xref: /dragonfly/sys/vm/vm_pageout.c (revision 956939d5)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update vm_load to slow down faulting processes.
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 int
386 vm_pageout_flush(vm_page_t *mc, int count, int flags)
387 {
388 	vm_object_t object;
389 	int pageout_status[count];
390 	int numpagedout = 0;
391 	int i;
392 
393 	/*
394 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
395 	 */
396 	for (i = 0; i < count; i++) {
397 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
398 		vm_page_io_start(mc[i]);
399 	}
400 
401 	/*
402 	 * We must make the pages read-only.  This will also force the
403 	 * modified bit in the related pmaps to be cleared.  The pager
404 	 * cannot clear the bit for us since the I/O completion code
405 	 * typically runs from an interrupt.  The act of making the page
406 	 * read-only handles the case for us.
407 	 */
408 	for (i = 0; i < count; i++) {
409 		vm_page_protect(mc[i], VM_PROT_READ);
410 	}
411 
412 	object = mc[0]->object;
413 	vm_object_pip_add(object, count);
414 
415 	vm_pager_put_pages(object, mc, count,
416 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
417 	    pageout_status);
418 
419 	for (i = 0; i < count; i++) {
420 		vm_page_t mt = mc[i];
421 
422 		switch (pageout_status[i]) {
423 		case VM_PAGER_OK:
424 			numpagedout++;
425 			break;
426 		case VM_PAGER_PEND:
427 			numpagedout++;
428 			break;
429 		case VM_PAGER_BAD:
430 			/*
431 			 * Page outside of range of object. Right now we
432 			 * essentially lose the changes by pretending it
433 			 * worked.
434 			 */
435 			pmap_clear_modify(mt);
436 			vm_page_undirty(mt);
437 			break;
438 		case VM_PAGER_ERROR:
439 		case VM_PAGER_FAIL:
440 			/*
441 			 * A page typically cannot be paged out when we
442 			 * have run out of swap.  We leave the page
443 			 * marked inactive and will try to page it out
444 			 * again later.
445 			 *
446 			 * Starvation of the active page list is used to
447 			 * determine when the system is massively memory
448 			 * starved.
449 			 */
450 			break;
451 		case VM_PAGER_AGAIN:
452 			break;
453 		}
454 
455 		/*
456 		 * If the operation is still going, leave the page busy to
457 		 * block all other accesses. Also, leave the paging in
458 		 * progress indicator set so that we don't attempt an object
459 		 * collapse.
460 		 *
461 		 * For any pages which have completed synchronously,
462 		 * deactivate the page if we are under a severe deficit.
463 		 * Do not try to enter them into the cache, though, they
464 		 * might still be read-heavy.
465 		 */
466 		if (pageout_status[i] != VM_PAGER_PEND) {
467 			vm_object_pip_wakeup(object);
468 			vm_page_io_finish(mt);
469 			if (vm_page_count_severe())
470 				vm_page_deactivate(mt);
471 #if 0
472 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
473 				vm_page_protect(mt, VM_PROT_READ);
474 #endif
475 		}
476 	}
477 	return numpagedout;
478 }
479 
480 #if !defined(NO_SWAPPING)
481 /*
482  *	vm_pageout_object_deactivate_pages
483  *
484  *	deactivate enough pages to satisfy the inactive target
485  *	requirements or if vm_page_proc_limit is set, then
486  *	deactivate all of the pages in the object and its
487  *	backing_objects.
488  *
489  *	The object and map must be locked.
490  */
491 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
492 
493 static void
494 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
495 	vm_pindex_t desired, int map_remove_only)
496 {
497 	struct rb_vm_page_scan_info info;
498 	int remove_mode;
499 
500 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
501 		return;
502 
503 	while (object) {
504 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
505 			return;
506 		if (object->paging_in_progress)
507 			return;
508 
509 		remove_mode = map_remove_only;
510 		if (object->shadow_count > 1)
511 			remove_mode = 1;
512 
513 		/*
514 		 * scan the objects entire memory queue.  spl protection is
515 		 * required to avoid an interrupt unbusy/free race against
516 		 * our busy check.
