xref: /dragonfly/sys/vm/vm_pageout.c (revision b0041c55)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/conf.h>
82 #include <sys/sysctl.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <sys/lock.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/swap_pager.h>
93 #include <vm/vm_extern.h>
94 
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_page(vm_page_t m, long *max_launderp,
104 			   long *vnodes_skippedp, struct vnode **vpfailedp,
105 			   int pass, int vmflush_flags);
106 static int vm_pageout_clean_helper (vm_page_t, int);
107 static void vm_pageout_free_page_calc (vm_size_t count);
108 static void vm_pageout_page_free(vm_page_t m) ;
109 struct thread *emergpager;
110 struct thread *pagethread;
111 static int sequence_emerg_pager;
112 
113 #if !defined(NO_SWAPPING)
114 /* the kernel process "vm_daemon"*/
115 static void vm_daemon (void);
116 static struct	thread *vmthread;
117 
118 static struct kproc_desc vm_kp = {
119 	"vmdaemon",
120 	vm_daemon,
121 	&vmthread
122 };
123 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp);
124 #endif
125 
126 int vm_pages_needed = 0;	/* Event on which pageout daemon sleeps */
127 int vm_pageout_deficit = 0;	/* Estimated number of pages deficit */
128 int vm_pageout_pages_needed = 0;/* pageout daemon needs pages */
129 int vm_page_free_hysteresis = 16;
130 static int vm_pagedaemon_time;
131 
132 #if !defined(NO_SWAPPING)
133 static int vm_pageout_req_swapout;
134 static int vm_daemon_needed;
135 #endif
136 static int vm_max_launder = 4096;
137 static int vm_emerg_launder = 100;
138 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
139 static int vm_pageout_full_stats_interval = 0;
140 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
141 static int defer_swap_pageouts=0;
142 static int disable_swap_pageouts=0;
143 static u_int vm_anonmem_decline = ACT_DECLINE;
144 static u_int vm_filemem_decline = ACT_DECLINE * 2;
145 
146 #if defined(NO_SWAPPING)
147 static int vm_swap_enabled=0;
148 static int vm_swap_idle_enabled=0;
149 #else
150 static int vm_swap_enabled=1;
151 static int vm_swap_idle_enabled=0;
152 #endif
153 int vm_pageout_memuse_mode=1;	/* 0-disable, 1-passive, 2-active swp*/
154 
155 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
156 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
159 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
160 
161 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
162 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
163 	"Free more pages than the minimum required");
164 
165 SYSCTL_INT(_vm, OID_AUTO, max_launder,
166 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
167 SYSCTL_INT(_vm, OID_AUTO, emerg_launder,
168 	CTLFLAG_RW, &vm_emerg_launder, 0, "Emergency pager minimum");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
171 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
174 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
175 
176 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
177 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
178 
179 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
180 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
181 SYSCTL_INT(_vm, OID_AUTO, pageout_memuse_mode,
182 	CTLFLAG_RW, &vm_pageout_memuse_mode, 0, "memoryuse resource mode");
183 
184 #if defined(NO_SWAPPING)
185 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
186 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
187 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
188 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
189 #else
190 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
191 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
192 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
193 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
194 #endif
195 
196 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
197 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
198 
199 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
200 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
201 
202 static int pageout_lock_miss;
203 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
204 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
205 
206 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
207 
208 #if !defined(NO_SWAPPING)
209 static void vm_req_vmdaemon (void);
210 #endif
211 static void vm_pageout_page_stats(int q);
212 
213 /*
214  * Calculate approximately how many pages on each queue to try to
215  * clean.  An exact calculation creates an edge condition when the
216  * queues are unbalanced so add significant slop.  The queue scans
217  * will stop early when targets are reached and will start where they
218  * left off on the next pass.
219  *
220  * We need to be generous here because there are all sorts of loading
221  * conditions that can cause edge cases if try to average over all queues.
222  * In particular, storage subsystems have become so fast that paging
223  * activity can become quite frantic.  Eventually we will probably need
224  * two paging threads, one for dirty pages and one for clean, to deal
225  * with the bandwidth requirements.
226 
227  * So what we do is calculate a value that can be satisfied nominally by
228  * only having to scan half the queues.
229  */
230 static __inline long
231 PQAVERAGE(long n)
232 {
233 	long avg;
234 
235 	if (n >= 0) {
236 		avg = ((n + (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) + 1);
237 	} else {
238 		avg = ((n - (PQ_L2_SIZE - 1)) / (PQ_L2_SIZE / 2) - 1);
239 	}
240 	return avg;
241 }
242 
243 /*
244  * vm_pageout_clean_helper:
245  *
246  * Clean the page and remove it from the laundry.  The page must be busied
247  * by the caller and will be disposed of (put away, flushed) by this routine.
248  */
249 static int
250 vm_pageout_clean_helper(vm_page_t m, int vmflush_flags)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[BLIST_MAX_ALLOC];
254 	int error;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * Don't mess with the page if it's held or special.  Theoretically
262 	 * we can pageout held pages but there is no real need to press our
263 	 * luck, so don't.
264 	 */
265 	if (m->hold_count != 0 || (m->flags & PG_UNQUEUED)) {
266 		vm_page_wakeup(m);
267 		return 0;
268 	}
269 
270 	/*
271 	 * Place page in cluster.  Align cluster for optimal swap space
272 	 * allocation (whether it is swap or not).  This is typically ~16-32
273 	 * pages, which also tends to align the cluster to multiples of the
274 	 * filesystem block size if backed by a filesystem.
275 	 */
276 	page_base = pindex % BLIST_MAX_ALLOC;
277 	mc[page_base] = m;
278 	ib = page_base - 1;
279 	is = page_base + 1;
280 
281 	/*
282 	 * Scan object for clusterable pages.
283 	 *
284 	 * We can cluster ONLY if: ->> the page is NOT
285 	 * clean, wired, busy, held, or mapped into a
286 	 * buffer, and one of the following:
287 	 * 1) The page is inactive, or a seldom used
288 	 *    active page.
289 	 * -or-
290 	 * 2) we force the issue.
291 	 *
292 	 * During heavy mmap/modification loads the pageout
293 	 * daemon can really fragment the underlying file
294 	 * due to flushing pages out of order and not trying
295 	 * align the clusters (which leave sporatic out-of-order
296 	 * holes).  To solve this problem we do the reverse scan
297 	 * first and attempt to align our cluster, then do a
298 	 * forward scan if room remains.
299 	 */
300 	vm_object_hold(object);
301 
302 	while (ib >= 0) {
303 		vm_page_t p;
304 
305 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
306 					    TRUE, &error);
307 		if (error || p == NULL)
308 			break;
309 		if ((p->queue - p->pc) == PQ_CACHE ||
310 		    (p->flags & PG_UNQUEUED)) {
311 			vm_page_wakeup(p);
312 			break;
313 		}
314 		vm_page_test_dirty(p);
315 		if (((p->dirty & p->valid) == 0 &&
316 		     (p->flags & PG_NEED_COMMIT) == 0) ||
317 		    p->wire_count != 0 ||	/* may be held by buf cache */
318 		    p->hold_count != 0) {	/* may be undergoing I/O */
319 			vm_page_wakeup(p);
320 			break;
321 		}
322 		if (p->queue - p->pc != PQ_INACTIVE) {
323 			if (p->queue - p->pc != PQ_ACTIVE ||
324 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
325 				vm_page_wakeup(p);
326 				break;
327 			}
328 		}
329 
330 		/*
331 		 * Try to maintain page groupings in the cluster.
332 		 */
333 		if (m->flags & PG_WINATCFLS)
334 			vm_page_flag_set(p, PG_WINATCFLS);
335 		else
336 			vm_page_flag_clear(p, PG_WINATCFLS);
337 		p->act_count = m->act_count;
338 
339 		mc[ib] = p;
340 		--ib;
341 	}
342 	++ib;	/* fixup */
343 
344 	while (is < BLIST_MAX_ALLOC &&
345 	       pindex - page_base + is < object->size) {
346 		vm_page_t p;
347 
348 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
349 					    TRUE, &error);
350 		if (error || p == NULL)
351 			break;
352 		if (((p->queue - p->pc) == PQ_CACHE) ||
353 		    (p->flags & PG_UNQUEUED)) {
354 			vm_page_wakeup(p);
355 			break;
356 		}
357 		vm_page_test_dirty(p);
358 		if (((p->dirty & p->valid) == 0 &&
359 		     (p->flags & PG_NEED_COMMIT) == 0) ||
360 		    p->wire_count != 0 ||	/* may be held by buf cache */
361 		    p->hold_count != 0) {	/* may be undergoing I/O */
362 			vm_page_wakeup(p);
363 			break;
364 		}
365 		if (p->queue - p->pc != PQ_INACTIVE) {
366 			if (p->queue - p->pc != PQ_ACTIVE ||
367 			    (vmflush_flags & VM_PAGER_ALLOW_ACTIVE) == 0) {
368 				vm_page_wakeup(p);
369 				break;
370 			}
371 		}
372 
373 		/*
374 		 * Try to maintain page groupings in the cluster.
375 		 */
376 		if (m->flags & PG_WINATCFLS)
377 			vm_page_flag_set(p, PG_WINATCFLS);
378 		else
379 			vm_page_flag_clear(p, PG_WINATCFLS);
380 		p->act_count = m->act_count;
381 
382 		mc[is] = p;
383 		++is;
384 	}
385 
386 	vm_object_drop(object);
387 
388 	/*
389 	 * we allow reads during pageouts...
390 	 */
391 	return vm_pageout_flush(&mc[ib], is - ib, vmflush_flags);
392 }
393 
394 /*
395  * vm_pageout_flush() - launder the given pages
396  *
397  *	The given pages are laundered.  Note that we setup for the start of
398  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
399  *	reference count all in here rather then in the parent.  If we want
400  *	the parent to do more sophisticated things we may have to change
401  *	the ordering.
402  *
403  *	The pages in the array must be busied by the caller and will be
404  *	unbusied by this function.
405  */
406 int
407 vm_pageout_flush(vm_page_t *mc, int count, int vmflush_flags)
408 {
409 	vm_object_t object;
410 	int pageout_status[count];
411 	int numpagedout = 0;
412 	int i;
413 
414 	/*
415 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
416 	 */
417 	for (i = 0; i < count; i++) {
418 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
419 			("vm_pageout_flush page %p index %d/%d: partially "
420 			 "invalid page", mc[i], i, count));
421 		vm_page_io_start(mc[i]);
422 	}
423 
424 	/*
425 	 * We must make the pages read-only.  This will also force the
426 	 * modified bit in the related pmaps to be cleared.  The pager
427 	 * cannot clear the bit for us since the I/O completion code
428 	 * typically runs from an interrupt.  The act of making the page
429 	 * read-only handles the case for us.
