;
1305 			}
1306 		}
1307 		vm_page_flag_clear(m, PG_REFERENCED);
1308 
1309 		/*
1310 		 * actcount is only valid if the object ref_count is non-zero.
1311 		 * If the page does not have an object, actcount will be zero.
1312 		 */
1313 		if (actcount && m->object->ref_count != 0) {
1314 			vm_page_and_queue_spin_lock(m);
1315 			if (m->queue - m->pc == PQ_ACTIVE) {
1316 				TAILQ_REMOVE(
1317 					&vm_page_queues[PQ_ACTIVE + q].pl,
1318 					m, pageq);
1319 				TAILQ_INSERT_TAIL(
1320 					&vm_page_queues[PQ_ACTIVE + q].pl,
1321 					m, pageq);
1322 			}
1323 			vm_page_and_queue_spin_unlock(m);
1324 			vm_page_wakeup(m);
1325 		} else {
1326 			switch(m->object->type) {
1327 			case OBJT_DEFAULT:
1328 			case OBJT_SWAP:
1329 				m->act_count -= min(m->act_count,
1330 						    vm_anonmem_decline);
1331 				break;
1332 			default:
1333 				m->act_count -= min(m->act_count,
1334 						    vm_filemem_decline);
1335 				break;
1336 			}
1337 			if (vm_pageout_algorithm ||
1338 			    (m->object == NULL) ||
1339 			    (m->object && (m->object->ref_count == 0)) ||
1340 			    m->act_count < pass + 1
1341 			) {
1342 				/*
1343 				 * Deactivate the page.  If we had a
1344 				 * shortage from our inactive scan try to
1345 				 * free (cache) the page instead.
1346 				 *
1347 				 * Don't just blindly cache the page if
1348 				 * we do not have a shortage from the
1349 				 * inactive scan, that could lead to
1350 				 * gigabytes being moved.
1351 				 */
1352 				--inactive_shortage;
1353 				if (avail_shortage - delta > 0 ||
1354 				    (m->object && (m->object->ref_count == 0)))
1355 				{
1356 					if (avail_shortage - delta > 0)
1357 						++*recycle_countp;
1358 					vm_page_protect(m, VM_PROT_NONE);
1359 					if (m->dirty == 0 &&
1360 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1361 					    avail_shortage - delta > 0) {
1362 						vm_page_cache(m);
1363 					} else {
1364 						vm_page_deactivate(m);
1365 						vm_page_wakeup(m);
1366 					}
1367 				} else {
1368 					vm_page_deactivate(m);
1369 					vm_page_wakeup(m);
1370 				}
1371 				++delta;
1372 			} else {
1373 				vm_page_and_queue_spin_lock(m);
1374 				if (m->queue - m->pc == PQ_ACTIVE) {
1375 					TAILQ_REMOVE(
1376 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1377 					    m, pageq);
1378 					TAILQ_INSERT_TAIL(
1379 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1380 					    m, pageq);
1381 				}
1382 				vm_page_and_queue_spin_unlock(m);
1383 				vm_page_wakeup(m);
1384 			}
1385 		}
1386 next:
1387 		lwkt_yield();
1388 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1389 	}
1390 
1391 	/*
1392 	 * Clean out our local marker.
1393 	 *
1394 	 * Page queue still spin-locked.
1395 	 */
1396 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1397 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1398 
1399 	return (delta);
1400 }
1401 
1402 /*
1403  * The number of actually free pages can drop down to v_free_reserved,
1404  * we try to build the free count back above v_free_min.  Note that
1405  * vm_paging_needed() also returns TRUE if v_free_count is not at
1406  * least v_free_min so that is the minimum we must build the free
1407  * count to.
1408  *
1409  * We use a slightly higher target to improve hysteresis,
1410  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1411  * is usually the same as v_cache_min this maintains about
1412  * half the pages in the free queue as are in the cache queue,
1413  * providing pretty good pipelining for pageout operation.
1414  *
1415  * The system operator can manipulate vm.v_cache_min and
1416  * vm.v_free_target to tune the pageout demon.  Be sure
1417  * to keep vm.v_free_min < vm.v_free_target.