517 		 */
518 		crit_enter();
519 		info.limit = remove_mode;
520 		info.map = map;
521 		info.desired = desired;
522 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
523 				vm_pageout_object_deactivate_pages_callback,
524 				&info
525 		);
526 		crit_exit();
527 		object = object->backing_object;
528 	}
529 }
530 
531 static int
532 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
533 {
534 	struct rb_vm_page_scan_info *info = data;
535 	int actcount;
536 
537 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
538 		return(-1);
539 	}
540 	mycpu->gd_cnt.v_pdpages++;
541 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
542 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
543 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
544 		return(0);
545 	}
546 
547 	actcount = pmap_ts_referenced(p);
548 	if (actcount) {
549 		vm_page_flag_set(p, PG_REFERENCED);
550 	} else if (p->flags & PG_REFERENCED) {
551 		actcount = 1;
552 	}
553 
554 	if ((p->queue != PQ_ACTIVE) &&
555 		(p->flags & PG_REFERENCED)) {
556 		vm_page_activate(p);
557 		p->act_count += actcount;
558 		vm_page_flag_clear(p, PG_REFERENCED);
559 	} else if (p->queue == PQ_ACTIVE) {
560 		if ((p->flags & PG_REFERENCED) == 0) {
561 			p->act_count -= min(p->act_count, ACT_DECLINE);
562 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
563 				vm_page_busy(p);
564 				vm_page_protect(p, VM_PROT_NONE);
565 				vm_page_wakeup(p);
566 				vm_page_deactivate(p);
567 			} else {
568 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
570 			}
571 		} else {
572 			vm_page_activate(p);
573 			vm_page_flag_clear(p, PG_REFERENCED);
574 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
575 				p->act_count += ACT_ADVANCE;
576 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
578 		}
579 	} else if (p->queue == PQ_INACTIVE) {
580 		vm_page_busy(p);
581 		vm_page_protect(p, VM_PROT_NONE);
582 		vm_page_wakeup(p);
583 	}
584 	return(0);
585 }
586 
587 /*
588  * deactivate some number of pages in a map, try to do it fairly, but
589  * that is really hard to do.
590  */
591 static void
592 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
593 {
594 	vm_map_entry_t tmpe;
595 	vm_object_t obj, bigobj;
596 	int nothingwired;
597 
598 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
599 		return;
600 	}
601 
602 	bigobj = NULL;
603 	nothingwired = TRUE;
604 
605 	/*
606 	 * first, search out the biggest object, and try to free pages from
607 	 * that.
608 	 */
609 	tmpe = map->header.next;
610 	while (tmpe != &map->header) {
611 		switch(tmpe->maptype) {
612 		case VM_MAPTYPE_NORMAL:
613 		case VM_MAPTYPE_VPAGETABLE:
614 			obj = tmpe->object.vm_object;
615 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
616 				((bigobj == NULL) ||
617 				 (bigobj->resident_page_count < obj->resident_page_count))) {
618 				bigobj = obj;
619 			}
620 			break;
621 		default:
622 			break;
623 		}
624 		if (tmpe->wired_count > 0)
625 			nothingwired = FALSE;
626 		tmpe = tmpe->next;
627 	}
628 
629 	if (bigobj)
630 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
631 
632 	/*
633 	 * Next, hunt around for other pages to deactivate.  We actually
634 	 * do this search sort of wrong -- .text first is not the best idea.
635 	 */
636 	tmpe = map->header.next;
637 	while (tmpe != &map->header) {
638 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
639 			break;
640 		switch(tmpe->maptype) {
641 		case VM_MAPTYPE_NORMAL:
642 		case VM_MAPTYPE_VPAGETABLE:
643 			obj = tmpe->object.vm_object;
644 			if (obj)
645 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
646 			break;
647 		default:
648 			break;
649 		}
650 		tmpe = tmpe->next;
651 	};
652 
653 	/*
654 	 * Remove all mappings if a process is swapped out, this will free page
655 	 * table pages.
656 	 */
657 	if (desired == 0 && nothingwired)
658 		pmap_remove(vm_map_pmap(map),
659 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
660 	vm_map_unlock(map);
661 }
662 #endif
663 
664 /*
665  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
666  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
667  * be trivially freed.
668  */
669 void
670 vm_pageout_page_free(vm_page_t m)
671 {
672 	vm_object_t object = m->object;
673 	int type = object->type;
674 
675 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
676 		vm_object_reference(object);
677 	vm_page_busy(m);
678 	vm_page_protect(m, VM_PROT_NONE);
679 	vm_page_free(m);
680 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
681 		vm_object_deallocate(object);
682 }
683 
684 /*
685  * vm_pageout_scan does the dirty work for the pageout daemon.
686  */
687 struct vm_pageout_scan_info {
688 	struct proc *bigproc;
689 	vm_offset_t bigsize;
690 };
691 
692 static int vm_pageout_scan_callback(struct proc *p, void *data);
693 
694 static int
695 vm_pageout_scan(int pass)
696 {
697 	struct vm_pageout_scan_info info;
698 	vm_page_t m, next;
699 	struct vm_page marker;
700 	int maxscan, pcount;
701 	int recycle_count;
702 	int inactive_shortage, active_shortage;
703 	vm_object_t object;
704 	int actcount;
705 	int vnodes_skipped = 0;
706 	int maxlaunder;
707 
708 	/*
709 	 * Do whatever cleanup that the pmap code can.
710 	 */
711 	pmap_collect();
712 
713 	/*
714 	 * Calculate our target for the number of free+cache pages we
715 	 * want to get to.  This is higher then the number that causes
716 	 * allocations to stall (severe) in order to provide hysteresis,
717 	 * and if we don't make it all the way but get to the minimum
718 	 * we're happy.
719 	 */
720 	inactive_shortage = vm_paging_target() + vm_pageout_deficit;
721 	vm_pageout_deficit = 0;
722 
723 	/*
724 	 * Initialize our marker
725 	 */
726 	bzero(&marker, sizeof(marker));
727 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
728 	marker.queue = PQ_INACTIVE;
729 	marker.wire_count = 1;
730 
731 	/*
732 	 * Start scanning the inactive queue for pages we can move to the
733 	 * cache or free.  The scan will stop when the target is reached or
734 	 * we have scanned the entire inactive queue.  Note that m->act_count
735 	 * is not used to form decisions for the inactive queue, only for the
736 	 * active queue.