430 	 *
431 	 * Then we can unbusy the pages, we still hold a reference by virtue
432 	 * of our soft-busy.
433 	 */
434 	for (i = 0; i < count; i++) {
435 		if (vmflush_flags & VM_PAGER_TRY_TO_CACHE)
436 			vm_page_protect(mc[i], VM_PROT_NONE);
437 		else
438 			vm_page_protect(mc[i], VM_PROT_READ);
439 		vm_page_wakeup(mc[i]);
440 	}
441 
442 	object = mc[0]->object;
443 	vm_object_pip_add(object, count);
444 
445 	vm_pager_put_pages(object, mc, count,
446 			   (vmflush_flags |
447 			    ((object == &kernel_object) ?
448 				VM_PAGER_PUT_SYNC : 0)),
449 			   pageout_status);
450 
451 	for (i = 0; i < count; i++) {
452 		vm_page_t mt = mc[i];
453 
454 		switch (pageout_status[i]) {
455 		case VM_PAGER_OK:
456 			numpagedout++;
457 			break;
458 		case VM_PAGER_PEND:
459 			numpagedout++;
460 			break;
461 		case VM_PAGER_BAD:
462 			/*
463 			 * Page outside of range of object. Right now we
464 			 * essentially lose the changes by pretending it
465 			 * worked.
466 			 */
467 			vm_page_busy_wait(mt, FALSE, "pgbad");
468 			pmap_clear_modify(mt);
469 			vm_page_undirty(mt);
470 			vm_page_wakeup(mt);
471 			break;
472 		case VM_PAGER_ERROR:
473 		case VM_PAGER_FAIL:
474 			/*
475 			 * A page typically cannot be paged out when we
476 			 * have run out of swap.  We leave the page
477 			 * marked inactive and will try to page it out
478 			 * again later.
479 			 *
480 			 * Starvation of the active page list is used to
481 			 * determine when the system is massively memory
482 			 * starved.
483 			 */
484 			break;
485 		case VM_PAGER_AGAIN:
486 			break;
487 		}
488 
489 		/*
490 		 * If not PENDing this was a synchronous operation and we
491 		 * clean up after the I/O.  If it is PENDing the mess is
492 		 * cleaned up asynchronously.
493 		 *
494 		 * Also nominally act on the caller's wishes if the caller
495 		 * wants to try to really clean (cache or free) the page.
496 		 *
497 		 * Also nominally deactivate the page if the system is
498 		 * memory-stressed.
499 		 */
500 		if (pageout_status[i] != VM_PAGER_PEND) {
501 			vm_page_busy_wait(mt, FALSE, "pgouw");
502 			vm_page_io_finish(mt);
503 			if (vmflush_flags & VM_PAGER_TRY_TO_CACHE) {
504 				vm_page_try_to_cache(mt);
505 			} else if (vm_page_count_severe()) {
506 				vm_page_deactivate(mt);
507 				vm_page_wakeup(mt);
508 			} else {
509 				vm_page_wakeup(mt);
510 			}
511 			vm_object_pip_wakeup(object);
512 		}
513 	}
514 	return numpagedout;
515 }
516 
517 #if !defined(NO_SWAPPING)
518 
519 /*
520  * Callback function, page busied for us.  We must dispose of the busy
521  * condition.  Any related pmap pages may be held but will not be locked.
522  */
523 static
524 int
525 vm_pageout_mdp_callback(struct pmap_pgscan_info *info, vm_offset_t va,
526 			vm_page_t p)
527 {
528 	int actcount;
529 	int cleanit = 0;
530 
531 	/*
532 	 * Basic tests - There should never be a marker, and we can stop
533 	 *		 once the RSS is below the required level.
534 	 */
535 	KKASSERT((p->flags & PG_MARKER) == 0);
536 	if (pmap_resident_tlnw_count(info->pmap) <= info->limit) {
537 		vm_page_wakeup(p);
538 		return(-1);
539 	}
540 
541 	mycpu->gd_cnt.v_pdpages++;
542 
543 	if (p->wire_count || p->hold_count || (p->flags & PG_UNQUEUED)) {
544 		vm_page_wakeup(p);
545 		goto done;
546 	}
547 
548 	++info->actioncount;
549 
550 	/*
551 	 * Check if the page has been referened recently.  If it has,
552 	 * activate it and skip.
553 	 */
554 	actcount = pmap_ts_referenced(p);
555 	if (actcount) {
556 		vm_page_flag_set(p, PG_REFERENCED);
557 	} else if (p->flags & PG_REFERENCED) {
558 		actcount = 1;
559 	}
560 
561 	if (actcount) {
562 		if (p->queue - p->pc != PQ_ACTIVE) {
563 			vm_page_and_queue_spin_lock(p);
564 			if (p->queue - p->pc != PQ_ACTIVE) {
565 				vm_page_and_queue_spin_unlock(p);
566 				vm_page_activate(p);
567 			} else {
568 				vm_page_and_queue_spin_unlock(p);
569 			}
570 		} else {
571 			p->act_count += actcount;
572 			if (p->act_count > ACT_MAX)
573 				p->act_count = ACT_MAX;
574 		}
575 		vm_page_flag_clear(p, PG_REFERENCED);
576 		vm_page_wakeup(p);
577 		goto done;
578 	}
579 
580 	/*
581 	 * Remove the page from this particular pmap.  Once we do this, our
582 	 * pmap scans will not see it again (unless it gets faulted in), so
583 	 * we must actively dispose of or deal with the page.
584 	 */
585 	pmap_remove_specific(info->pmap, p);
586 
587 	/*
588 	 * If the page is not mapped to another process (i.e. as would be
589 	 * typical if this were a shared page from a library) then deactivate
590 	 * the page and clean it in two passes only.
591 	 *
592 	 * If the page hasn't been referenced since the last check, remove it
593 	 * from the pmap.  If it is no longer mapped, deactivate it
594 	 * immediately, accelerating the normal decline.
595 	 *
596 	 * Once the page has been removed from the pmap the RSS code no
597 	 * longer tracks it so we have to make sure that it is staged for
598 	 * potential flush action.
599 	 */
600 	if ((p->flags & PG_MAPPED) == 0 ||
601 	    (pmap_mapped_sync(p) & PG_MAPPED) == 0) {
602 		if (p->queue - p->pc == PQ_ACTIVE) {
603 			vm_page_deactivate(p);
604 		}
605 		if (p->queue - p->pc == PQ_INACTIVE) {
606 			cleanit = 1;
607 		}
608 	}
609 
610 	/*
611 	 * Ok, try to fully clean the page and any nearby pages such that at
612 	 * least the requested page is freed or moved to the cache queue.
613 	 *
614 	 * We usually do this synchronously to allow us to get the page into
615 	 * the CACHE queue quickly, which will prevent memory exhaustion if
616 	 * a process with a memoryuse limit is running away.  However, the
617 	 * sysadmin may desire to set vm.swap_user_async which relaxes this
618 	 * and improves write performance.
619 	 */
620 	if (cleanit) {
621 		long max_launder = 0x7FFF;
622 		long vnodes_skipped = 0;
623 		int vmflush_flags;
624 		struct vnode *vpfailed = NULL;
625 
626 		info->offset = va;
627 
628 		if (vm_pageout_memuse_mode >= 2) {
629 			vmflush_flags = VM_PAGER_TRY_TO_CACHE |
630 					VM_PAGER_ALLOW_ACTIVE;
631 			if (swap_user_async == 0)
632 				vmflush_flags |= VM_PAGER_PUT_SYNC;
633 			vm_page_flag_set(p, PG_WINATCFLS);
634 			info->cleancount +=
635 				vm_pageout_page(p, &max_launder,
636 						&vnodes_skipped,
637 						&vpfailed, 1, vmflush_flags);
638 		} else {
639 			vm_page_wakeup(p);
640 			++info->cleancount;
641 		}
642 	} else {
643 		vm_page_wakeup(p);
644 	}
645 
646 	/*
647 	 * Must be at end to avoid SMP races.
648 	 */
649 done:
650 	lwkt_user_yield();
651 	return 0;
652 }
653 
654 /*
655  * Deactivate some number of pages in a map due to set RLIMIT_RSS limits.
656  * that is relatively difficult to do.  We try to keep track of where we
657  * left off last time to reduce scan overhead.
658  *
659  * Called when vm_pageout_memuse_mode is >= 1.
660  */
661 void
662 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t limit)
663 {
664 	vm_offset_t pgout_offset;
665 	struct pmap_pgscan_info info;
666 	int retries = 3;
667 
668 	pgout_offset = map->pgout_offset;
669 again:
670 #if 0
671 	kprintf("%016jx ", pgout_offset);
672 #endif
673 	if (pgout_offset < VM_MIN_USER_ADDRESS)
674 		pgout_offset = VM_MIN_USER_ADDRESS;
675 	if (pgout_offset >= VM_MAX_USER_ADDRESS)
676 		pgout_offset = 0;
677 	info.pmap = vm_map_pmap(map);
678 	info.limit = limit;
679 	info.beg_addr = pgout_offset;
680 	info.end_addr = VM_MAX_USER_ADDRESS;
681 	info.callback = vm_pageout_mdp_callback;
682 	info.cleancount = 0;
683 	info.actioncount = 0;
684 	info.busycount = 0;
685 
686 	pmap_pgscan(&info);
687 	pgout_offset = info.offset;
688 #if 0
689 	kprintf("%016jx %08lx %08lx\n", pgout_offset,
690 		info.cleancount, info.actioncount);
691 #endif
692 
693 	if (pgout_offset != VM_MAX_USER_ADDRESS &&
694 	    pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
695 		goto again;
696 	} else if (retries &&
697 		   pmap_resident_tlnw_count(vm_map_pmap(map)) > limit) {
698 		--retries;
699 		goto again;
700 	}
701 	map->pgout_offset = pgout_offset;
702 }
703 #endif
704 
705 /*
706  * Called when the pageout scan wants to free a page.  We no longer
707  * try to cycle the vm_object here with a reference & dealloc, which can
708  * cause a non-trivial object collapse in a critical path.
709  *
710  * It is unclear why we cycled the ref_count in the past, perhaps to try
711  * to optimize shadow chain collapses but I don't quite see why it would
712  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
713  * synchronously and not have to be kicked-start.
714  */
715 static void
716 vm_pageout_page_free(vm_page_t m)
717 {
718 	vm_page_protect(m, VM_PROT_NONE);
719 	vm_page_free(m);
720 }
721 
722 /*
723  * vm_pageout_scan does the dirty work for the pageout daemon.
724  */
725 struct vm_pageout_scan_info {
726 	struct proc *bigproc;
727 	vm_offset_t bigsize;
728 };
729 
730 static int vm_pageout_scan_callback(struct proc *p, void *data);
731 
732 /*
733  * Scan inactive queue
734  *
735  * WARNING! Can be called from two pagedaemon threads simultaneously.
