xref: /dragonfly/sys/vm/vm_pageout.c (revision fe76c4fb)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.23 2006/05/25 07:36:37 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
396 	 * mark the pages read-only.
397 	 *
398 	 * We do not have to fixup the clean/dirty bits here... we can
399 	 * allow the pager to do it after the I/O completes.
400 	 */
401 
402 	for (i = 0; i < count; i++) {
403 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404 		vm_page_io_start(mc[i]);
405 		vm_page_protect(mc[i], VM_PROT_READ);
406 	}
407 
408 	object = mc[0]->object;
409 	vm_object_pip_add(object, count);
410 
411 	vm_pager_put_pages(object, mc, count,
412 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413 	    pageout_status);
414 
415 	for (i = 0; i < count; i++) {
416 		vm_page_t mt = mc[i];
417 
418 		switch (pageout_status[i]) {
419 		case VM_PAGER_OK:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_PEND:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_BAD:
426 			/*
427 			 * Page outside of range of object. Right now we
428 			 * essentially lose the changes by pretending it
429 			 * worked.
430 			 */
431 			pmap_clear_modify(mt);
432 			vm_page_undirty(mt);
433 			break;
434 		case VM_PAGER_ERROR:
435 		case VM_PAGER_FAIL:
436 			/*
437 			 * If page couldn't be paged out, then reactivate the
438 			 * page so it doesn't clog the inactive list.  (We
439 			 * will try paging out it again later).
440 			 */
441 			vm_page_activate(mt);
442 			break;
443 		case VM_PAGER_AGAIN:
444 			break;
445 		}
446 
447 		/*
448 		 * If the operation is still going, leave the page busy to
449 		 * block all other accesses. Also, leave the paging in
450 		 * progress indicator set so that we don't attempt an object
451 		 * collapse.
452 		 */
453 		if (pageout_status[i] != VM_PAGER_PEND) {
454 			vm_object_pip_wakeup(object);
455 			vm_page_io_finish(mt);
456 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457 				vm_page_protect(mt, VM_PROT_READ);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  *	vm_pageout_object_deactivate_pages
466  *
467  *	deactivate enough pages to satisfy the inactive target
468  *	requirements or if vm_page_proc_limit is set, then
469  *	deactivate all of the pages in the object and its
470  *	backing_objects.
471  *
472  *	The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476 	vm_pindex_t desired, int map_remove_only)
477 {
478 	vm_page_t p, next;
479 	int rcount;
480 	int remove_mode;
481 
482 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483 		return;
484 
485 	while (object) {
486 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487 			return;
488 		if (object->paging_in_progress)
489 			return;
490 
491 		remove_mode = map_remove_only;
492 		if (object->shadow_count > 1)
493 			remove_mode = 1;
494 
495 		/*
496 		 * scan the objects entire memory queue.  spl protection is
497 		 * required to avoid an interrupt unbusy/free race against
498 		 * our busy check.
499 		 */
500 		crit_enter();
501 		rcount = object->resident_page_count;
502 		p = TAILQ_FIRST(&object->memq);
503 
504 		while (p && (rcount-- > 0)) {
505 			int actcount;
506 			if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507 				crit_exit();
508 				return;
509 			}
510 			next = TAILQ_NEXT(p, listq);
511 			mycpu->gd_cnt.v_pdpages++;
512 			if (p->wire_count != 0 ||
513 			    p->hold_count != 0 ||
514 			    p->busy != 0 ||
515 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517 				p = next;
518 				continue;
519 			}
520 
521 			actcount = pmap_ts_referenced(p);
522 			if (actcount) {
523 				vm_page_flag_set(p, PG_REFERENCED);
524 			} else if (p->flags & PG_REFERENCED) {
525 				actcount = 1;
526 			}
527 
528 			if ((p->queue != PQ_ACTIVE) &&
529 				(p->flags & PG_REFERENCED)) {
530 				vm_page_activate(p);
531 				p->act_count += actcount;
532 				vm_page_flag_clear(p, PG_REFERENCED);
533 			} else if (p->queue == PQ_ACTIVE) {
534 				if ((p->flags & PG_REFERENCED) == 0) {
535 					p->act_count -= min(p->act_count, ACT_DECLINE);
536 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537 						vm_page_protect(p, VM_PROT_NONE);
538 						vm_page_deactivate(p);
539 					} else {
540 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542 					}
543 				} else {
544 					vm_page_activate(p);
545 					vm_page_flag_clear(p, PG_REFERENCED);
546 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547 						p->act_count += ACT_ADVANCE;
548 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550 				}
551 			} else if (p->queue == PQ_INACTIVE) {
552 				vm_page_protect(p, VM_PROT_NONE);
553 			}
554 			p = next;
555 		}
556 		crit_exit();
557 		object = object->backing_object;
558 	}
559 }
560 
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568 	vm_map_entry_t tmpe;
569 	vm_object_t obj, bigobj;
570 	int nothingwired;
571 
572 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
573 		return;
574 	}
575 
576 	bigobj = NULL;
577 	nothingwired = TRUE;
578 
579 	/*
580 	 * first, search out the biggest object, and try to free pages from
581 	 * that.