737 	 *
738 	 * maxlaunder limits the number of dirty pages we flush per scan.
739 	 * For most systems a smaller value (16 or 32) is more robust under
740 	 * extreme memory and disk pressure because any unnecessary writes
741 	 * to disk can result in extreme performance degredation.  However,
742 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
743 	 * used) will die horribly with limited laundering.  If the pageout
744 	 * daemon cannot clean enough pages in the first pass, we let it go
745 	 * all out in succeeding passes.
746 	 */
747 	if ((maxlaunder = vm_max_launder) <= 1)
748 		maxlaunder = 1;
749 	if (pass)
750 		maxlaunder = 10000;
751 
752 	/*
753 	 * We will generally be in a critical section throughout the
754 	 * scan, but we can release it temporarily when we are sitting on a
755 	 * non-busy page without fear.  this is required to prevent an
756 	 * interrupt from unbusying or freeing a page prior to our busy
757 	 * check, leaving us on the wrong queue or checking the wrong
758 	 * page.
759 	 */
760 	crit_enter();
761 rescan0:
762 	maxscan = vmstats.v_inactive_count;
763 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
764 	     m != NULL && maxscan-- > 0 && inactive_shortage > 0;
765 	     m = next
766 	 ) {
767 		mycpu->gd_cnt.v_pdpages++;
768 
769 		/*
770 		 * Give interrupts a chance
771 		 */
772 		crit_exit();
773 		crit_enter();
774 
775 		/*
776 		 * It's easier for some of the conditions below to just loop
777 		 * and catch queue changes here rather then check everywhere
778 		 * else.
779 		 */
780 		if (m->queue != PQ_INACTIVE)
781 			goto rescan0;
782 		next = TAILQ_NEXT(m, pageq);
783 
784 		/*
785 		 * skip marker pages
786 		 */
787 		if (m->flags & PG_MARKER)
788 			continue;
789 
790 		/*
791 		 * A held page may be undergoing I/O, so skip it.
792 		 */
793 		if (m->hold_count) {
794 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
795 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
796 			continue;
797 		}
798 
799 		/*
800 		 * Dont mess with busy pages, keep in the front of the
801 		 * queue, most likely are being paged out.
802 		 */
803 		if (m->busy || (m->flags & PG_BUSY)) {
804 			continue;
805 		}
806 
807 		if (m->object->ref_count == 0) {
808 			/*
809 			 * If the object is not being used, we ignore previous
810 			 * references.
811 			 */
812 			vm_page_flag_clear(m, PG_REFERENCED);
813 			pmap_clear_reference(m);
814 
815 		} else if (((m->flags & PG_REFERENCED) == 0) &&
816 			    (actcount = pmap_ts_referenced(m))) {
817 			/*
818 			 * Otherwise, if the page has been referenced while
819 			 * in the inactive queue, we bump the "activation
820 			 * count" upwards, making it less likely that the
821 			 * page will be added back to the inactive queue
822 			 * prematurely again.  Here we check the page tables
823 			 * (or emulated bits, if any), given the upper level
824 			 * VM system not knowing anything about existing
825 			 * references.
826 			 */
827 			vm_page_activate(m);
828 			m->act_count += (actcount + ACT_ADVANCE);
829 			continue;
830 		}
831 
832 		/*
833 		 * If the upper level VM system knows about any page
834 		 * references, we activate the page.  We also set the
835 		 * "activation count" higher than normal so that we will less
836 		 * likely place pages back onto the inactive queue again.
837 		 */
838 		if ((m->flags & PG_REFERENCED) != 0) {
839 			vm_page_flag_clear(m, PG_REFERENCED);
840 			actcount = pmap_ts_referenced(m);
841 			vm_page_activate(m);
842 			m->act_count += (actcount + ACT_ADVANCE + 1);
843 			continue;
844 		}
845 
846 		/*
847 		 * If the upper level VM system doesn't know anything about
848 		 * the page being dirty, we have to check for it again.  As
849 		 * far as the VM code knows, any partially dirty pages are
850 		 * fully dirty.
851 		 *
852 		 * Pages marked PG_WRITEABLE may be mapped into the user
853 		 * address space of a process running on another cpu.  A
854 		 * user process (without holding the MP lock) running on
855 		 * another cpu may be able to touch the page while we are
856 		 * trying to remove it.  vm_page_cache() will handle this
857 		 * case for us.
858 		 */
859 		if (m->dirty == 0) {
860 			vm_page_test_dirty(m);
861 		} else {
862 			vm_page_dirty(m);
863 		}
864 
865 		if (m->valid == 0) {
866 			/*
867 			 * Invalid pages can be easily freed
868 			 */
869 			vm_pageout_page_free(m);
870 			mycpu->gd_cnt.v_dfree++;
871 			--inactive_shortage;
872 		} else if (m->dirty == 0) {
873 			/*
874 			 * Clean pages can be placed onto the cache queue.