736  */
737 static int
738 vm_pageout_scan_inactive(int pass, int q, long avail_shortage,
739 			 long *vnodes_skipped)
740 {
741 	vm_page_t m;
742 	struct vm_page marker;
743 	struct vnode *vpfailed;		/* warning, allowed to be stale */
744 	long maxscan;
745 	long delta = 0;
746 	long max_launder;
747 	int isep;
748 
749 	isep = (curthread == emergpager);
750 
751 	/*
752 	 * Start scanning the inactive queue for pages we can move to the
753 	 * cache or free.  The scan will stop when the target is reached or
754 	 * we have scanned the entire inactive queue.  Note that m->act_count
755 	 * is not used to form decisions for the inactive queue, only for the
756 	 * active queue.
757 	 *
758 	 * max_launder limits the number of dirty pages we flush per scan.
759 	 * For most systems a smaller value (16 or 32) is more robust under
760 	 * extreme memory and disk pressure because any unnecessary writes
761 	 * to disk can result in extreme performance degredation.  However,
762 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
763 	 * used) will die horribly with limited laundering.  If the pageout
764 	 * daemon cannot clean enough pages in the first pass, we let it go
765 	 * all out in succeeding passes.
766 	 *
767 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT LAUNDER VNODE-BACKED
768 	 *	  PAGES.
769 	 */
770 	if ((max_launder = vm_max_launder) <= 1)
771 		max_launder = 1;
772 	if (pass)
773 		max_launder = 10000;
774 
775 	/*
776 	 * Initialize our marker
777 	 */
778 	bzero(&marker, sizeof(marker));
779 	marker.flags = PG_FICTITIOUS | PG_MARKER;
780 	marker.busy_count = PBUSY_LOCKED;
781 	marker.queue = PQ_INACTIVE + q;
782 	marker.pc = q;
783 	marker.wire_count = 1;
784 
785 	/*
786 	 * Inactive queue scan.
787 	 *
788 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
789 	 *	 deadlocks, so it is easiest to simply iterate the loop
790 	 *	 with the queue unlocked at the top.
791 	 */
792 	vpfailed = NULL;
793 
794 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
795 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
796 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
797 
798 	/*
799 	 * Queue locked at top of loop to avoid stack marker issues.
800 	 */
801 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
802 	       maxscan-- > 0 && avail_shortage - delta > 0)
803 	{
804 		int count;
805 
806 		KKASSERT(m->queue == PQ_INACTIVE + q);
807 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
808 			     &marker, pageq);
809 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
810 				   &marker, pageq);
811 		mycpu->gd_cnt.v_pdpages++;
812 
813 		/*
814 		 * Skip marker pages (atomic against other markers to avoid
815 		 * infinite hop-over scans).
816 		 */
817 		if (m->flags & PG_MARKER)
818 			continue;
819 
820 		/*
821 		 * Try to busy the page.  Don't mess with pages which are
822 		 * already busy or reorder them in the queue.
823 		 */
824 		if (vm_page_busy_try(m, TRUE))
825 			continue;
826 
827 		/*
828 		 * Remaining operations run with the page busy and neither
829 		 * the page or the queue will be spin-locked.
830 		 */
831 		KKASSERT(m->queue == PQ_INACTIVE + q);
832 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
833 
834 		/*
835 		 * The emergency pager runs when the primary pager gets
836 		 * stuck, which typically means the primary pager deadlocked
837 		 * on a vnode-backed page.  Therefore, the emergency pager
838 		 * must skip any complex objects.
839 		 *
840 		 * We disallow VNODEs unless they are VCHR whos device ops
841 		 * does not flag D_NOEMERGPGR.
842 		 */
843 		if (isep && m->object) {
844 			struct vnode *vp;
845 
846 			switch(m->object->type) {
847 			case OBJT_DEFAULT:
848 			case OBJT_SWAP:
849 				/*
850 				 * Allow anonymous memory and assume that
851 				 * swap devices are not complex, since its
852 				 * kinda worthless if we can't swap out dirty
853 				 * anonymous pages.
854 				 */
855 				break;
856 			case OBJT_VNODE:
857 				/*
858 				 * Allow VCHR device if the D_NOEMERGPGR
859 				 * flag is not set, deny other vnode types
860 				 * as being too complex.
861 				 */
862 				vp = m->object->handle;
863 				if (vp && vp->v_type == VCHR &&
864 				    vp->v_rdev && vp->v_rdev->si_ops &&
865 				    (vp->v_rdev->si_ops->head.flags &
866 				     D_NOEMERGPGR) == 0) {
867 					break;
868 				}
869 				/* Deny - fall through */
870 			default:
871 				/*
872 				 * Deny
873 				 */
874 				vm_page_wakeup(m);
875 				vm_page_queues_spin_lock(PQ_INACTIVE + q);
876 				lwkt_yield();
877 				continue;
878 			}
879 		}
880 
881 		/*
882 		 * Try to pageout the page and perhaps other nearby pages.
883 		 */
884 		count = vm_pageout_page(m, &max_launder, vnodes_skipped,
885 					&vpfailed, pass, 0);
886 		delta += count;
887 
888 		/*
889 		 * Systems with a ton of memory can wind up with huge
890 		 * deactivation counts.  Because the inactive scan is
891 		 * doing a lot of flushing, the combination can result
892 		 * in excessive paging even in situations where other
893 		 * unrelated threads free up sufficient VM.
894 		 *
895 		 * To deal with this we abort the nominal active->inactive
896 		 * scan before we hit the inactive target when free+cache
897 		 * levels have reached a reasonable target.
898 		 *
899 		 * When deciding to stop early we need to add some slop to
900 		 * the test and we need to return full completion to the caller
901 		 * to prevent the caller from thinking there is something
902 		 * wrong and issuing a low-memory+swap warning or pkill.
903 		 *
904 		 * A deficit forces paging regardless of the state of the
905 		 * VM page queues (used for RSS enforcement).
906 		 */
907 		lwkt_yield();
908 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
909 		if (vm_paging_target() < -vm_max_launder) {
910 			/*
911 			 * Stopping early, return full completion to caller.
912 			 */
913 			if (delta < avail_shortage)
914 				delta = avail_shortage;
915 			break;
916 		}
917 	}
918 
919 	/* page queue still spin-locked */
920 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
921 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
922 
923 	return (delta);
924 }
925 
926 /*
927  * Pageout the specified page, return the total number of pages paged out
928  * (this routine may cluster).
929  *
930  * The page must be busied and soft-busied by the caller and will be disposed
931  * of by this function.
932  */
933 static int
934 vm_pageout_page(vm_page_t m, long *max_launderp, long *vnodes_skippedp,
935 		struct vnode **vpfailedp, int pass, int vmflush_flags)
936 {
937 	vm_object_t object;
938 	int actcount;
939 	int count = 0;
940 
941 	/*
942 	 * Wiring no longer removes a page from its queue.  The last unwiring
943 	 * will requeue the page.  Obviously wired pages cannot be paged out
944 	 * so unqueue it and return.
945 	 */
946 	if (m->wire_count) {
947 		vm_page_unqueue_nowakeup(m);
948 		vm_page_wakeup(m);
949 		return 0;
950 	}
951 
952 	/*
953 	 * A held page may be undergoing I/O, so skip it.
954 	 */
955 	if (m->hold_count) {
956 		vm_page_and_queue_spin_lock(m);
957 		if (m->queue - m->pc == PQ_INACTIVE) {
958 			TAILQ_REMOVE(
959 				&vm_page_queues[m->queue].pl, m, pageq);
960 			TAILQ_INSERT_TAIL(
961 				&vm_page_queues[m->queue].pl, m, pageq);
962 		}
963 		vm_page_and_queue_spin_unlock(m);
964 		vm_page_wakeup(m);
965 		return 0;
966 	}
967 
968 	if (m->object == NULL || m->object->ref_count == 0) {
969 		/*
970 		 * If the object is not being used, we ignore previous
971 		 * references.
972 		 */
973 		vm_page_flag_clear(m, PG_REFERENCED);
974 		pmap_clear_reference(m);
975 		/* fall through to end */
976 	} else if (((m->flags & PG_REFERENCED) == 0) &&
977 		    (actcount = pmap_ts_referenced(m))) {
978 		/*
979 		 * Otherwise, if the page has been referenced while
980 		 * in the inactive queue, we bump the "activation
981 		 * count" upwards, making it less likely that the
982 		 * page will be added back to the inactive queue
983 		 * prematurely again.  Here we check the page tables
984 		 * (or emulated bits, if any), given the upper level
985 		 * VM system not knowing anything about existing
986 		 * references.
987 		 */
988 		vm_page_activate(m);
989 		m->act_count += (actcount + ACT_ADVANCE);
990 		vm_page_wakeup(m);
991 		return 0;
992 	}
993 
994 	/*
995 	 * (m) is still busied.
996 	 *
997 	 * If the upper level VM system knows about any page
998 	 * references, we activate the page.  We also set the
999 	 * "activation count" higher than normal so that we will less
1000 	 * likely place pages back onto the inactive queue again.
1001 	 */
1002 	if ((m->flags & PG_REFERENCED) != 0) {
1003 		vm_page_flag_clear(m, PG_REFERENCED);
1004 		actcount = pmap_ts_referenced(m);
1005 		vm_page_activate(m);
1006 		m->act_count += (actcount + ACT_ADVANCE + 1);
1007 		vm_page_wakeup(m);
1008 		return 0;
1009 	}
1010 
1011 	/*
1012 	 * If the upper level VM system doesn't know anything about
1013 	 * the page being dirty, we have to check for it again.  As
1014 	 * far as the VM code knows, any partially dirty pages are
1015 	 * fully dirty.
1016 	 *
1017 	 * Pages marked PG_WRITEABLE may be mapped into the user
1018 	 * address space of a process running on another cpu.  A
1019 	 * user process (without holding the MP lock) running on
1020 	 * another cpu may be able to touch the page while we are
1021 	 * trying to remove it.  vm_page_cache() will handle this
1022 	 * case for us.
1023 	 */
1024 	if (m->dirty == 0) {
1025 		vm_page_test_dirty(m);
1026 	} else {
1027 		vm_page_dirty(m);
1028 	}
1029 
1030 	if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
1031 		/*
1032 		 * Invalid pages can be easily freed
1033 		 */
1034 		vm_pageout_page_free(m);
1035 		mycpu->gd_cnt.v_dfree++;
1036 		++count;
1037 	} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
1038 		/*
1039 		 * Clean pages can be placed onto the cache queue.
1040 		 * This effectively frees them.