1418  *
1419  * Note that the original paging target is to get at least
1420  * (free_min + cache_min) into (free + cache).  The slightly
1421  * higher target will shift additional pages from cache to free
1422  * without effecting the original paging target in order to
1423  * maintain better hysteresis and not have the free count always
1424  * be dead-on v_free_min.
1425  *
1426  * NOTE: we are still in a critical section.
1427  *
1428  * Pages moved from PQ_CACHE to totally free are not counted in the
1429  * pages_freed counter.
1430  */
1431 static void
1432 vm_pageout_scan_cache(int avail_shortage, int pass,
1433 		      int vnodes_skipped, int recycle_count)
1434 {
1435 	static int lastkillticks;
1436 	struct vm_pageout_scan_info info;
1437 	vm_page_t m;
1438 
1439 	while (vmstats.v_free_count <
1440 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1441 		/*
1442 		 * This steals some code from vm/vm_page.c
1443 		 */
1444 		static int cache_rover = 0;
1445 
1446 		m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK);
1447 		if (m == NULL)
1448 			break;
1449 		/* page is returned removed from its queue and spinlocked */
1450 		if (vm_page_busy_try(m, TRUE)) {
1451 			vm_page_deactivate_locked(m);
1452 			vm_page_spin_unlock(m);
1453 			continue;
1454 		}
1455 		vm_page_spin_unlock(m);
1456 		pagedaemon_wakeup();
1457 		lwkt_yield();
1458 
1459 		/*
1460 		 * Remaining operations run with the page busy and neither
1461 		 * the page or the queue will be spin-locked.
1462 		 */
1463 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1464 		    m->hold_count ||
1465 		    m->wire_count) {
1466 			vm_page_deactivate(m);
1467 			vm_page_wakeup(m);
1468 			continue;
1469 		}
1470 		KKASSERT((m->flags & PG_MAPPED) == 0);
1471 		KKASSERT(m->dirty == 0);
1472 		cache_rover += PQ_PRIME2;
1473 		vm_pageout_page_free(m);
1474 		mycpu->gd_cnt.v_dfree++;
1475 	}
1476 
1477 #if !defined(NO_SWAPPING)
1478 	/*
1479 	 * Idle process swapout -- run once per second.
1480 	 */
1481 	if (vm_swap_idle_enabled) {
1482 		static time_t lsec;
1483 		if (time_uptime != lsec) {
1484 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_IDLE);
1485 			vm_req_vmdaemon();
1486 			lsec = time_uptime;
1487 		}
1488 	}
1489 #endif
1490 
1491 	/*
1492 	 * If we didn't get enough free pages, and we have skipped a vnode
1493 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1494 	 * if we did not get enough free pages.
1495 	 */
1496 	if (vm_paging_target() > 0) {
1497 		if (vnodes_skipped && vm_page_count_min(0))
1498 			speedup_syncer(NULL);
1499 #if !defined(NO_SWAPPING)
1500 		if (vm_swap_enabled && vm_page_count_target()) {
1501 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_NORMAL);
1502 			vm_req_vmdaemon();
1503 		}
1504 #endif
1505 	}
1506 
1507 	/*
1508 	 * Handle catastrophic conditions.  Under good conditions we should
1509 	 * be at the target, well beyond our minimum.  If we could not even
1510 	 * reach our minimum the system is under heavy stress.  But just being
1511 	 * under heavy stress does not trigger process killing.
1512 	 *
1513 	 * We consider ourselves to have run out of memory if the swap pager
1514 	 * is full and avail_shortage is still positive.  The secondary check
1515 	 * ensures that we do not kill processes if the instantanious
1516 	 * availability is good, even if the pageout demon pass says it
1517 	 * couldn't get to the target.
1518 	 */
1519 	if (swap_pager_almost_full &&
1520 	    pass > 0 &&
1521 	    (vm_page_count_min(recycle_count) || avail_shortage > 0)) {
1522 		kprintf("Warning: system low on memory+swap "
1523 			"shortage %d for %d ticks!\n",
1524 			avail_shortage, ticks - swap_fail_ticks);
1525 	}
1526 	if (swap_pager_full &&
1527 	    pass > 1 &&
1528 	    avail_shortage > 0 &&
1529 	    vm_paging_target() > 0 &&
1530 	    (unsigned int)(ticks - lastkillticks) >= hz) {
1531 		/*
1532 		 * Kill something, maximum rate once per second to give
1533 		 * the process time to free up sufficient memory.