875 			 * This effectively frees them.
876 			 */
877 			vm_page_cache(m);
878 			--inactive_shortage;
879 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
880 			/*
881 			 * Dirty pages need to be paged out, but flushing
882 			 * a page is extremely expensive verses freeing
883 			 * a clean page.  Rather then artificially limiting
884 			 * the number of pages we can flush, we instead give
885 			 * dirty pages extra priority on the inactive queue
886 			 * by forcing them to be cycled through the queue
887 			 * twice before being flushed, after which the
888 			 * (now clean) page will cycle through once more
889 			 * before being freed.  This significantly extends
890 			 * the thrash point for a heavily loaded machine.
891 			 */
892 			vm_page_flag_set(m, PG_WINATCFLS);
893 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
894 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895 		} else if (maxlaunder > 0) {
896 			/*
897 			 * We always want to try to flush some dirty pages if
898 			 * we encounter them, to keep the system stable.
899 			 * Normally this number is small, but under extreme
900 			 * pressure where there are insufficient clean pages
901 			 * on the inactive queue, we may have to go all out.
902 			 */
903 			int swap_pageouts_ok;
904 			struct vnode *vp = NULL;
905 
906 			object = m->object;
907 
908 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
909 				swap_pageouts_ok = 1;
910 			} else {
911 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
912 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
913 				vm_page_count_min(0));
914 
915 			}
916 
917 			/*
918 			 * We don't bother paging objects that are "dead".
919 			 * Those objects are in a "rundown" state.
920 			 */
921 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
922 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
923 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
924 				continue;
925 			}
926 
927 			/*
928 			 * The object is already known NOT to be dead.   It
929 			 * is possible for the vget() to block the whole
930 			 * pageout daemon, but the new low-memory handling
931 			 * code should prevent it.
932 			 *
933 			 * The previous code skipped locked vnodes and, worse,
934 			 * reordered pages in the queue.  This results in
935 			 * completely non-deterministic operation because,
936 			 * quite often, a vm_fault has initiated an I/O and
937 			 * is holding a locked vnode at just the point where
938 			 * the pageout daemon is woken up.
939 			 *
940 			 * We can't wait forever for the vnode lock, we might
941 			 * deadlock due to a vn_read() getting stuck in
942 			 * vm_wait while holding this vnode.  We skip the
943 			 * vnode if we can't get it in a reasonable amount
944 			 * of time.
945 			 */
946 
947 			if (object->type == OBJT_VNODE) {
948 				vp = object->handle;
949 
950 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
951 					++pageout_lock_miss;
952 					if (object->flags & OBJ_MIGHTBEDIRTY)
953 						    vnodes_skipped++;
954 					continue;
955 				}
956 
957 				/*
958 				 * The page might have been moved to another
959 				 * queue during potential blocking in vget()
960 				 * above.  The page might have been freed and
961 				 * reused for another vnode.  The object might
962 				 * have been reused for another vnode.
963 				 */
964 				if (m->queue != PQ_INACTIVE ||
965 				    m->object != object ||
966 				    object->handle != vp) {
967 					if (object->flags & OBJ_MIGHTBEDIRTY)
968 						vnodes_skipped++;
969 					vput(vp);
970 					continue;
971 				}
972 
973 				/*
974 				 * The page may have been busied during the
975 				 * blocking in vput();  We don't move the
976 				 * page back onto the end of the queue so that
977 				 * statistics are more correct if we don't.
978 				 */
979 				if (m->busy || (m->flags & PG_BUSY)) {
980 					vput(vp);
981 					continue;
982 				}
983 
984 				/*
985 				 * If the page has become held it might
986 				 * be undergoing I/O, so skip it
987 				 */
988 				if (m->hold_count) {
989 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
990 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
991 					if (object->flags & OBJ_MIGHTBEDIRTY)
992 						vnodes_skipped++;
993 					vput(vp);
994 					continue;
995 				}
996 			}
997 
998 			/*
999 			 * If a page is dirty, then it is either being washed
1000 			 * (but not yet cleaned) or it is still in the
1001 			 * laundry.  If it is still in the laundry, then we
1002 			 * start the cleaning operation.
1003 			 *
1004 			 * This operation may cluster, invalidating the 'next'
1005 			 * pointer.  To prevent an inordinate number of
1006 			 * restarts we use our marker to remember our place.
1007 			 *
1008 			 * decrement inactive_shortage on success to account
1009 			 * for the (future) cleaned page.  Otherwise we
1010 			 * could wind up laundering or cleaning too many
1011 			 * pages.
1012 			 */
1013 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1014 			if (vm_pageout_clean(m) != 0) {
1015 				--inactive_shortage;
1016 				--maxlaunder;
1017 			}
1018 			next = TAILQ_NEXT(&marker, pageq);
1019 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1020 			if (vp != NULL)
1021 				vput(vp);
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * We want to move pages from the active queue to the inactive
1027 	 * queue to get the inactive queue to the inactive target.  If
1028 	 * we still have a page shortage from above we try to directly free
1029 	 * clean pages instead of moving them.