1041 		 */
1042 		vm_page_cache(m);
1043 		++count;
1044 	} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
1045 		/*
1046 		 * Dirty pages need to be paged out, but flushing
1047 		 * a page is extremely expensive verses freeing
1048 		 * a clean page.  Rather then artificially limiting
1049 		 * the number of pages we can flush, we instead give
1050 		 * dirty pages extra priority on the inactive queue
1051 		 * by forcing them to be cycled through the queue
1052 		 * twice before being flushed, after which the
1053 		 * (now clean) page will cycle through once more
1054 		 * before being freed.  This significantly extends
1055 		 * the thrash point for a heavily loaded machine.
1056 		 */
1057 		vm_page_flag_set(m, PG_WINATCFLS);
1058 		vm_page_and_queue_spin_lock(m);
1059 		if (m->queue - m->pc == PQ_INACTIVE) {
1060 			TAILQ_REMOVE(
1061 				&vm_page_queues[m->queue].pl, m, pageq);
1062 			TAILQ_INSERT_TAIL(
1063 				&vm_page_queues[m->queue].pl, m, pageq);
1064 		}
1065 		vm_page_and_queue_spin_unlock(m);
1066 		vm_page_wakeup(m);
1067 	} else if (*max_launderp > 0) {
1068 		/*
1069 		 * We always want to try to flush some dirty pages if
1070 		 * we encounter them, to keep the system stable.
1071 		 * Normally this number is small, but under extreme
1072 		 * pressure where there are insufficient clean pages
1073 		 * on the inactive queue, we may have to go all out.
1074 		 */
1075 		int swap_pageouts_ok;
1076 		struct vnode *vp = NULL;
1077 
1078 		swap_pageouts_ok = 0;
1079 		object = m->object;
1080 		if (object &&
1081 		    (object->type != OBJT_SWAP) &&
1082 		    (object->type != OBJT_DEFAULT)) {
1083 			swap_pageouts_ok = 1;
1084 		} else {
1085 			swap_pageouts_ok = !(defer_swap_pageouts ||
1086 					     disable_swap_pageouts);
1087 			swap_pageouts_ok |= (!disable_swap_pageouts &&
1088 					     defer_swap_pageouts &&
1089 					     vm_page_count_min(0));
1090 		}
1091 
1092 		/*
1093 		 * We don't bother paging objects that are "dead".
1094 		 * Those objects are in a "rundown" state.
1095 		 */
1096 		if (!swap_pageouts_ok ||
1097 		    (object == NULL) ||
1098 		    (object->flags & OBJ_DEAD)) {
1099 			vm_page_and_queue_spin_lock(m);
1100 			if (m->queue - m->pc == PQ_INACTIVE) {
1101 				TAILQ_REMOVE(
1102 				    &vm_page_queues[m->queue].pl,
1103 				    m, pageq);
1104 				TAILQ_INSERT_TAIL(
1105 				    &vm_page_queues[m->queue].pl,
1106 				    m, pageq);
1107 			}
1108 			vm_page_and_queue_spin_unlock(m);
1109 			vm_page_wakeup(m);
1110 			return 0;
1111 		}
1112 
1113 		/*
1114 		 * (m) is still busied.
1115 		 *
1116 		 * The object is already known NOT to be dead.   It
1117 		 * is possible for the vget() to block the whole
1118 		 * pageout daemon, but the new low-memory handling
1119 		 * code should prevent it.
1120 		 *
1121 		 * The previous code skipped locked vnodes and, worse,
1122 		 * reordered pages in the queue.  This results in
1123 		 * completely non-deterministic operation because,
1124 		 * quite often, a vm_fault has initiated an I/O and
1125 		 * is holding a locked vnode at just the point where
1126 		 * the pageout daemon is woken up.
1127 		 *
1128 		 * We can't wait forever for the vnode lock, we might
1129 		 * deadlock due to a vn_read() getting stuck in
1130 		 * vm_wait while holding this vnode.  We skip the
1131 		 * vnode if we can't get it in a reasonable amount
1132 		 * of time.
1133 		 *
1134 		 * vpfailed is used to (try to) avoid the case where
1135 		 * a large number of pages are associated with a
1136 		 * locked vnode, which could cause the pageout daemon
1137 		 * to stall for an excessive amount of time.
1138 		 */
1139 		if (object->type == OBJT_VNODE) {
1140 			int flags;
1141 
1142 			vp = object->handle;
1143 			flags = LK_EXCLUSIVE;
1144 			if (vp == *vpfailedp)
1145 				flags |= LK_NOWAIT;
1146 			else
1147 				flags |= LK_TIMELOCK;
1148 			vm_page_hold(m);
1149 			vm_page_wakeup(m);
1150 
1151 			/*
1152 			 * We have unbusied (m) temporarily so we can
1153 			 * acquire the vp lock without deadlocking.
1154 			 * (m) is held to prevent destruction.
1155 			 */
1156 			if (vget(vp, flags) != 0) {
1157 				*vpfailedp = vp;
1158 				++pageout_lock_miss;
1159 				if (object->flags & OBJ_MIGHTBEDIRTY)
1160 					    ++*vnodes_skippedp;
1161 				vm_page_unhold(m);
1162 				return 0;
1163 			}
1164 
1165 			/*
1166 			 * The page might have been moved to another
1167 			 * queue during potential blocking in vget()
1168 			 * above.  The page might have been freed and
1169 			 * reused for another vnode.  The object might
1170 			 * have been reused for another vnode.
1171 			 */
1172 			if (m->queue - m->pc != PQ_INACTIVE ||
1173 			    m->object != object ||
1174 			    object->handle != vp) {
1175 				if (object->flags & OBJ_MIGHTBEDIRTY)
1176 					++*vnodes_skippedp;
1177 				vput(vp);
1178 				vm_page_unhold(m);
1179 				return 0;
1180 			}
1181 
1182 			/*
1183 			 * The page may have been busied during the
1184 			 * blocking in vput();  We don't move the
1185 			 * page back onto the end of the queue so that
1186 			 * statistics are more correct if we don't.
1187 			 */
1188 			if (vm_page_busy_try(m, TRUE)) {
1189 				vput(vp);
1190 				vm_page_unhold(m);
1191 				return 0;
1192 			}
1193 			vm_page_unhold(m);
1194 
1195 			/*
1196 			 * If it was wired while we didn't own it.
1197 			 */
1198 			if (m->wire_count) {
1199 				vm_page_unqueue_nowakeup(m);
1200 				vput(vp);
1201 				vm_page_wakeup(m);
1202 				return 0;
1203 			}
1204 
1205 			/*
1206 			 * (m) is busied again
1207 			 *
1208 			 * We own the busy bit and remove our hold
1209 			 * bit.  If the page is still held it
1210 			 * might be undergoing I/O, so skip it.
1211 			 */
1212 			if (m->hold_count) {
1213 				vm_page_and_queue_spin_lock(m);
1214 				if (m->queue - m->pc == PQ_INACTIVE) {
1215 					TAILQ_REMOVE(&vm_page_queues[m->queue].pl, m, pageq);
1216 					TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1217 				}
1218 				vm_page_and_queue_spin_unlock(m);
1219 				if (object->flags & OBJ_MIGHTBEDIRTY)
1220 					++*vnodes_skippedp;
1221 				vm_page_wakeup(m);
1222 				vput(vp);
1223 				return 0;
1224 			}
1225 			/* (m) is left busied as we fall through */
1226 		}
1227 
1228 		/*
1229 		 * page is busy and not held here.
1230 		 *
1231 		 * If a page is dirty, then it is either being washed
1232 		 * (but not yet cleaned) or it is still in the
1233 		 * laundry.  If it is still in the laundry, then we
1234 		 * start the cleaning operation.
1235 		 *
1236 		 * decrement inactive_shortage on success to account
1237 		 * for the (future) cleaned page.  Otherwise we
1238 		 * could wind up laundering or cleaning too many
1239 		 * pages.
1240 		 *
1241 		 * NOTE: Cleaning the page here does not cause
1242 		 *	 force_deficit to be adjusted, because the
1243 		 *	 page is not being freed or moved to the
1244 		 *	 cache.
1245 		 */
1246 		count = vm_pageout_clean_helper(m, vmflush_flags);
1247 		*max_launderp -= count;
1248 
1249 		/*
1250 		 * Clean ate busy, page no longer accessible
1251 		 */
1252 		if (vp != NULL)
1253 			vput(vp);
1254 	} else {
1255 		vm_page_wakeup(m);
1256 	}
1257 	return count;
1258 }
1259 
1260 /*
1261  * Scan active queue
1262  *
1263  * WARNING! Can be called from two pagedaemon threads simultaneously.
1264  */
1265 static int
1266 vm_pageout_scan_active(int pass, int q,
1267 		       long avail_shortage, long inactive_shortage,
1268 		       long *recycle_countp)
1269 {
1270 	struct vm_page marker;
1271 	vm_page_t m;
1272 	int actcount;
1273 	long delta = 0;
1274 	long maxscan;
1275 	int isep;
1276 
1277 	isep = (curthread == emergpager);
1278 
1279 	/*
1280 	 * We want to move pages from the active queue to the inactive
1281 	 * queue to get the inactive queue to the inactive target.  If
1282 	 * we still have a page shortage from above we try to directly free
1283 	 * clean pages instead of moving them.
1284 	 *
1285 	 * If we do still have a shortage we keep track of the number of
1286 	 * pages we free or cache (recycle_count) as a measure of thrashing
1287 	 * between the active and inactive queues.
1288 	 *
1289 	 * If we were able to completely satisfy the free+cache targets
1290 	 * from the inactive pool we limit the number of pages we move
1291 	 * from the active pool to the inactive pool to 2x the pages we
1292 	 * had removed from the inactive pool (with a minimum of 1/5 the
1293 	 * inactive target).  If we were not able to completely satisfy
1294 	 * the free+cache targets we go for the whole target aggressively.
1295 	 *
1296 	 * NOTE: Both variables can end up negative.
1297 	 * NOTE: We are still in a critical section.
1298 	 *
1299 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT LAUNDER VNODE-BACKED
1300 	 *	  PAGES.
1301 	 */
1302 
1303 	bzero(&marker, sizeof(marker));
1304 	marker.flags = PG_FICTITIOUS | PG_MARKER;
1305 	marker.busy_count = PBUSY_LOCKED;
1306 	marker.queue = PQ_ACTIVE + q;
1307 	marker.pc = q;
1308 	marker.wire_count = 1;
1309 
1310 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1311 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1312 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1313 
1314 	/*
1315 	 * Queue locked at top of loop to avoid stack marker issues.
1316 	 */
1317 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1318 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1319 				inactive_shortage > 0))
1320 	{
1321 		KKASSERT(m->queue == PQ_ACTIVE + q);
1322 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1323 			     &marker, pageq);
1324 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1325 				   &marker, pageq);
1326 
1327 		/*
1328 		 * Skip marker pages (atomic against other markers to avoid
1329 		 * infinite hop-over scans).