1534 		 */
1535 		lastkillticks = ticks;
1536 		info.bigproc = NULL;
1537 		info.bigsize = 0;
1538 		allproc_scan(vm_pageout_scan_callback, &info);
1539 		if (info.bigproc != NULL) {
1540 			info.bigproc->p_nice = PRIO_MIN;
1541 			info.bigproc->p_usched->resetpriority(
1542 				FIRST_LWP_IN_PROC(info.bigproc));
1543 			atomic_set_int(&info.bigproc->p_flags, P_LOWMEMKILL);
1544 			killproc(info.bigproc, "out of swap space");
1545 			wakeup(&vmstats.v_free_count);
1546 			PRELE(info.bigproc);
1547 		}
1548 	}
1549 }
1550 
1551 static int
1552 vm_pageout_scan_callback(struct proc *p, void *data)
1553 {
1554 	struct vm_pageout_scan_info *info = data;
1555 	vm_offset_t size;
1556 
1557 	/*
1558 	 * Never kill system processes or init.  If we have configured swap
1559 	 * then try to avoid killing low-numbered pids.
1560 	 */
1561 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1562 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1563 		return (0);
1564 	}
1565 
1566 	lwkt_gettoken(&p->p_token);
1567 
1568 	/*
1569 	 * if the process is in a non-running type state,
1570 	 * don't touch it.
1571 	 */
1572 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
1573 		lwkt_reltoken(&p->p_token);
1574 		return (0);
1575 	}
1576 
1577 	/*
1578 	 * Get the approximate process size.  Note that anonymous pages
1579 	 * with backing swap will be counted twice, but there should not
1580 	 * be too many such pages due to the stress the VM system is
1581 	 * under at this point.
1582 	 */
1583 	size = vmspace_anonymous_count(p->p_vmspace) +
1584 		vmspace_swap_count(p->p_vmspace);
1585 
1586 	/*
1587 	 * If the this process is bigger than the biggest one
1588 	 * remember it.
1589 	 */
1590 	if (info->bigsize < size) {
1591 		if (info->bigproc)
1592 			PRELE(info->bigproc);
1593 		PHOLD(p);
1594 		info->bigproc = p;
1595 		info->bigsize = size;
1596 	}
1597 	lwkt_reltoken(&p->p_token);
1598 	lwkt_yield();
1599 
1600 	return(0);
1601 }
1602 
1603 /*
1604  * This routine tries to maintain the pseudo LRU active queue,
1605  * so that during long periods of time where there is no paging,
1606  * that some statistic accumulation still occurs.  This code
1607  * helps the situation where paging just starts to occur.
1608  */
1609 static void
1610 vm_pageout_page_stats(int q)
1611 {
1612 	static int fullintervalcount = 0;
1613 	struct vm_page marker;
1614 	vm_page_t m;
1615 	int pcount, tpcount;		/* Number of pages to check */
1616 	int page_shortage;
1617 
1618 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1619 			 vmstats.v_free_min) -
1620 			(vmstats.v_free_count + vmstats.v_inactive_count +
1621 			 vmstats.v_cache_count);
1622 
1623 	if (page_shortage <= 0)
1624 		return;
1625 
1626 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1627 	fullintervalcount += vm_pageout_stats_interval;
1628 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1629 		tpcount = (vm_pageout_stats_max * pcount) /
1630 			  vmstats.v_page_count + 1;
1631 		if (pcount > tpcount)
1632 			pcount = tpcount;
1633 	} else {
1634 		fullintervalcount = 0;
1635 	}
1636 
1637 	bzero(&marker, sizeof(marker));
1638 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1639 	marker.queue = PQ_ACTIVE + q;
1640 	marker.pc = q;
1641 	marker.wire_count = 1;
1642 
1643 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1644 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1645 
1646 	/*
1647 	 * Queue locked at top of loop to avoid stack marker issues.