1030 	 *
1031 	 * If we do still have a shortage we keep track of the number of
1032 	 * pages we free or cache (recycle_count) as a measure of thrashing
1033 	 * between the active and inactive queues.
1034 	 *
1035 	 * We do not do this if we were able to satisfy the requirement
1036 	 * entirely from the inactive queue.
1037 	 *
1038 	 * NOTE: Both variables can end up negative.
1039 	 * NOTE: We are still in a critical section.
1040 	 */
1041 	active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1042 	if (inactive_shortage <= 0)
1043 		active_shortage = 0;
1044 
1045 	pcount = vmstats.v_active_count;
1046 	recycle_count = 0;
1047 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1048 
1049 	while ((m != NULL) && (pcount-- > 0) &&
1050 	       (inactive_shortage > 0 || active_shortage > 0)
1051 	) {
1052 		/*
1053 		 * Give interrupts a chance.
1054 		 */
1055 		crit_exit();
1056 		crit_enter();
1057 
1058 		/*
1059 		 * If the page was ripped out from under us, just stop.
1060 		 */
1061 		if (m->queue != PQ_ACTIVE)
1062 			break;
1063 		next = TAILQ_NEXT(m, pageq);
1064 
1065 		/*
1066 		 * Don't deactivate pages that are busy.
1067 		 */
1068 		if ((m->busy != 0) ||
1069 		    (m->flags & PG_BUSY) ||
1070 		    (m->hold_count != 0)) {
1071 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1072 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073 			m = next;
1074 			continue;
1075 		}
1076 
1077 		/*
1078 		 * The count for pagedaemon pages is done after checking the
1079 		 * page for eligibility...
1080 		 */
1081 		mycpu->gd_cnt.v_pdpages++;
1082 
1083 		/*
1084 		 * Check to see "how much" the page has been used and clear
1085 		 * the tracking access bits.  If the object has no references
1086 		 * don't bother paying the expense.
1087 		 */
1088 		actcount = 0;
1089 		if (m->object->ref_count != 0) {
1090 			if (m->flags & PG_REFERENCED)
1091 				++actcount;
1092 			actcount += pmap_ts_referenced(m);
1093 			if (actcount) {
1094 				m->act_count += ACT_ADVANCE + actcount;
1095 				if (m->act_count > ACT_MAX)
1096 					m->act_count = ACT_MAX;
1097 			}
1098 		}
1099 		vm_page_flag_clear(m, PG_REFERENCED);
1100 
1101 		/*
1102 		 * actcount is only valid if the object ref_count is non-zero.
1103 		 */
1104 		if (actcount && m->object->ref_count != 0) {
1105 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1106 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1107 		} else {
1108 			m->act_count -= min(m->act_count, ACT_DECLINE);
1109 			if (vm_pageout_algorithm ||
1110 			    m->object->ref_count == 0 ||
1111 			    m->act_count < pass + 1
1112 			) {
1113 				/*
1114 				 * Deactivate the page.  If we had a
1115 				 * shortage from our inactive scan try to
1116 				 * free (cache) the page instead.
1117 				 */
1118 				--active_shortage;
1119 				if (inactive_shortage > 0 ||
1120 				    m->object->ref_count == 0) {
1121 					if (inactive_shortage > 0)
1122 						++recycle_count;
1123 					vm_page_busy(m);
1124 					vm_page_protect(m, VM_PROT_NONE);
1125 					vm_page_wakeup(m);
1126 					if (m->dirty == 0) {
1127 						--inactive_shortage;
1128 						vm_page_cache(m);
1129 					} else {
1130 						vm_page_deactivate(m);
1131 					}
1132 				} else {
1133 					vm_page_deactivate(m);
1134 				}
1135 			} else {
1136 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1137 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1138 			}
1139 		}
1140 		m = next;
1141 	}
1142 
1143 	/*
1144 	 * We try to maintain some *really* free pages, this allows interrupt
1145 	 * code to be guaranteed space.  Since both cache and free queues
1146 	 * are considered basically 'free', moving pages from cache to free
1147 	 * does not effect other calculations.
1148 	 *
1149 	 * NOTE: we are still in a critical section.
1150 	 *
1151 	 * Pages moved from PQ_CACHE to totally free are not counted in the
1152 	 * pages_freed counter.
1153 	 */
1154 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1155 		static int cache_rover = 0;
1156 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1157 		if (m == NULL)
1158 			break;
1159 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1160 		    m->busy ||
1161 		    m->hold_count ||
1162 		    m->wire_count) {
1163 #ifdef INVARIANTS
1164 			kprintf("Warning: busy page %p found in cache\n", m);
1165 #endif
1166 			vm_page_deactivate(m);
1167 			continue;
1168 		}
1169 		KKASSERT((m->flags & PG_MAPPED) == 0);
1170 		KKASSERT(m->dirty == 0);
1171 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1172 		vm_pageout_page_free(m);
1173 		mycpu->gd_cnt.v_dfree++;
1174 	}
1175 
1176 	crit_exit();
1177 
1178 #if !defined(NO_SWAPPING)
1179 	/*
1180 	 * Idle process swapout -- run once per second.