1330 		 */
1331 		if (m->flags & PG_MARKER)
1332 			continue;
1333 
1334 		/*
1335 		 * Try to busy the page.  Don't mess with pages which are
1336 		 * already busy or reorder them in the queue.
1337 		 */
1338 		if (vm_page_busy_try(m, TRUE))
1339 			continue;
1340 
1341 		/*
1342 		 * Remaining operations run with the page busy and neither
1343 		 * the page or the queue will be spin-locked.
1344 		 */
1345 		KKASSERT(m->queue == PQ_ACTIVE + q);
1346 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1347 
1348 #if 0
1349 		/*
1350 		 * Don't deactivate pages that are held, even if we can
1351 		 * busy them.  (XXX why not?)
1352 		 */
1353 		if (m->hold_count) {
1354 			vm_page_and_queue_spin_lock(m);
1355 			if (m->queue - m->pc == PQ_ACTIVE) {
1356 				TAILQ_REMOVE(
1357 					&vm_page_queues[PQ_ACTIVE + q].pl,
1358 					m, pageq);
1359 				TAILQ_INSERT_TAIL(
1360 					&vm_page_queues[PQ_ACTIVE + q].pl,
1361 					m, pageq);
1362 			}
1363 			vm_page_and_queue_spin_unlock(m);
1364 			vm_page_wakeup(m);
1365 			goto next;
1366 		}
1367 #endif
1368 		/*
1369 		 * We can just remove wired pages from the queue
1370 		 */
1371 		if (m->wire_count) {
1372 			vm_page_unqueue_nowakeup(m);
1373 			vm_page_wakeup(m);
1374 			goto next;
1375 		}
1376 
1377 		/*
1378 		 * The emergency pager ignores vnode-backed pages as these
1379 		 * are the pages that probably bricked the main pager.
1380 		 */
1381 		if (isep && m->object && m->object->type == OBJT_VNODE) {
1382 			vm_page_and_queue_spin_lock(m);
1383 			if (m->queue - m->pc == PQ_ACTIVE) {
1384 				TAILQ_REMOVE(
1385 					&vm_page_queues[PQ_ACTIVE + q].pl,
1386 					m, pageq);
1387 				TAILQ_INSERT_TAIL(
1388 					&vm_page_queues[PQ_ACTIVE + q].pl,
1389 					m, pageq);
1390 			}
1391 			vm_page_and_queue_spin_unlock(m);
1392 			vm_page_wakeup(m);
1393 			goto next;
1394 		}
1395 
1396 		/*
1397 		 * The count for pagedaemon pages is done after checking the
1398 		 * page for eligibility...
1399 		 */
1400 		mycpu->gd_cnt.v_pdpages++;
1401 
1402 		/*
1403 		 * Check to see "how much" the page has been used and clear
1404 		 * the tracking access bits.  If the object has no references
1405 		 * don't bother paying the expense.
1406 		 */
1407 		actcount = 0;
1408 		if (m->object && m->object->ref_count != 0) {
1409 			if (m->flags & PG_REFERENCED)
1410 				++actcount;
1411 			actcount += pmap_ts_referenced(m);
1412 			if (actcount) {
1413 				m->act_count += ACT_ADVANCE + actcount;
1414 				if (m->act_count > ACT_MAX)
1415 					m->act_count = ACT_MAX;
1416 			}
1417 		}
1418 		vm_page_flag_clear(m, PG_REFERENCED);
1419 
1420 		/*
1421 		 * actcount is only valid if the object ref_count is non-zero.
1422 		 * If the page does not have an object, actcount will be zero.
1423 		 */
1424 		if (actcount && m->object->ref_count != 0) {
1425 			vm_page_and_queue_spin_lock(m);
1426 			if (m->queue - m->pc == PQ_ACTIVE) {
1427 				TAILQ_REMOVE(
1428 					&vm_page_queues[PQ_ACTIVE + q].pl,
1429 					m, pageq);
1430 				TAILQ_INSERT_TAIL(
1431 					&vm_page_queues[PQ_ACTIVE + q].pl,
1432 					m, pageq);
1433 			}
1434 			vm_page_and_queue_spin_unlock(m);
1435 			vm_page_wakeup(m);
1436 		} else {
1437 			switch(m->object->type) {
1438 			case OBJT_DEFAULT:
1439 			case OBJT_SWAP:
1440 				m->act_count -= min(m->act_count,
1441 						    vm_anonmem_decline);
1442 				break;
1443 			default:
1444 				m->act_count -= min(m->act_count,
1445 						    vm_filemem_decline);
1446 				break;
1447 			}
1448 			if (vm_pageout_algorithm ||
1449 			    (m->object == NULL) ||
1450 			    (m->object && (m->object->ref_count == 0)) ||
1451 			    m->act_count < pass + 1
1452 			) {
1453 				/*
1454 				 * Deactivate the page.  If we had a
1455 				 * shortage from our inactive scan try to
1456 				 * free (cache) the page instead.
1457 				 *
1458 				 * Don't just blindly cache the page if
1459 				 * we do not have a shortage from the
1460 				 * inactive scan, that could lead to
1461 				 * gigabytes being moved.
1462 				 */
1463 				--inactive_shortage;
1464 				if (avail_shortage - delta > 0 ||
1465 				    (m->object && (m->object->ref_count == 0)))
1466 				{
1467 					if (avail_shortage - delta > 0)
1468 						++*recycle_countp;
1469 					vm_page_protect(m, VM_PROT_NONE);
1470 					if (m->dirty == 0 &&
1471 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1472 					    avail_shortage - delta > 0) {
1473 						vm_page_cache(m);
1474 					} else {
1475 						vm_page_deactivate(m);
1476 						vm_page_wakeup(m);
1477 					}
1478 				} else {
1479 					vm_page_deactivate(m);
1480 					vm_page_wakeup(m);
1481 				}
1482 				++delta;
1483 			} else {
1484 				vm_page_and_queue_spin_lock(m);
1485 				if (m->queue - m->pc == PQ_ACTIVE) {
1486 					TAILQ_REMOVE(
1487 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1488 					    m, pageq);
1489 					TAILQ_INSERT_TAIL(
1490 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1491 					    m, pageq);
1492 				}
1493 				vm_page_and_queue_spin_unlock(m);
1494 				vm_page_wakeup(m);
1495 			}
1496 		}
1497 next:
1498 		lwkt_yield();
1499 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1500 	}
1501 
1502 	/*
1503 	 * Clean out our local marker.
1504 	 *
1505 	 * Page queue still spin-locked.
1506 	 */
1507 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1508 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1509 
1510 	return (delta);
1511 }
1512 
1513 /*
1514  * The number of actually free pages can drop down to v_free_reserved,
1515  * we try to build the free count back above v_free_min.  Note that
1516  * vm_paging_needed() also returns TRUE if v_free_count is not at
1517  * least v_free_min so that is the minimum we must build the free
1518  * count to.
1519  *
1520  * We use a slightly higher target to improve hysteresis,
1521  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1522  * is usually the same as v_cache_min this maintains about
1523  * half the pages in the free queue as are in the cache queue,
1524  * providing pretty good pipelining for pageout operation.
1525  *
1526  * The system operator can manipulate vm.v_cache_min and
1527  * vm.v_free_target to tune the pageout demon.  Be sure
1528  * to keep vm.v_free_min < vm.v_free_target.
1529  *
1530  * Note that the original paging target is to get at least
1531  * (free_min + cache_min) into (free + cache).  The slightly
1532  * higher target will shift additional pages from cache to free
1533  * without effecting the original paging target in order to
1534  * maintain better hysteresis and not have the free count always
1535  * be dead-on v_free_min.
1536  *
1537  * NOTE: we are still in a critical section.
1538  *
1539  * Pages moved from PQ_CACHE to totally free are not counted in the
1540  * pages_freed counter.
1541  *
1542  * WARNING! Can be called from two pagedaemon threads simultaneously.
1543  */
1544 static void
1545 vm_pageout_scan_cache(long avail_shortage, int pass,
1546 		      long vnodes_skipped, long recycle_count)
1547 {
1548 	static int lastkillticks;
1549 	struct vm_pageout_scan_info info;
1550 	vm_page_t m;
1551 	int isep;
1552 
1553 	isep = (curthread == emergpager);
1554 
1555 	while (vmstats.v_free_count <
1556 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1557 		/*
1558 		 * This steals some code from vm/vm_page.c
1559 		 *
1560 		 * Create two rovers and adjust the code to reduce
1561 		 * chances of them winding up at the same index (which
1562 		 * can cause a lot of contention).
1563 		 */
1564 		static int cache_rover[2] = { 0, PQ_L2_MASK / 2 };
1565 
1566 		if (((cache_rover[0] ^ cache_rover[1]) & PQ_L2_MASK) == 0)
1567 			goto next_rover;
1568 
1569 		m = vm_page_list_find(PQ_CACHE, cache_rover[isep] & PQ_L2_MASK);
1570 		if (m == NULL)
1571 			break;
1572 
1573 		/*
1574 		 * If the busy attempt fails we can still deactivate the page.
1575 		 */
1576 		/* page is returned removed from its queue and spinlocked */
1577 		if (vm_page_busy_try(m, TRUE)) {
1578 			vm_page_deactivate_locked(m);
1579 			vm_page_spin_unlock(m);
1580 			continue;
1581 		}
1582 		vm_page_spin_unlock(m);
1583 		pagedaemon_wakeup();
1584 		lwkt_yield();
1585 
1586 		/*
1587 		 * Remaining operations run with the page busy and neither
1588 		 * the page or the queue will be spin-locked.
1589 		 */
1590 		if ((m->flags & (PG_UNQUEUED | PG_NEED_COMMIT)) ||
1591 		    m->hold_count ||
1592 		    m->wire_count) {
1593 			vm_page_deactivate(m);
1594 			vm_page_wakeup(m);
1595 			continue;
1596 		}
1597 		pmap_mapped_sync(m);
1598 		KKASSERT((m->flags & PG_MAPPED) == 0);
1599 		KKASSERT(m->dirty == 0);
1600 		vm_pageout_page_free(m);
1601 		mycpu->gd_cnt.v_dfree++;
1602 next_rover:
1603 		if (isep)
1604 			cache_rover[1] -= PQ_PRIME2;
1605 		else
1606 			cache_rover[0] += PQ_PRIME2;
1607 	}
1608 
1609 #if !defined(NO_SWAPPING)
1610 	/*
1611 	 * Idle process swapout -- run once per second.