1648 	 */
1649 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1650 	       pcount-- > 0)
1651 	{
1652 		int actcount;
1653 
1654 		KKASSERT(m->queue == PQ_ACTIVE + q);
1655 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1656 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1657 				   &marker, pageq);
1658 
1659 		/*
1660 		 * Skip marker pages (atomic against other markers to avoid
1661 		 * infinite hop-over scans).
1662 		 */
1663 		if (m->flags & PG_MARKER)
1664 			continue;
1665 
1666 		/*
1667 		 * Ignore pages we can't busy
1668 		 */
1669 		if (vm_page_busy_try(m, TRUE))
1670 			continue;
1671 
1672 		/*
1673 		 * Remaining operations run with the page busy and neither
1674 		 * the page or the queue will be spin-locked.
1675 		 */
1676 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1677 		KKASSERT(m->queue == PQ_ACTIVE + q);
1678 
1679 		/*
1680 		 * We now have a safely busied page, the page and queue
1681 		 * spinlocks have been released.
1682 		 *
1683 		 * Ignore held pages
1684 		 */
1685 		if (m->hold_count) {
1686 			vm_page_wakeup(m);
1687 			goto next;
1688 		}
1689 
1690 		/*
1691 		 * Calculate activity
1692 		 */
1693 		actcount = 0;
1694 		if (m->flags & PG_REFERENCED) {
1695 			vm_page_flag_clear(m, PG_REFERENCED);
1696 			actcount += 1;
1697 		}
1698 		actcount += pmap_ts_referenced(m);
1699 
1700 		/*
1701 		 * Update act_count and move page to end of queue.
1702 		 */
1703 		if (actcount) {
1704 			m->act_count += ACT_ADVANCE + actcount;
1705 			if (m->act_count > ACT_MAX)
1706 				m->act_count = ACT_MAX;
1707 			vm_page_and_queue_spin_lock(m);
1708 			if (m->queue - m->pc == PQ_ACTIVE) {
1709 				TAILQ_REMOVE(
1710 					&vm_page_queues[PQ_ACTIVE + q].pl,
1711 					m, pageq);
1712 				TAILQ_INSERT_TAIL(
1713 					&vm_page_queues[PQ_ACTIVE + q].pl,
1714 					m, pageq);
1715 			}
1716 			vm_page_and_queue_spin_unlock(m);
1717 			vm_page_wakeup(m);
1718 			goto next;
1719 		}
1720 
1721 		if (m->act_count == 0) {
1722 			/*
1723 			 * We turn off page access, so that we have
1724 			 * more accurate RSS stats.  We don't do this
1725 			 * in the normal page deactivation when the
1726 			 * system is loaded VM wise, because the
1727 			 * cost of the large number of page protect
1728 			 * operations would be higher than the value
1729 			 * of doing the operation.
1730 			 *
1731 			 * We use the marker to save our place so
1732 			 * we can release the spin lock.  both (m)
1733 			 * and (next) will be invalid.
1734 			 */
1735 			vm_page_protect(m, VM_PROT_NONE);
1736 			vm_page_deactivate(m);
1737 		} else {
1738 			m->act_count -= min(m->act_count, ACT_DECLINE);
1739 			vm_page_and_queue_spin_lock(m);
1740 			if (m->queue - m->pc == PQ_ACTIVE) {
1741 				TAILQ_REMOVE(
1742 					&vm_page_queues[PQ_ACTIVE + q].pl,
1743 					m, pageq);
1744 				TAILQ_INSERT_TAIL(
1745 					&vm_page_queues[PQ_ACTIVE + q].pl,
1746 					m, pageq);
1747 			}
1748 			vm_page_and_queue_spin_unlock(m);
1749 		}
1750 		vm_page_wakeup(m);
1751 next:
1752 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1753 	}
1754 
1755 	/*
1756 	 * Remove our local marker
1757 	 *
1758 	 * Page queue still spin-locked.
1759 	 */
1760 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1761 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1762 }
1763 
1764 static int
1765 vm_pageout_free_page_calc(vm_size_t count)
1766 {
1767 	if (count < vmstats.v_page_count)
1768 		 return 0;
1769 	/*
1770 	 * free_reserved needs to include enough for the largest swap pager
1771 	 * structures plus enough for any pv_entry structs when paging.