1181 	 */
1182 	if (vm_swap_idle_enabled) {
1183 		static long lsec;
1184 		if (time_second != lsec) {
1185 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1186 			vm_req_vmdaemon();
1187 			lsec = time_second;
1188 		}
1189 	}
1190 #endif
1191 
1192 	/*
1193 	 * If we didn't get enough free pages, and we have skipped a vnode
1194 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1195 	 * if we did not get enough free pages.
1196 	 */
1197 	if (vm_paging_target() > 0) {
1198 		if (vnodes_skipped && vm_page_count_min(0))
1199 			speedup_syncer();
1200 #if !defined(NO_SWAPPING)
1201 		if (vm_swap_enabled && vm_page_count_target()) {
1202 			vm_req_vmdaemon();
1203 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1204 		}
1205 #endif
1206 	}
1207 
1208 	/*
1209 	 * Handle catastrophic conditions.  Under good conditions we should
1210 	 * be at the target, well beyond our minimum.  If we could not even
1211 	 * reach our minimum the system is under heavy stress.
1212 	 *
1213 	 * Determine whether we have run out of memory.  This occurs when
1214 	 * swap_pager_full is TRUE and the only pages left in the page
1215 	 * queues are dirty.  We will still likely have page shortages.
1216 	 *
1217 	 * - swap_pager_full is set if insufficient swap was
1218 	 *   available to satisfy a requested pageout.
1219 	 *
1220 	 * - the inactive queue is bloated (4 x size of active queue),
1221 	 *   meaning it is unable to get rid of dirty pages and.
1222 	 *
1223 	 * - vm_page_count_min() without counting pages recycled from the
1224 	 *   active queue (recycle_count) means we could not recover
1225 	 *   enough pages to meet bare minimum needs.  This test only
1226 	 *   works if the inactive queue is bloated.
1227 	 *
1228 	 * - due to a positive inactive_shortage we shifted the remaining
1229 	 *   dirty pages from the active queue to the inactive queue
1230 	 *   trying to find clean ones to free.
1231 	 */
1232 	if (swap_pager_full && vm_page_count_min(recycle_count))
1233 		kprintf("Warning: system low on memory+swap!\n");
1234 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1235 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1236 	    inactive_shortage > 0) {
1237 		/*
1238 		 * Kill something.
1239 		 */
1240 		info.bigproc = NULL;
1241 		info.bigsize = 0;
1242 		allproc_scan(vm_pageout_scan_callback, &info);
1243 		if (info.bigproc != NULL) {
1244 			killproc(info.bigproc, "out of swap space");
1245 			info.bigproc->p_nice = PRIO_MIN;
1246 			info.bigproc->p_usched->resetpriority(
1247 				FIRST_LWP_IN_PROC(info.bigproc));
1248 			wakeup(&vmstats.v_free_count);
1249 			PRELE(info.bigproc);
1250 		}
1251 	}
1252 	return(inactive_shortage);
1253 }
1254 
1255 static int
1256 vm_pageout_scan_callback(struct proc *p, void *data)
1257 {
1258 	struct vm_pageout_scan_info *info = data;
1259 	vm_offset_t size;
1260 
1261 	/*
1262 	 * Never kill system processes or init.  If we have configured swap
1263 	 * then try to avoid killing low-numbered pids.
1264 	 */
1265 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1266 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1267 		return (0);
1268 	}
1269 
1270 	/*
1271 	 * if the process is in a non-running type state,
1272 	 * don't touch it.
1273 	 */
1274 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1275 		return (0);
1276 
1277 	/*
1278 	 * Get the approximate process size.  Note that anonymous pages
1279 	 * with backing swap will be counted twice, but there should not
1280 	 * be too many such pages due to the stress the VM system is
1281 	 * under at this point.
1282 	 */
1283 	size = vmspace_anonymous_count(p->p_vmspace) +
1284 		vmspace_swap_count(p->p_vmspace);
1285 
1286 	/*
1287 	 * If the this process is bigger than the biggest one
1288 	 * remember it.
1289 	 */
1290 	if (info->bigsize < size) {
1291 		if (info->bigproc)
1292 			PRELE(info->bigproc);
1293 		PHOLD(p);
1294 		info->bigproc = p;
1295 		info->bigsize = size;
1296 	}
1297 	return(0);
1298 }
1299 
1300 /*
1301  * This routine tries to maintain the pseudo LRU active queue,
1302  * so that during long periods of time where there is no paging,
1303  * that some statistic accumulation still occurs.  This code
1304  * helps the situation where paging just starts to occur.
1305  */
1306 static void
1307 vm_pageout_page_stats(void)
1308 {
1309 	vm_page_t m,next;
1310 	int pcount,tpcount;		/* Number of pages to check */
1311 	static int fullintervalcount = 0;
1312 	int page_shortage;
1313 
1314 	page_shortage =
1315 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1316 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1317 
1318 	if (page_shortage <= 0)
1319 		return;
1320 
1321 	crit_enter();
1322 
1323 	pcount = vmstats.v_active_count;
1324 	fullintervalcount += vm_pageout_stats_interval;
1325 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1326 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1327 		if (pcount > tpcount)
1328 			pcount = tpcount;
1329 	} else {
1330 		fullintervalcount = 0;
1331 	}
1332 
1333 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1334 	while ((m != NULL) && (pcount-- > 0)) {
1335 		int actcount;
1336 
1337 		if (m->queue != PQ_ACTIVE) {
1338 			break;
1339 		}
1340 
1341 		next = TAILQ_NEXT(m, pageq);
1342 		/*
1343 		 * Don't deactivate pages that are busy.