1612 	 */
1613 	if (vm_swap_idle_enabled) {
1614 		static time_t lsec;
1615 		if (time_uptime != lsec) {
1616 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_IDLE);
1617 			vm_req_vmdaemon();
1618 			lsec = time_uptime;
1619 		}
1620 	}
1621 #endif
1622 
1623 	/*
1624 	 * If we didn't get enough free pages, and we have skipped a vnode
1625 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1626 	 * if we did not get enough free pages.
1627 	 */
1628 	if (vm_paging_target() > 0) {
1629 		if (vnodes_skipped && vm_page_count_min(0))
1630 			speedup_syncer(NULL);
1631 #if !defined(NO_SWAPPING)
1632 		if (vm_swap_enabled && vm_page_count_target()) {
1633 			atomic_set_int(&vm_pageout_req_swapout, VM_SWAP_NORMAL);
1634 			vm_req_vmdaemon();
1635 		}
1636 #endif
1637 	}
1638 
1639 	/*
1640 	 * Handle catastrophic conditions.  Under good conditions we should
1641 	 * be at the target, well beyond our minimum.  If we could not even
1642 	 * reach our minimum the system is under heavy stress.  But just being
1643 	 * under heavy stress does not trigger process killing.
1644 	 *
1645 	 * We consider ourselves to have run out of memory if the swap pager
1646 	 * is full and avail_shortage is still positive.  The secondary check
1647 	 * ensures that we do not kill processes if the instantanious
1648 	 * availability is good, even if the pageout demon pass says it
1649 	 * couldn't get to the target.
1650 	 *
1651 	 * NOTE!  THE EMERGENCY PAGER (isep) DOES NOT HANDLE SWAP FULL
1652 	 *	  SITUATIONS.
1653 	 */
1654 	if (swap_pager_almost_full &&
1655 	    pass > 0 &&
1656 	    isep == 0 &&
1657 	    (vm_page_count_min(recycle_count) || avail_shortage > 0)) {
1658 		kprintf("Warning: system low on memory+swap "
1659 			"shortage %ld for %d ticks!\n",
1660 			avail_shortage, ticks - swap_fail_ticks);
1661 		if (bootverbose)
1662 		kprintf("Metrics: spaf=%d spf=%d pass=%d "
1663 			"avail=%ld target=%ld last=%u\n",
1664 			swap_pager_almost_full,
1665 			swap_pager_full,
1666 			pass,
1667 			avail_shortage,
1668 			vm_paging_target(),
1669 			(unsigned int)(ticks - lastkillticks));
1670 	}
1671 	if (swap_pager_full &&
1672 	    pass > 1 &&
1673 	    isep == 0 &&
1674 	    avail_shortage > 0 &&
1675 	    vm_paging_target() > 0 &&
1676 	    (unsigned int)(ticks - lastkillticks) >= hz) {
1677 		/*
1678 		 * Kill something, maximum rate once per second to give
1679 		 * the process time to free up sufficient memory.
1680 		 */
1681 		lastkillticks = ticks;
1682 		info.bigproc = NULL;
1683 		info.bigsize = 0;
1684 		allproc_scan(vm_pageout_scan_callback, &info, 0);
1685 		if (info.bigproc != NULL) {
1686 			kprintf("Try to kill process %d %s\n",
1687 				info.bigproc->p_pid, info.bigproc->p_comm);
1688 			info.bigproc->p_nice = PRIO_MIN;
1689 			info.bigproc->p_usched->resetpriority(
1690 				FIRST_LWP_IN_PROC(info.bigproc));
1691 			atomic_set_int(&info.bigproc->p_flags, P_LOWMEMKILL);
1692 			killproc(info.bigproc, "out of swap space");
1693 			wakeup(&vmstats.v_free_count);
1694 			PRELE(info.bigproc);
1695 		}
1696 	}
1697 }
1698 
1699 static int
1700 vm_pageout_scan_callback(struct proc *p, void *data)
1701 {
1702 	struct vm_pageout_scan_info *info = data;
1703 	vm_offset_t size;
1704 
1705 	/*
1706 	 * Never kill system processes or init.  If we have configured swap
1707 	 * then try to avoid killing low-numbered pids.
1708 	 */
1709 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1710 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1711 		return (0);
1712 	}
1713 
1714 	lwkt_gettoken(&p->p_token);
1715 
1716 	/*
1717 	 * if the process is in a non-running type state,
1718 	 * don't touch it.
1719 	 */
1720 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
1721 		lwkt_reltoken(&p->p_token);
1722 		return (0);
1723 	}
1724 
1725 	/*
1726 	 * Get the approximate process size.  Note that anonymous pages
1727 	 * with backing swap will be counted twice, but there should not
1728 	 * be too many such pages due to the stress the VM system is
1729 	 * under at this point.
1730 	 */
1731 	size = vmspace_anonymous_count(p->p_vmspace) +
1732 		vmspace_swap_count(p->p_vmspace);
1733 
1734 	/*
1735 	 * If the this process is bigger than the biggest one
1736 	 * remember it.
1737 	 */
1738 	if (info->bigsize < size) {
1739 		if (info->bigproc)
1740 			PRELE(info->bigproc);
1741 		PHOLD(p);
1742 		info->bigproc = p;
1743 		info->bigsize = size;
1744 	}
1745 	lwkt_reltoken(&p->p_token);
1746 	lwkt_yield();
1747 
1748 	return(0);
1749 }
1750 
1751 /*
1752  * This old guy slowly walks PQ_HOLD looking for pages which need to be
1753  * moved back to PQ_FREE.  It is possible for pages to accumulate here
1754  * when vm_page_free() races against vm_page_unhold(), resulting in a
1755  * page being left on a PQ_HOLD queue with hold_count == 0.
1756  *
1757  * It is easier to handle this edge condition here, in non-critical code,
1758  * rather than enforce a spin-lock for every 1->0 transition in
1759  * vm_page_unhold().
1760  *
1761  * NOTE: TAILQ_FOREACH becomes invalid the instant we unlock the queue.
1762  */
1763 static void
1764 vm_pageout_scan_hold(int q)
1765 {
1766 	vm_page_t m;
1767 
1768 	vm_page_queues_spin_lock(PQ_HOLD + q);
1769 	TAILQ_FOREACH(m, &vm_page_queues[PQ_HOLD + q].pl, pageq) {
1770 		if (m->flags & PG_MARKER)
1771 			continue;
1772 
1773 		/*
1774 		 * Process one page and return
1775 		 */
1776 		if (m->hold_count)
1777 			break;
1778 		kprintf("DEBUG: pageout HOLD->FREE %p\n", m);
1779 		vm_page_hold(m);
1780 		vm_page_queues_spin_unlock(PQ_HOLD + q);
1781 		vm_page_unhold(m);	/* reprocess */
1782 		return;
1783 	}
1784 	vm_page_queues_spin_unlock(PQ_HOLD + q);
1785 }
1786 
1787 /*
1788  * This routine tries to maintain the pseudo LRU active queue,
1789  * so that during long periods of time where there is no paging,
1790  * that some statistic accumulation still occurs.  This code
1791  * helps the situation where paging just starts to occur.
1792  */
1793 static void
1794 vm_pageout_page_stats(int q)
1795 {
1796 	static int fullintervalcount = 0;
1797 	struct vm_page marker;
1798 	vm_page_t m;
1799 	long pcount, tpcount;		/* Number of pages to check */
1800 	long page_shortage;
1801 
1802 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1803 			 vmstats.v_free_min) -
1804 			(vmstats.v_free_count + vmstats.v_inactive_count +
1805 			 vmstats.v_cache_count);
1806 
1807 	if (page_shortage <= 0)
1808 		return;
1809 
1810 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1811 	fullintervalcount += vm_pageout_stats_interval;
1812 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1813 		tpcount = (vm_pageout_stats_max * pcount) /
1814 			  vmstats.v_page_count + 1;
1815 		if (pcount > tpcount)
1816 			pcount = tpcount;
1817 	} else {
1818 		fullintervalcount = 0;
1819 	}
1820 
1821 	bzero(&marker, sizeof(marker));
1822 	marker.flags = PG_FICTITIOUS | PG_MARKER;
1823 	marker.busy_count = PBUSY_LOCKED;
1824 	marker.queue = PQ_ACTIVE + q;
1825 	marker.pc = q;
1826 	marker.wire_count = 1;
1827 
1828 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1829 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1830 
1831 	/*
1832 	 * Queue locked at top of loop to avoid stack marker issues.
1833 	 */
1834 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1835 	       pcount-- > 0)
1836 	{
1837 		int actcount;
1838 
1839 		KKASSERT(m->queue == PQ_ACTIVE + q);
1840 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1841 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1842 				   &marker, pageq);
1843 
1844 		/*
1845 		 * Skip marker pages (atomic against other markers to avoid
1846 		 * infinite hop-over scans).
1847 		 */
1848 		if (m->flags & PG_MARKER)
1849 			continue;
1850 
1851 		/*
1852 		 * Ignore pages we can't busy
1853 		 */
1854 		if (vm_page_busy_try(m, TRUE))
1855 			continue;
1856 
1857 		/*
1858 		 * Remaining operations run with the page busy and neither
1859 		 * the page or the queue will be spin-locked.
1860 		 */
1861 		KKASSERT(m->queue == PQ_ACTIVE + q);
1862 		vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1863 
1864 		/*
1865 		 * We can just remove wired pages from the queue
1866 		 */
1867 		if (m->wire_count) {
1868 			vm_page_unqueue_nowakeup(m);
1869 			vm_page_wakeup(m);
1870 			goto next;
1871 		}
1872 
1873 
1874 		/*
1875 		 * We now have a safely busied page, the page and queue
1876 		 * spinlocks have been released.
1877 		 *
1878 		 * Ignore held and wired pages
1879 		 */
1880 		if (m->hold_count || m->wire_count) {
1881 			vm_page_wakeup(m);
1882 			goto next;
1883 		}
1884 
1885 		/*
1886 		 * Calculate activity
1887 		 */
1888 		actcount = 0;
1889 		if (m->flags & PG_REFERENCED) {
1890 			vm_page_flag_clear(m, PG_REFERENCED);
1891 			actcount += 1;
1892 		}
1893 		actcount += pmap_ts_referenced(m);
1894 
1895 		/*
1896 		 * Update act_count and move page to end of queue.