582 	 */
583 	tmpe = map->header.next;
584 	while (tmpe != &map->header) {
585 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
586 			obj = tmpe->object.vm_object;
587 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
588 				((bigobj == NULL) ||
589 				 (bigobj->resident_page_count < obj->resident_page_count))) {
590 				bigobj = obj;
591 			}
592 		}
593 		if (tmpe->wired_count > 0)
594 			nothingwired = FALSE;
595 		tmpe = tmpe->next;
596 	}
597 
598 	if (bigobj)
599 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
600 
601 	/*
602 	 * Next, hunt around for other pages to deactivate.  We actually
603 	 * do this search sort of wrong -- .text first is not the best idea.
604 	 */
605 	tmpe = map->header.next;
606 	while (tmpe != &map->header) {
607 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
608 			break;
609 		if ((tmpe->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
610 			obj = tmpe->object.vm_object;
611 			if (obj)
612 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
613 		}
614 		tmpe = tmpe->next;
615 	};
616 
617 	/*
618 	 * Remove all mappings if a process is swapped out, this will free page
619 	 * table pages.
620 	 */
621 	if (desired == 0 && nothingwired)
622 		pmap_remove(vm_map_pmap(map),
623 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
624 	vm_map_unlock(map);
625 }
626 #endif
627 
628 /*
629  * Don't try to be fancy - being fancy can lead to VOP_LOCK's and therefore
630  * to vnode deadlocks.  We only do it for OBJT_DEFAULT and OBJT_SWAP objects
631  * which we know can be trivially freed.
632  */
633 
634 void
635 vm_pageout_page_free(vm_page_t m) {
636 	vm_object_t object = m->object;
637 	int type = object->type;
638 
639 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
640 		vm_object_reference(object);
641 	vm_page_busy(m);
642 	vm_page_protect(m, VM_PROT_NONE);
643 	vm_page_free(m);
644 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
645 		vm_object_deallocate(object);
646 }
647 
648 /*
649  *	vm_pageout_scan does the dirty work for the pageout daemon.
650  */
651 
652 struct vm_pageout_scan_info {
653 	struct proc *bigproc;
654 	vm_offset_t bigsize;
655 };
656 
657 static int vm_pageout_scan_callback(struct proc *p, void *data);
658 
659 static void
660 vm_pageout_scan(int pass)
661 {
662 	struct vm_pageout_scan_info info;
663 	vm_page_t m, next;
664 	struct vm_page marker;
665 	int page_shortage, maxscan, pcount;
666 	int addl_page_shortage, addl_page_shortage_init;
667 	vm_object_t object;
668 	int actcount;
669 	int vnodes_skipped = 0;
670 	int maxlaunder;
671 
672 	/*
673 	 * Do whatever cleanup that the pmap code can.
674 	 */
675 	pmap_collect();
676 
677 	addl_page_shortage_init = vm_pageout_deficit;
678 	vm_pageout_deficit = 0;
679 
680 	/*
681 	 * Calculate the number of pages we want to either free or move
682 	 * to the cache.
683 	 */
684 	page_shortage = vm_paging_target() + addl_page_shortage_init;
685 
686 	/*
687 	 * Initialize our marker
688 	 */
689 	bzero(&marker, sizeof(marker));
690 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
691 	marker.queue = PQ_INACTIVE;
692 	marker.wire_count = 1;
693 
694 	/*
695 	 * Start scanning the inactive queue for pages we can move to the
696 	 * cache or free.  The scan will stop when the target is reached or
697 	 * we have scanned the entire inactive queue.  Note that m->act_count
698 	 * is not used to form decisions for the inactive queue, only for the
699 	 * active queue.
700 	 *
701 	 * maxlaunder limits the number of dirty pages we flush per scan.
702 	 * For most systems a smaller value (16 or 32) is more robust under
703 	 * extreme memory and disk pressure because any unnecessary writes
704 	 * to disk can result in extreme performance degredation.  However,
705 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
706 	 * used) will die horribly with limited laundering.  If the pageout
707 	 * daemon cannot clean enough pages in the first pass, we let it go
708 	 * all out in succeeding passes.