1344 		 */
1345 		if ((m->busy != 0) ||
1346 		    (m->flags & PG_BUSY) ||
1347 		    (m->hold_count != 0)) {
1348 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1349 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1350 			m = next;
1351 			continue;
1352 		}
1353 
1354 		actcount = 0;
1355 		if (m->flags & PG_REFERENCED) {
1356 			vm_page_flag_clear(m, PG_REFERENCED);
1357 			actcount += 1;
1358 		}
1359 
1360 		actcount += pmap_ts_referenced(m);
1361 		if (actcount) {
1362 			m->act_count += ACT_ADVANCE + actcount;
1363 			if (m->act_count > ACT_MAX)
1364 				m->act_count = ACT_MAX;
1365 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1366 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1367 		} else {
1368 			if (m->act_count == 0) {
1369 				/*
1370 				 * We turn off page access, so that we have
1371 				 * more accurate RSS stats.  We don't do this
1372 				 * in the normal page deactivation when the
1373 				 * system is loaded VM wise, because the
1374 				 * cost of the large number of page protect
1375 				 * operations would be higher than the value
1376 				 * of doing the operation.
1377 				 */
1378 				vm_page_busy(m);
1379 				vm_page_protect(m, VM_PROT_NONE);
1380 				vm_page_wakeup(m);
1381 				vm_page_deactivate(m);
1382 			} else {
1383 				m->act_count -= min(m->act_count, ACT_DECLINE);
1384 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1385 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1386 			}
1387 		}
1388 
1389 		m = next;
1390 	}
1391 	crit_exit();
1392 }
1393 
1394 static int
1395 vm_pageout_free_page_calc(vm_size_t count)
1396 {
1397 	if (count < vmstats.v_page_count)
1398 		 return 0;
1399 	/*
1400 	 * free_reserved needs to include enough for the largest swap pager
1401 	 * structures plus enough for any pv_entry structs when paging.
1402 	 */
1403 	if (vmstats.v_page_count > 1024)
1404 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1405 	else
1406 		vmstats.v_free_min = 4;
1407 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1408 		vmstats.v_interrupt_free_min;
1409 	vmstats.v_free_reserved = vm_pageout_page_count +
1410 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1411 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1412 	vmstats.v_free_min += vmstats.v_free_reserved;
1413 	vmstats.v_free_severe += vmstats.v_free_reserved;
1414 	return 1;
1415 }
1416 
1417 
1418 /*
1419  * vm_pageout is the high level pageout daemon.
1420  */
1421 static void
1422 vm_pageout(void)
1423 {
1424 	int pass;
1425 	int inactive_shortage;
1426 
1427 	/*
1428 	 * Initialize some paging parameters.
1429 	 */
1430 	curthread->td_flags |= TDF_SYSTHREAD;
1431 
1432 	vmstats.v_interrupt_free_min = 2;
1433 	if (vmstats.v_page_count < 2000)
1434 		vm_pageout_page_count = 8;
1435 
1436 	vm_pageout_free_page_calc(vmstats.v_page_count);
1437 
1438 	/*
1439 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1440 	 * that these are more a measure of the VM cache queue hysteresis
1441 	 * then the VM free queue.  Specifically, v_free_target is the
1442 	 * high water mark (free+cache pages).
1443 	 *
1444 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1445 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1446 	 * be big enough to handle memory needs while the pageout daemon
1447 	 * is signalled and run to free more pages.
1448 	 */
1449 	if (vmstats.v_free_count > 6144)
1450 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1451 	else
1452 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1453 
1454 	if (vmstats.v_free_count > 2048) {
1455 		vmstats.v_cache_min = vmstats.v_free_target;
1456 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1457 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1458 	} else {
1459 		vmstats.v_cache_min = 0;
1460 		vmstats.v_cache_max = 0;
1461 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1462 	}
1463 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1464 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1465 
1466 	/* XXX does not really belong here */
1467 	if (vm_page_max_wired == 0)
1468 		vm_page_max_wired = vmstats.v_free_count / 3;
1469 
1470 	if (vm_pageout_stats_max == 0)
1471 		vm_pageout_stats_max = vmstats.v_free_target;
1472 
1473 	/*
1474 	 * Set interval in seconds for stats scan.
1475 	 */
1476 	if (vm_pageout_stats_interval == 0)
1477 		vm_pageout_stats_interval = 5;
1478 	if (vm_pageout_full_stats_interval == 0)
1479 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1480 
1481 
1482 	/*
1483 	 * Set maximum free per pass
1484 	 */
1485 	if (vm_pageout_stats_free_max == 0)
1486 		vm_pageout_stats_free_max = 5;
1487 
1488 	swap_pager_swap_init();
1489 	pass = 0;
1490 
1491 	/*
1492 	 * The pageout daemon is never done, so loop forever.