1897 		 */
1898 		if (actcount) {
1899 			m->act_count += ACT_ADVANCE + actcount;
1900 			if (m->act_count > ACT_MAX)
1901 				m->act_count = ACT_MAX;
1902 			vm_page_and_queue_spin_lock(m);
1903 			if (m->queue - m->pc == PQ_ACTIVE) {
1904 				TAILQ_REMOVE(
1905 					&vm_page_queues[PQ_ACTIVE + q].pl,
1906 					m, pageq);
1907 				TAILQ_INSERT_TAIL(
1908 					&vm_page_queues[PQ_ACTIVE + q].pl,
1909 					m, pageq);
1910 			}
1911 			vm_page_and_queue_spin_unlock(m);
1912 			vm_page_wakeup(m);
1913 			goto next;
1914 		}
1915 
1916 		if (m->act_count == 0) {
1917 			/*
1918 			 * We turn off page access, so that we have
1919 			 * more accurate RSS stats.  We don't do this
1920 			 * in the normal page deactivation when the
1921 			 * system is loaded VM wise, because the
1922 			 * cost of the large number of page protect
1923 			 * operations would be higher than the value
1924 			 * of doing the operation.
1925 			 *
1926 			 * We use the marker to save our place so
1927 			 * we can release the spin lock.  both (m)
1928 			 * and (next) will be invalid.
1929 			 */
1930 			vm_page_protect(m, VM_PROT_NONE);
1931 			vm_page_deactivate(m);
1932 		} else {
1933 			m->act_count -= min(m->act_count, ACT_DECLINE);
1934 			vm_page_and_queue_spin_lock(m);
1935 			if (m->queue - m->pc == PQ_ACTIVE) {
1936 				TAILQ_REMOVE(
1937 					&vm_page_queues[PQ_ACTIVE + q].pl,
1938 					m, pageq);
1939 				TAILQ_INSERT_TAIL(
1940 					&vm_page_queues[PQ_ACTIVE + q].pl,
1941 					m, pageq);
1942 			}
1943 			vm_page_and_queue_spin_unlock(m);
1944 		}
1945 		vm_page_wakeup(m);
1946 next:
1947 		vm_page_queues_spin_lock(PQ_ACTIVE + q);
1948 	}
1949 
1950 	/*
1951 	 * Remove our local marker
1952 	 *
1953 	 * Page queue still spin-locked.
1954 	 */
1955 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1956 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1957 }
1958 
1959 static void
1960 vm_pageout_free_page_calc(vm_size_t count)
1961 {
1962 	/*
1963 	 * v_free_min		normal allocations
1964 	 * v_free_reserved	system allocations
1965 	 * v_pageout_free_min	allocations by pageout daemon
1966 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1967 	 *
1968 	 * v_free_min is used to generate several other baselines, and they
1969 	 * can get pretty silly on systems with a lot of memory.
1970 	 */
1971 	vmstats.v_free_min = 64 + vmstats.v_page_count / 200;
1972 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1973 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1974 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1975 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1976 }
1977 
1978 
1979 /*
1980  * vm_pageout is the high level pageout daemon.  TWO kernel threads run
1981  * this daemon, the primary pageout daemon and the emergency pageout daemon.
1982  *
1983  * The emergency pageout daemon takes over when the primary pageout daemon
1984  * deadlocks.  The emergency pageout daemon ONLY pages out to swap, thus
1985  * avoiding the many low-memory deadlocks which can occur when paging out
1986  * to VFS's.
1987  */
1988 static void
1989 vm_pageout_thread(void)
1990 {
1991 	int pass;
1992 	int q;
1993 	int q1iterator = 0;
1994 	int q2iterator = 0;
1995 	int q3iterator = 0;
1996 	int isep;
1997 
1998 	curthread->td_flags |= TDF_SYSTHREAD;
1999 
2000 	/*
2001 	 * We only need to setup once.
2002 	 */
2003 	isep = 0;
2004 	if (curthread == emergpager) {
2005 		isep = 1;
2006 		goto skip_setup;
2007 	}
2008 
2009 	/*
2010 	 * Initialize some paging parameters.
2011 	 */
2012 	vm_pageout_free_page_calc(vmstats.v_page_count);
2013 
2014 	/*
2015 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
2016 	 * that these are more a measure of the VM cache queue hysteresis
2017 	 * then the VM free queue.  Specifically, v_free_target is the
2018 	 * high water mark (free+cache pages).
2019 	 *
2020 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
2021 	 * low water mark, while v_free_min is the stop.  v_cache_min must
2022 	 * be big enough to handle memory needs while the pageout daemon
2023 	 * is signalled and run to free more pages.
2024 	 */
2025 	vmstats.v_free_target = 4 * vmstats.v_free_min +
2026 				vmstats.v_free_reserved;
2027 
2028 	/*
2029 	 * NOTE: With the new buffer cache b_act_count we want the default
2030 	 *	 inactive target to be a percentage of available memory.
2031 	 *
2032 	 *	 The inactive target essentially determines the minimum
2033 	 *	 number of 'temporary' pages capable of caching one-time-use
2034 	 *	 files when the VM system is otherwise full of pages
2035 	 *	 belonging to multi-time-use files or active program data.
2036 	 *
2037 	 * NOTE: The inactive target is aggressively persued only if the
2038 	 *	 inactive queue becomes too small.  If the inactive queue
2039 	 *	 is large enough to satisfy page movement to free+cache
2040 	 *	 then it is repopulated more slowly from the active queue.
2041 	 *	 This allows a general inactive_target default to be set.
2042 	 *
2043 	 *	 There is an issue here for processes which sit mostly idle
2044 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
2045 	 *	 the active queue will eventually cause such pages to
2046 	 *	 recycle eventually causing a lot of paging in the morning.
2047 	 *	 To reduce the incidence of this pages cycled out of the
2048 	 *	 buffer cache are moved directly to the inactive queue if
2049 	 *	 they were only used once or twice.
2050 	 *
2051 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
2052 	 *	 Increasing the value (up to 64) increases the number of
2053 	 *	 buffer recyclements which go directly to the inactive queue.
2054 	 */
2055 	if (vmstats.v_free_count > 2048) {
2056 		vmstats.v_cache_min = vmstats.v_free_target;
2057 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
2058 	} else {
2059 		vmstats.v_cache_min = 0;
2060 		vmstats.v_cache_max = 0;
2061 	}
2062 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
2063 
2064 	/* XXX does not really belong here */
2065 	if (vm_page_max_wired == 0)
2066 		vm_page_max_wired = vmstats.v_free_count / 3;
2067 
2068 	if (vm_pageout_stats_max == 0)
2069 		vm_pageout_stats_max = vmstats.v_free_target;
2070 
2071 	/*
2072 	 * Set interval in seconds for stats scan.
2073 	 */
2074 	if (vm_pageout_stats_interval == 0)
2075 		vm_pageout_stats_interval = 5;
2076 	if (vm_pageout_full_stats_interval == 0)
2077 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
2078 
2079 
2080 	/*
2081 	 * Set maximum free per pass
2082 	 */
2083 	if (vm_pageout_stats_free_max == 0)
2084 		vm_pageout_stats_free_max = 5;
2085 
2086 	swap_pager_swap_init();
2087 	pass = 0;
2088 
2089 	atomic_swap_int(&sequence_emerg_pager, 1);
2090 	wakeup(&sequence_emerg_pager);
2091 
2092 skip_setup:
2093 	/*
2094 	 * Sequence emergency pager startup
2095 	 */
2096 	if (isep) {
2097 		while (sequence_emerg_pager == 0)
2098 			tsleep(&sequence_emerg_pager, 0, "pstartup", hz);
2099 	}
2100 
2101 	/*
2102 	 * The pageout daemon is never done, so loop forever.
2103 	 *
2104 	 * WARNING!  This code is being executed by two kernel threads
2105 	 *	     potentially simultaneously.
2106 	 */
2107 	while (TRUE) {
2108 		int error;
2109 		long avail_shortage;
2110 		long inactive_shortage;
2111 		long vnodes_skipped = 0;
2112 		long recycle_count = 0;
2113 		long tmp;
2114 
2115 		/*
2116 		 * Wait for an action request.  If we timeout check to
2117 		 * see if paging is needed (in case the normal wakeup
2118 		 * code raced us).
2119 		 */
2120 		if (isep) {
2121 			/*
2122 			 * Emergency pagedaemon monitors the primary
2123 			 * pagedaemon while vm_pages_needed != 0.
2124 			 *
2125 			 * The emergency pagedaemon only runs if VM paging
2126 			 * is needed and the primary pagedaemon has not
2127 			 * updated vm_pagedaemon_time for more than 2 seconds.
2128 			 */
2129 			if (vm_pages_needed)
2130 				tsleep(&vm_pagedaemon_time, 0, "psleep", hz);
2131 			else
2132 				tsleep(&vm_pagedaemon_time, 0, "psleep", hz*10);
2133 			if (vm_pages_needed == 0) {
2134 				pass = 0;
2135 				continue;
2136 			}
2137 			if ((int)(ticks - vm_pagedaemon_time) < hz * 2) {
2138 				pass = 0;
2139 				continue;
2140 			}
2141 		} else {
2142 			/*
2143 			 * Primary pagedaemon
2144 			 *
2145 			 * NOTE: We unconditionally cleanup PQ_HOLD even
2146 			 *	 when there is no work to do.
2147 			 */
2148 			vm_pageout_scan_hold(q3iterator & PQ_L2_MASK);
2149 			++q3iterator;
2150 
2151 			if (vm_pages_needed == 0) {
2152 				error = tsleep(&vm_pages_needed,
2153 					       0, "psleep",
2154 					       vm_pageout_stats_interval * hz);
2155 				if (error &&
2156 				    vm_paging_needed(0) == 0 &&
2157 				    vm_pages_needed == 0) {
2158 					for (q = 0; q < PQ_L2_SIZE; ++q)
2159 						vm_pageout_page_stats(q);
2160 					continue;
2161 				}
2162 				vm_pagedaemon_time = ticks;
2163 				vm_pages_needed = 1;
2164 
2165 				/*
2166 				 * Wake the emergency pagedaemon up so it
2167 				 * can monitor us.  It will automatically
2168 				 * go back into a long sleep when
2169 				 * vm_pages_needed returns to 0.
2170 				 */
2171 				wakeup(&vm_pagedaemon_time);
2172 			}
2173 		}
2174 
2175 		mycpu->gd_cnt.v_pdwakeups++;
2176 
2177 		/*
2178 		 * Scan for INACTIVE->CLEAN/PAGEOUT
2179 		 *
2180 		 * This routine tries to avoid thrashing the system with
2181 		 * unnecessary activity.
2182 		 *
2183 		 * Calculate our target for the number of free+cache pages we
2184 		 * want to get to.  This is higher then the number that causes
2185 		 * allocations to stall (severe) in order to provide hysteresis,
2186 		 * and if we don't make it all the way but get to the minimum
2187 		 * we're happy.  Goose it a bit if there are multiple requests
2188 		 * for memory.
2189 		 *
2190 		 * Don't reduce avail_shortage inside the loop or the
2191 		 * PQAVERAGE() calculation will break.