1772 	 *
1773 	 * v_free_min		normal allocations
1774 	 * v_free_reserved	system allocations
1775 	 * v_pageout_free_min	allocations by pageout daemon
1776 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1777 	 */
1778 	if (vmstats.v_page_count > 1024)
1779 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1780 	else
1781 		vmstats.v_free_min = 64;
1782 
1783 	/*
1784 	 * Make sure the vmmeter slop can't blow out our global minimums.
1785 	 *
1786 	 * However, to accomodate weird configurations (vkernels with many
1787 	 * cpus and little memory, or artifically reduced hw.physmem), do
1788 	 * not allow v_free_min to exceed 1/20 of ram or the pageout demon
1789 	 * will go out of control.
1790 	 */
1791 	if (vmstats.v_free_min < VMMETER_SLOP_COUNT * ncpus * 10)
1792 		vmstats.v_free_min = VMMETER_SLOP_COUNT * ncpus * 10;
1793 	if (vmstats.v_free_min > vmstats.v_page_count / 20)
1794 		vmstats.v_free_min = vmstats.v_page_count / 20;
1795 
1796 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1797 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1798 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1799 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1800 
1801 	return 1;
1802 }
1803 
1804 
1805 /*
1806  * vm_pageout is the high level pageout daemon.
1807  *
1808  * No requirements.
1809  */
1810 static void
1811 vm_pageout_thread(void)
1812 {
1813 	int pass;
1814 	int q;
1815 	int q1iterator = 0;
1816 	int q2iterator = 0;
1817 
1818 	/*
1819 	 * Initialize some paging parameters.
1820 	 */
1821 	curthread->td_flags |= TDF_SYSTHREAD;
1822 
1823 	vm_pageout_free_page_calc(vmstats.v_page_count);
1824 
1825 	/*
1826 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1827 	 * that these are more a measure of the VM cache queue hysteresis
1828 	 * then the VM free queue.  Specifically, v_free_target is the
1829 	 * high water mark (free+cache pages).
1830 	 *
1831 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1832 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1833 	 * be big enough to handle memory needs while the pageout daemon
1834 	 * is signalled and run to free more pages.
1835 	 */
1836 	if (vmstats.v_free_count > 6144)
1837 		vmstats.v_free_target = 4 * vmstats.v_free_min +
1838 					vmstats.v_free_reserved;
1839 	else
1840 		vmstats.v_free_target = 2 * vmstats.v_free_min +
1841 					vmstats.v_free_reserved;
1842 
1843 	/*
1844 	 * NOTE: With the new buffer cache b_act_count we want the default
1845 	 *	 inactive target to be a percentage of available memory.
1846 	 *
1847 	 *	 The inactive target essentially determines the minimum
1848 	 *	 number of 'temporary' pages capable of caching one-time-use
1849 	 *	 files when the VM system is otherwise full of pages
1850 	 *	 belonging to multi-time-use files or active program data.
1851 	 *
1852 	 * NOTE: The inactive target is aggressively persued only if the
1853 	 *	 inactive queue becomes too small.  If the inactive queue
1854 	 *	 is large enough to satisfy page movement to free+cache
1855 	 *	 then it is repopulated more slowly from the active queue.
1856 	 *	 This allows a general inactive_target default to be set.
1857 	 *
1858 	 *	 There is an issue here for processes which sit mostly idle
1859 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1860 	 *	 the active queue will eventually cause such pages to
1861 	 *	 recycle eventually causing a lot of paging in the morning.
1862 	 *	 To reduce the incidence of this pages cycled out of the
1863 	 *	 buffer cache are moved directly to the inactive queue if
1864 	 *	 they were only used once or twice.
1865 	 *
1866 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1867 	 *	 Increasing the value (up to 64) increases the number of
1868 	 *	 buffer recyclements which go directly to the inactive queue.