709 	 */
710 	if ((maxlaunder = vm_max_launder) <= 1)
711 		maxlaunder = 1;
712 	if (pass)
713 		maxlaunder = 10000;
714 
715 	/*
716 	 * We will generally be in a critical section throughout the
717 	 * scan, but we can release it temporarily when we are sitting on a
718 	 * non-busy page without fear.  this is required to prevent an
719 	 * interrupt from unbusying or freeing a page prior to our busy
720 	 * check, leaving us on the wrong queue or checking the wrong
721 	 * page.
722 	 */
723 	crit_enter();
724 rescan0:
725 	addl_page_shortage = addl_page_shortage_init;
726 	maxscan = vmstats.v_inactive_count;
727 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
728 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
729 	     m = next
730 	 ) {
731 		mycpu->gd_cnt.v_pdpages++;
732 
733 		/*
734 		 * Give interrupts a chance
735 		 */
736 		crit_exit();
737 		crit_enter();
738 
739 		/*
740 		 * It's easier for some of the conditions below to just loop
741 		 * and catch queue changes here rather then check everywhere
742 		 * else.
743 		 */
744 		if (m->queue != PQ_INACTIVE)
745 			goto rescan0;
746 		next = TAILQ_NEXT(m, pageq);
747 
748 		/*
749 		 * skip marker pages
750 		 */
751 		if (m->flags & PG_MARKER)
752 			continue;
753 
754 		/*
755 		 * A held page may be undergoing I/O, so skip it.
756 		 */
757 		if (m->hold_count) {
758 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
759 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
760 			addl_page_shortage++;
761 			continue;
762 		}
763 
764 		/*
765 		 * Dont mess with busy pages, keep in the front of the
766 		 * queue, most likely are being paged out.
767 		 */
768 		if (m->busy || (m->flags & PG_BUSY)) {
769 			addl_page_shortage++;
770 			continue;
771 		}
772 
773 		if (m->object->ref_count == 0) {
774 			/*
775 			 * If the object is not being used, we ignore previous
776 			 * references.
777 			 */
778 			vm_page_flag_clear(m, PG_REFERENCED);
779 			pmap_clear_reference(m);
780 
781 		} else if (((m->flags & PG_REFERENCED) == 0) &&
782 			    (actcount = pmap_ts_referenced(m))) {
783 			/*
784 			 * Otherwise, if the page has been referenced while
785 			 * in the inactive queue, we bump the "activation
786 			 * count" upwards, making it less likely that the
787 			 * page will be added back to the inactive queue
788 			 * prematurely again.  Here we check the page tables
789 			 * (or emulated bits, if any), given the upper level
790 			 * VM system not knowing anything about existing
791 			 * references.
792 			 */
793 			vm_page_activate(m);
794 			m->act_count += (actcount + ACT_ADVANCE);
795 			continue;
796 		}
797 
798 		/*
799 		 * If the upper level VM system knows about any page
800 		 * references, we activate the page.  We also set the
801 		 * "activation count" higher than normal so that we will less
802 		 * likely place pages back onto the inactive queue again.
803 		 */
804 		if ((m->flags & PG_REFERENCED) != 0) {
805 			vm_page_flag_clear(m, PG_REFERENCED);
806 			actcount = pmap_ts_referenced(m);
807 			vm_page_activate(m);
808 			m->act_count += (actcount + ACT_ADVANCE + 1);
809 			continue;
810 		}
811 
812 		/*
813 		 * If the upper level VM system doesn't know anything about
814 		 * the page being dirty, we have to check for it again.  As
815 		 * far as the VM code knows, any partially dirty pages are
816 		 * fully dirty.
817 		 *
818 		 * Pages marked PG_WRITEABLE may be mapped into the user
819 		 * address space of a process running on another cpu.  A
820 		 * user process (without holding the MP lock) running on
821 		 * another cpu may be able to touch the page while we are
822 		 * trying to remove it.  To prevent this from occuring we
823 		 * must call pmap_remove_all() or otherwise make the page
824 		 * read-only.  If the race occured pmap_remove_all() is
825 		 * responsible for setting m->dirty.