2192 		 *
2193 		 * NOTE! deficit is differentiated from avail_shortage as
2194 		 *	 REQUIRING at least (deficit) pages to be cleaned,
2195 		 *	 even if the page queues are in good shape.  This
2196 		 *	 is used primarily for handling per-process
2197 		 *	 RLIMIT_RSS and may also see small values when
2198 		 *	 processes block due to low memory.
2199 		 */
2200 		vmstats_rollup();
2201 		if (isep == 0)
2202 			vm_pagedaemon_time = ticks;
2203 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
2204 		vm_pageout_deficit = 0;
2205 
2206 		if (avail_shortage > 0) {
2207 			long delta = 0;
2208 			int qq;
2209 
2210 			qq = q1iterator;
2211 			for (q = 0; q < PQ_L2_SIZE; ++q) {
2212 				delta += vm_pageout_scan_inactive(
2213 					    pass,
2214 					    qq & PQ_L2_MASK,
2215 					    PQAVERAGE(avail_shortage),
2216 					    &vnodes_skipped);
2217 				if (isep)
2218 					--qq;
2219 				else
2220 					++qq;
2221 				if (avail_shortage - delta <= 0)
2222 					break;
2223 			}
2224 			avail_shortage -= delta;
2225 			q1iterator = qq;
2226 		}
2227 
2228 		/*
2229 		 * Figure out how many active pages we must deactivate.  If
2230 		 * we were able to reach our target with just the inactive
2231 		 * scan above we limit the number of active pages we
2232 		 * deactivate to reduce unnecessary work.
2233 		 */
2234 		vmstats_rollup();
2235 		if (isep == 0)
2236 			vm_pagedaemon_time = ticks;
2237 		inactive_shortage = vmstats.v_inactive_target -
2238 				    vmstats.v_inactive_count;
2239 
2240 		/*
2241 		 * If we were unable to free sufficient inactive pages to
2242 		 * satisfy the free/cache queue requirements then simply
2243 		 * reaching the inactive target may not be good enough.
2244 		 * Try to deactivate pages in excess of the target based
2245 		 * on the shortfall.
2246 		 *
2247 		 * However to prevent thrashing the VM system do not
2248 		 * deactivate more than an additional 1/10 the inactive
2249 		 * target's worth of active pages.
2250 		 */
2251 		if (avail_shortage > 0) {
2252 			tmp = avail_shortage * 2;
2253 			if (tmp > vmstats.v_inactive_target / 10)
2254 				tmp = vmstats.v_inactive_target / 10;
2255 			inactive_shortage += tmp;
2256 		}
2257 
2258 		/*
2259 		 * Only trigger a pmap cleanup on inactive shortage.
2260 		 */
2261 		if (isep == 0 && inactive_shortage > 0) {
2262 			pmap_collect();
2263 		}
2264 
2265 		/*
2266 		 * Scan for ACTIVE->INACTIVE
2267 		 *
2268 		 * Only trigger on inactive shortage.  Triggering on
2269 		 * avail_shortage can starve the active queue with
2270 		 * unnecessary active->inactive transitions and destroy
2271 		 * performance.
2272 		 *
2273 		 * If this is the emergency pager, always try to move
2274 		 * a few pages from active to inactive because the inactive
2275 		 * queue might have enough pages, but not enough anonymous
2276 		 * pages.
2277 		 */
2278 		if (isep && inactive_shortage < vm_emerg_launder)
2279 			inactive_shortage = vm_emerg_launder;
2280 
2281 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
2282 			long delta = 0;
2283 			int qq;
2284 
2285 			qq = q2iterator;
2286 			for (q = 0; q < PQ_L2_SIZE; ++q) {
2287 				delta += vm_pageout_scan_active(
2288 						pass,
2289 						qq & PQ_L2_MASK,
2290 						PQAVERAGE(avail_shortage),
2291 						PQAVERAGE(inactive_shortage),
2292 						&recycle_count);
2293 				if (isep)
2294 					--qq;
2295 				else
2296 					++qq;
2297 				if (inactive_shortage - delta <= 0 &&
2298 				    avail_shortage - delta <= 0) {
2299 					break;
2300 				}
2301 			}
2302 			inactive_shortage -= delta;
2303 			avail_shortage -= delta;
2304 			q2iterator = qq;
2305 		}
2306 
2307 		/*
2308 		 * Scan for CACHE->FREE
2309 		 *
2310 		 * Finally free enough cache pages to meet our free page
2311 		 * requirement and take more drastic measures if we are
2312 		 * still in trouble.
2313 		 */
2314 		vmstats_rollup();
2315 		if (isep == 0)
2316 			vm_pagedaemon_time = ticks;
2317 		vm_pageout_scan_cache(avail_shortage, pass,
2318 				      vnodes_skipped, recycle_count);
2319 
2320 		/*
2321 		 * Wait for more work.
2322 		 */
2323 		if (avail_shortage > 0) {
2324 			++pass;
2325 			if (pass < 10 && vm_pages_needed > 1) {
2326 				/*
2327 				 * Normal operation, additional processes
2328 				 * have already kicked us.  Retry immediately
2329 				 * unless swap space is completely full in
2330 				 * which case delay a bit.
2331 				 */
2332 				if (swap_pager_full) {
2333 					tsleep(&vm_pages_needed, 0, "pdelay",
2334 						hz / 5);
2335 				} /* else immediate retry */
2336 			} else if (pass < 10) {
2337 				/*
2338 				 * Normal operation, fewer processes.  Delay
2339 				 * a bit but allow wakeups.  vm_pages_needed
2340 				 * is only adjusted against the primary
2341 				 * pagedaemon here.
2342 				 */
2343 				if (isep == 0)
2344 					vm_pages_needed = 0;
2345 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2346 				if (isep == 0)
2347 					vm_pages_needed = 1;
2348 			} else if (swap_pager_full == 0) {
2349 				/*
2350 				 * We've taken too many passes, forced delay.
2351 				 */
2352 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2353 			} else {
2354 				/*
2355 				 * Running out of memory, catastrophic
2356 				 * back-off to one-second intervals.
2357 				 */
2358 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
2359 			}
2360 		} else if (vm_pages_needed) {
2361 			/*
2362 			 * Interlocked wakeup of waiters (non-optional).
2363 			 *
2364 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2365 			 * wake
2366 			 */
2367 			pass = 0;
2368 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2369 			    !vm_page_count_target()) {
2370 				vm_pages_needed = 0;
2371 				wakeup(&vmstats.v_free_count);
2372 			}
2373 		} else {
2374 			pass = 0;
2375 		}
2376 	}
2377 }
2378 
2379 static struct kproc_desc pg1_kp = {
2380 	"pagedaemon",
2381 	vm_pageout_thread,
2382 	&pagethread
2383 };
2384 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &pg1_kp);
2385 
2386 static struct kproc_desc pg2_kp = {
2387 	"emergpager",
2388 	vm_pageout_thread,
2389 	&emergpager
2390 };
2391 SYSINIT(emergpager, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY, kproc_start, &pg2_kp);
2392 
2393 
2394 /*
2395  * Called after allocating a page out of the cache or free queue
2396  * to possibly wake the pagedaemon up to replentish our supply.
2397  *
2398  * We try to generate some hysteresis by waking the pagedaemon up
2399  * when our free+cache pages go below the free_min+cache_min level.
2400  * The pagedaemon tries to get the count back up to at least the
2401  * minimum, and through to the target level if possible.
2402  *
2403  * If the pagedaemon is already active bump vm_pages_needed as a hint
2404  * that there are even more requests pending.
2405  *
2406  * SMP races ok?
2407  * No requirements.
2408  */
2409 void
2410 pagedaemon_wakeup(void)
2411 {
2412 	if (vm_paging_needed(0) && curthread != pagethread) {
2413 		if (vm_pages_needed == 0) {
2414 			vm_pages_needed = 1;	/* SMP race ok */
2415 			wakeup(&vm_pages_needed);
2416 		} else if (vm_page_count_min(0)) {
2417 			++vm_pages_needed;	/* SMP race ok */
2418 		}
2419 	}
2420 }
2421 
2422 #if !defined(NO_SWAPPING)
2423 
2424 /*
2425  * SMP races ok?
2426  * No requirements.
2427  */
2428 static void
2429 vm_req_vmdaemon(void)
2430 {
2431 	static int lastrun = 0;
2432 
2433 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2434 		wakeup(&vm_daemon_needed);
2435 		lastrun = ticks;
2436 	}
2437 }
2438 
2439 static int vm_daemon_callback(struct proc *p, void *data __unused);
2440 
2441 /*
2442  * No requirements.
2443  */
2444 static void
2445 vm_daemon(void)
2446 {
2447 	int req_swapout;
2448 
2449 	while (TRUE) {
2450 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2451 		req_swapout = atomic_swap_int(&vm_pageout_req_swapout, 0);
2452 
2453 		/*
2454 		 * forced swapouts
2455 		 */
2456 		if (req_swapout)
2457 			swapout_procs(vm_pageout_req_swapout);
2458 
2459 		/*
2460 		 * scan the processes for exceeding their rlimits or if
2461 		 * process is swapped out -- deactivate pages
2462 		 */
2463 		allproc_scan(vm_daemon_callback, NULL, 0);
2464 	}
2465 }
2466 
2467 static int
2468 vm_daemon_callback(struct proc *p, void *data __unused)
2469 {
2470 	struct vmspace *vm;
2471 	vm_pindex_t limit, size;
2472 
2473 	/*
2474 	 * if this is a system process or if we have already
2475 	 * looked at this process, skip it.
2476 	 */
2477 	lwkt_gettoken(&p->p_token);
2478 
2479 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2480 		lwkt_reltoken(&p->p_token);
2481 		return (0);
2482 	}
2483 
2484 	/*
2485 	 * if the process is in a non-running type state,
2486 	 * don't touch it.
2487 	 */
2488 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP && p->p_stat != SCORE) {
2489 		lwkt_reltoken(&p->p_token);
2490 		return (0);
2491 	}
2492 
2493 	/*
2494 	 * get a limit
2495 	 */
2496 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2497 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2498 
2499 	/*
2500 	 * let processes that are swapped out really be
2501 	 * swapped out.  Set the limit to nothing to get as
2502 	 * many pages out to swap as possible.
2503 	 */
2504 	if (p->p_flags & P_SWAPPEDOUT)
2505 		limit = 0;
2506 
2507 	vm = p->p_vmspace;
2508 	vmspace_hold(vm);
2509 	size = pmap_resident_tlnw_count(&vm->vm_pmap);
2510 	if (limit >= 0 && size > 4096 &&
2511 	    size - 4096 >= limit && vm_pageout_memuse_mode >= 1) {
2512 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2513 	}
2514 	vmspace_drop(vm);
2515 
2516 	lwkt_reltoken(&p->p_token);
2517 
2518 	return (0);
2519 }
2520 
2521 #endif
2522