1869 	 */
1870 	if (vmstats.v_free_count > 2048) {
1871 		vmstats.v_cache_min = vmstats.v_free_target;
1872 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1873 	} else {
1874 		vmstats.v_cache_min = 0;
1875 		vmstats.v_cache_max = 0;
1876 	}
1877 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1878 
1879 	/* XXX does not really belong here */
1880 	if (vm_page_max_wired == 0)
1881 		vm_page_max_wired = vmstats.v_free_count / 3;
1882 
1883 	if (vm_pageout_stats_max == 0)
1884 		vm_pageout_stats_max = vmstats.v_free_target;
1885 
1886 	/*
1887 	 * Set interval in seconds for stats scan.
1888 	 */
1889 	if (vm_pageout_stats_interval == 0)
1890 		vm_pageout_stats_interval = 5;
1891 	if (vm_pageout_full_stats_interval == 0)
1892 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1893 
1894 
1895 	/*
1896 	 * Set maximum free per pass
1897 	 */
1898 	if (vm_pageout_stats_free_max == 0)
1899 		vm_pageout_stats_free_max = 5;
1900 
1901 	swap_pager_swap_init();
1902 	pass = 0;
1903 
1904 	/*
1905 	 * The pageout daemon is never done, so loop forever.
1906 	 */
1907 	while (TRUE) {
1908 		int error;
1909 		int avail_shortage;
1910 		int inactive_shortage;
1911 		int vnodes_skipped = 0;
1912 		int recycle_count = 0;
1913 		int tmp;
1914 
1915 		/*
1916 		 * Wait for an action request.  If we timeout check to
1917 		 * see if paging is needed (in case the normal wakeup
1918 		 * code raced us).
1919 		 */
1920 		if (vm_pages_needed == 0) {
1921 			error = tsleep(&vm_pages_needed,
1922 				       0, "psleep",
1923 				       vm_pageout_stats_interval * hz);
1924 			if (error &&
1925 			    vm_paging_needed() == 0 &&
1926 			    vm_pages_needed == 0) {
1927 				for (q = 0; q < PQ_L2_SIZE; ++q)
1928 					vm_pageout_page_stats(q);
1929 				continue;
1930 			}
1931 			vm_pages_needed = 1;
1932 		}
1933 
1934 		mycpu->gd_cnt.v_pdwakeups++;
1935 
1936 		/*
1937 		 * Scan for INACTIVE->CLEAN/PAGEOUT
1938 		 *
1939 		 * This routine tries to avoid thrashing the system with
1940 		 * unnecessary activity.
1941 		 *
1942 		 * Calculate our target for the number of free+cache pages we
1943 		 * want to get to.  This is higher then the number that causes
1944 		 * allocations to stall (severe) in order to provide hysteresis,
1945 		 * and if we don't make it all the way but get to the minimum
1946 		 * we're happy.  Goose it a bit if there are multiple requests
1947 		 * for memory.
1948 		 *
1949 		 * Don't reduce avail_shortage inside the loop or the
1950 		 * PQAVERAGE() calculation will break.
1951 		 *
1952 		 * NOTE! deficit is differentiated from avail_shortage as
1953 		 *	 REQUIRING at least (deficit) pages to be cleaned,
1954 		 *	 even if the page queues are in good shape.  This
1955 		 *	 is used primarily for handling per-process
1956 		 *	 RLIMIT_RSS and may also see small values when
1957 		 *	 processes block due to low memory.
1958 		 */
1959 		vmstats_rollup();
1960 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1961 		vm_pageout_deficit = 0;
1962 
1963 		if (avail_shortage > 0) {
1964 			int delta = 0;
1965 
1966 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1967 				delta += vm_pageout_scan_inactive(
1968 					    pass,
1969 					    (q + q1iterator) & PQ_L2_MASK,
1970 					    PQAVERAGE(avail_shortage),
1971 					    &vnodes_skipped);
1972 				if (avail_shortage - delta <= 0)
1973 					break;
1974 			}
1975 			avail_shortage -= delta;
1976 			q1iterator = q + 1;
1977 		}
1978 
1979 		/*
1980 		 * Figure out how many active pages we must deactivate.  If
1981 		 * we were able to reach our target with just the inactive
1982 		 * scan above we limit the number of active pages we
1983 		 * deactivate to reduce unnecessary work.