1493 	 */
1494 	while (TRUE) {
1495 		int error;
1496 
1497 		if (vm_pages_needed == 0) {
1498 			/*
1499 			 * Wait for an action request
1500 			 */
1501 			error = tsleep(&vm_pages_needed,
1502 				       0, "psleep",
1503 				       vm_pageout_stats_interval * hz);
1504 			if (error && vm_pages_needed == 0) {
1505 				vm_pageout_page_stats();
1506 				continue;
1507 			}
1508 			vm_pages_needed = 1;
1509 		}
1510 
1511 		/*
1512 		 * If we have enough free memory, wakeup waiters.
1513 		 */
1514 		crit_enter();
1515 		if (!vm_page_count_min(0))
1516 			wakeup(&vmstats.v_free_count);
1517 		mycpu->gd_cnt.v_pdwakeups++;
1518 		crit_exit();
1519 		inactive_shortage = vm_pageout_scan(pass);
1520 
1521 		/*
1522 		 * Try to avoid thrashing the system with activity.
1523 		 */
1524 		if (inactive_shortage > 0) {
1525 			++pass;
1526 			if (swap_pager_full) {
1527 				/*
1528 				 * Running out of memory, catastrophic back-off
1529 				 * to one-second intervals.
1530 				 */
1531 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1532 			} else if (pass < 10 && vm_pages_needed > 1) {
1533 				/*
1534 				 * Normal operation, additional processes
1535 				 * have already kicked us.  Retry immediately.
1536 				 */
1537 			} else if (pass < 10) {
1538 				/*
1539 				 * Normal operation, fewer processes.  Delay
1540 				 * a bit but allow wakeups.
1541 				 */
1542 				vm_pages_needed = 0;
1543 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1544 				vm_pages_needed = 1;
1545 			} else {
1546 				/*
1547 				 * We've taken too many passes, forced delay.
1548 				 */
1549 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1550 			}
1551 		} else {
1552 			pass = 0;
1553 			vm_pages_needed = 0;
1554 		}
1555 	}
1556 }
1557 
1558 /*
1559  * Called after allocating a page out of the cache or free queue
1560  * to possibly wake the pagedaemon up to replentish our supply.
1561  *
1562  * We try to generate some hysteresis by waking the pagedaemon up
1563  * when our free+cache pages go below the severe level.  The pagedaemon
1564  * tries to get the count back up to at least the minimum, and through
1565  * to the target level if possible.
1566  *
1567  * If the pagedaemon is already active bump vm_pages_needed as a hint
1568  * that there are even more requests pending.
1569  */
1570 void
1571 pagedaemon_wakeup(void)
1572 {
1573 	if (vm_page_count_severe() && curthread != pagethread) {
1574 		if (vm_pages_needed == 0) {
1575 			vm_pages_needed = 1;
1576 			wakeup(&vm_pages_needed);
1577 		} else if (vm_page_count_min(0)) {
1578 			++vm_pages_needed;
1579 		}
1580 	}
1581 }
1582 
1583 #if !defined(NO_SWAPPING)
1584 static void
1585 vm_req_vmdaemon(void)
1586 {
1587 	static int lastrun = 0;
1588 
1589 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1590 		wakeup(&vm_daemon_needed);
1591 		lastrun = ticks;
1592 	}
1593 }
1594 
1595 static int vm_daemon_callback(struct proc *p, void *data __unused);
1596 
1597 static void
1598 vm_daemon(void)
1599 {
1600 	while (TRUE) {
1601 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1602 		if (vm_pageout_req_swapout) {
1603 			swapout_procs(vm_pageout_req_swapout);
1604 			vm_pageout_req_swapout = 0;
1605 		}
1606 		/*
1607 		 * scan the processes for exceeding their rlimits or if
1608 		 * process is swapped out -- deactivate pages
1609 		 */
1610 		allproc_scan(vm_daemon_callback, NULL);
1611 	}
1612 }
1613 
1614 static int
1615 vm_daemon_callback(struct proc *p, void *data __unused)
1616 {
1617 	vm_pindex_t limit, size;
1618 
1619 	/*
1620 	 * if this is a system process or if we have already
1621 	 * looked at this process, skip it.
1622 	 */
1623 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1624 		return (0);
1625 
1626 	/*
1627 	 * if the process is in a non-running type state,
1628 	 * don't touch it.
1629 	 */
1630 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1631 		return (0);
1632 
1633 	/*
1634 	 * get a limit
1635 	 */
1636 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1637 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1638 
1639 	/*
1640 	 * let processes that are swapped out really be
1641 	 * swapped out.  Set the limit to nothing to get as
1642 	 * many pages out to swap as possible.
1643 	 */
1644 	if (p->p_flag & P_SWAPPEDOUT)
1645 		limit = 0;
1646 
1647 	size = vmspace_resident_count(p->p_vmspace);
1648 	if (limit >= 0 && size >= limit) {
1649 		vm_pageout_map_deactivate_pages(
1650 		    &p->p_vmspace->vm_map, limit);
1651 	}
1652 	return (0);
1653 }
1654 
1655 #endif
1656