1984 		 */
1985 		vmstats_rollup();
1986 		inactive_shortage = vmstats.v_inactive_target -
1987 				    vmstats.v_inactive_count;
1988 
1989 		/*
1990 		 * If we were unable to free sufficient inactive pages to
1991 		 * satisfy the free/cache queue requirements then simply
1992 		 * reaching the inactive target may not be good enough.
1993 		 * Try to deactivate pages in excess of the target based
1994 		 * on the shortfall.
1995 		 *
1996 		 * However to prevent thrashing the VM system do not
1997 		 * deactivate more than an additional 1/10 the inactive
1998 		 * target's worth of active pages.
1999 		 */
2000 		if (avail_shortage > 0) {
2001 			tmp = avail_shortage * 2;
2002 			if (tmp > vmstats.v_inactive_target / 10)
2003 				tmp = vmstats.v_inactive_target / 10;
2004 			inactive_shortage += tmp;
2005 		}
2006 
2007 		/*
2008 		 * Only trigger a pmap cleanup on inactive shortage.
2009 		 */
2010 		if (inactive_shortage > 0) {
2011 			pmap_collect();
2012 		}
2013 
2014 		/*
2015 		 * Scan for ACTIVE->INACTIVE
2016 		 *
2017 		 * Only trigger on inactive shortage.  Triggering on
2018 		 * avail_shortage can starve the active queue with
2019 		 * unnecessary active->inactive transitions and destroy
2020 		 * performance.
2021 		 */
2022 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
2023 			int delta = 0;
2024 
2025 			for (q = 0; q < PQ_L2_SIZE; ++q) {
2026 				delta += vm_pageout_scan_active(
2027 						pass,
2028 						(q + q2iterator) & PQ_L2_MASK,
2029 						PQAVERAGE(avail_shortage),
2030 						PQAVERAGE(inactive_shortage),
2031 						&recycle_count);
2032 				if (inactive_shortage - delta <= 0 &&
2033 				    avail_shortage - delta <= 0) {
2034 					break;
2035 				}
2036 			}
2037 			inactive_shortage -= delta;
2038 			avail_shortage -= delta;
2039 			q2iterator = q + 1;
2040 		}
2041 
2042 		/*
2043 		 * Scan for CACHE->FREE
2044 		 *
2045 		 * Finally free enough cache pages to meet our free page
2046 		 * requirement and take more drastic measures if we are
2047 		 * still in trouble.
2048 		 */
2049 		vmstats_rollup();
2050 		vm_pageout_scan_cache(avail_shortage, pass,
2051 				      vnodes_skipped, recycle_count);
2052 
2053 		/*
2054 		 * Wait for more work.
2055 		 */
2056 		if (avail_shortage > 0) {
2057 			++pass;
2058 			if (pass < 10 && vm_pages_needed > 1) {
2059 				/*
2060 				 * Normal operation, additional processes
2061 				 * have already kicked us.  Retry immediately
2062 				 * unless swap space is completely full in
2063 				 * which case delay a bit.
2064 				 */
2065 				if (swap_pager_full) {
2066 					tsleep(&vm_pages_needed, 0, "pdelay",
2067 						hz / 5);
2068 				} /* else immediate retry */
2069 			} else if (pass < 10) {
2070 				/*
2071 				 * Normal operation, fewer processes.  Delay
2072 				 * a bit but allow wakeups.
2073 				 */
2074 				vm_pages_needed = 0;
2075 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2076 				vm_pages_needed = 1;
2077 			} else if (swap_pager_full == 0) {
2078 				/*
2079 				 * We've taken too many passes, forced delay.
2080 				 */
2081 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2082 			} else {
2083 				/*
2084 				 * Running out of memory, catastrophic
2085 				 * back-off to one-second intervals.
2086 				 */
2087 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
2088 			}
2089 		} else if (vm_pages_needed) {
2090 			/*
2091 			 * Interlocked wakeup of waiters (non-optional).
2092 			 *
2093 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2094 			 * wake
2095 			 */
2096 			pass = 0;
2097 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2098 			    !vm_page_count_target()) {
2099 				vm_pages_needed = 0;
2100 				wakeup(&vmstats.v_free_count);
2101 			}
2102 		} else {
2103 			pass = 0;
2104 		}
2105 	}
2106 }
2107 
2108 static struct kproc_desc page_kp = {
2109 	"pagedaemon",
2110 	vm_pageout_thread,
2111 	&pagethread
2112 };
2113 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp);
2114 
2115 
2116 /*
2117  * Called after allocating a page out of the cache or free queue
2118  * to possibly wake the pagedaemon up to replentish our supply.
2119  *
2120  * We try to generate some hysteresis by waking the pagedaemon up
2121  * when our free+cache pages go below the free_min+cache_min level.
2122  * The pagedaemon tries to get the count back up to at least the
2123  * minimum, and through to the target level if possible.
2124  *
2125  * If the pagedaemon is already active bump vm_pages_needed as a hint
2126  * that there are even more requests pending.
2127  *
2128  * SMP races ok?
2129  * No requirements.
2130  */
2131 void
2132 pagedaemon_wakeup(void)
2133 {
2134 	if (vm_paging_needed() && curthread != pagethread) {
2135 		if (vm_pages_needed == 0) {
2136 			vm_pages_needed = 1;	/* SMP race ok */
2137 			wakeup(&vm_pages_needed);
2138 		} else if (vm_page_count_min(0)) {
2139 			++vm_pages_needed;	/* SMP race ok */
2140 		}
2141 	}
2142 }
2143 
2144 #if !defined(NO_SWAPPING)
2145 
2146 /*
2147  * SMP races ok?
2148  * No requirements.
2149  */
2150 static void
2151 vm_req_vmdaemon(void)
2152 {
2153 	static int lastrun = 0;
2154 
2155 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2156 		wakeup(&vm_daemon_needed);
2157 		lastrun = ticks;
2158 	}
2159 }
2160 
2161 static int vm_daemon_callback(struct proc *p, void *data __unused);
2162 
2163 /*
2164  * No requirements.
2165  */
2166 static void
2167 vm_daemon(void)
2168 {
2169 	int req_swapout;
2170 
2171 	while (TRUE) {
2172 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2173 		req_swapout = atomic_swap_int(&vm_pageout_req_swapout, 0);
2174 
2175 		/*
2176 		 * forced swapouts
2177 		 */
2178 		if (req_swapout)
2179 			swapout_procs(vm_pageout_req_swapout);
2180 
2181 		/*
2182 		 * scan the processes for exceeding their rlimits or if
2183 		 * process is swapped out -- deactivate pages
2184 		 */
2185 		allproc_scan(vm_daemon_callback, NULL);
2186 	}
2187 }
2188 
2189 static int
2190 vm_daemon_callback(struct proc *p, void *data __unused)
2191 {
2192 	struct vmspace *vm;
2193 	vm_pindex_t limit, size;
2194 
2195 	/*
2196 	 * if this is a system process or if we have already
2197 	 * looked at this process, skip it.
2198 	 */
2199 	lwkt_gettoken(&p->p_token);
2200 
2201 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2202 		lwkt_reltoken(&p->p_token);
2203 		return (0);
2204 	}
2205 
2206 	/*
2207 	 * if the process is in a non-running type state,
2208 	 * don't touch it.
2209 	 */
2210 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
2211 		lwkt_reltoken(&p->p_token);
2212 		return (0);
2213 	}
2214 
2215 	/*
2216 	 * get a limit
2217 	 */
2218 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2219 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2220 
2221 	/*
2222 	 * let processes that are swapped out really be
2223 	 * swapped out.  Set the limit to nothing to get as
2224 	 * many pages out to swap as possible.
2225 	 */
2226 	if (p->p_flags & P_SWAPPEDOUT)
2227 		limit = 0;
2228 
2229 	vm = p->p_vmspace;
2230 	vmspace_hold(vm);
2231 	size = pmap_resident_tlnw_count(&vm->vm_pmap);
2232 	if (limit >= 0 && size > 4096 &&
2233 	    size - 4096 >= limit && vm_pageout_memuse_mode >= 1) {
2234 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2235 	}
2236 	vmspace_drop(vm);
2237 
2238 	lwkt_reltoken(&p->p_token);
2239 
2240 	return (0);
2241 }
2242 
2243 #endif
2244