826 		 */
827 		if (m->dirty == 0) {
828 			vm_page_test_dirty(m);
829 #if 0
830 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
831 				pmap_remove_all(m);
832 #endif
833 		} else {
834 			vm_page_dirty(m);
835 		}
836 
837 		if (m->valid == 0) {
838 			/*
839 			 * Invalid pages can be easily freed
840 			 */
841 			vm_pageout_page_free(m);
842 			mycpu->gd_cnt.v_dfree++;
843 			--page_shortage;
844 		} else if (m->dirty == 0) {
845 			/*
846 			 * Clean pages can be placed onto the cache queue.
847 			 * This effectively frees them.
848 			 */
849 			vm_page_cache(m);
850 			--page_shortage;
851 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
852 			/*
853 			 * Dirty pages need to be paged out, but flushing
854 			 * a page is extremely expensive verses freeing
855 			 * a clean page.  Rather then artificially limiting
856 			 * the number of pages we can flush, we instead give
857 			 * dirty pages extra priority on the inactive queue
858 			 * by forcing them to be cycled through the queue
859 			 * twice before being flushed, after which the
860 			 * (now clean) page will cycle through once more
861 			 * before being freed.  This significantly extends
862 			 * the thrash point for a heavily loaded machine.
863 			 */
864 			vm_page_flag_set(m, PG_WINATCFLS);
865 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
866 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
867 		} else if (maxlaunder > 0) {
868 			/*
869 			 * We always want to try to flush some dirty pages if
870 			 * we encounter them, to keep the system stable.
871 			 * Normally this number is small, but under extreme
872 			 * pressure where there are insufficient clean pages
873 			 * on the inactive queue, we may have to go all out.
874 			 */
875 			int swap_pageouts_ok;
876 			struct vnode *vp = NULL;
877 
878 			object = m->object;
879 
880 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
881 				swap_pageouts_ok = 1;
882 			} else {
883 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
884 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
885 				vm_page_count_min());
886 
887 			}
888 
889 			/*
890 			 * We don't bother paging objects that are "dead".
891 			 * Those objects are in a "rundown" state.
892 			 */
893 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
894 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
895 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
896 				continue;
897 			}
898 
899 			/*
900 			 * The object is already known NOT to be dead.   It
901 			 * is possible for the vget() to block the whole
902 			 * pageout daemon, but the new low-memory handling
903 			 * code should prevent it.
904 			 *
905 			 * The previous code skipped locked vnodes and, worse,
906 			 * reordered pages in the queue.  This results in
907 			 * completely non-deterministic operation because,
908 			 * quite often, a vm_fault has initiated an I/O and
909 			 * is holding a locked vnode at just the point where
910 			 * the pageout daemon is woken up.
911 			 *
912 			 * We can't wait forever for the vnode lock, we might
913 			 * deadlock due to a vn_read() getting stuck in
914 			 * vm_wait while holding this vnode.  We skip the
915 			 * vnode if we can't get it in a reasonable amount
916 			 * of time.
917 			 */
918 
919 			if (object->type == OBJT_VNODE) {
920 				vp = object->handle;
921 
922 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
923 					++pageout_lock_miss;
924 					if (object->flags & OBJ_MIGHTBEDIRTY)
925 						    vnodes_skipped++;
926 					continue;
927 				}
928 
929 				/*
930 				 * The page might have been moved to another
931 				 * queue during potential blocking in vget()
932 				 * above.  The page might have been freed and
933 				 * reused for another vnode.  The object might
934 				 * have been reused for another vnode.
935 				 */
936 				if (m->queue != PQ_INACTIVE ||
937 				    m->object != object ||
938 				    object->handle != vp) {
939 					if (object->flags & OBJ_MIGHTBEDIRTY)
940 						vnodes_skipped++;
941 					vput(vp);
942 					continue;
943 				}
944 
945 				/*
946 				 * The page may have been busied during the
947 				 * blocking in vput();  We don't move the
948 				 * page back onto the end of the queue so that
949 				 * statistics are more correct if we don't.
950 				 */
951 				if (m->busy || (m->flags & PG_BUSY)) {
952 					vput(vp);
953 					continue;
954 				}
955 
956 				/*
957 				 * If the page has become held it might
958 				 * be undergoing I/O, so skip it
959 				 */
960 				if (m->hold_count) {
961 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
962 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
963 					if (object->flags & OBJ_MIGHTBEDIRTY)
964 						vnodes_skipped++;
965 					vput(vp);
966 					continue;
967 				}
968 			}
969 
970 			/*
971 			 * If a page is dirty, then it is either being washed
972 			 * (but not yet cleaned) or it is still in the
973 			 * laundry.  If it is still in the laundry, then we
974 			 * start the cleaning operation.
975 			 *
976 			 * This operation may cluster, invalidating the 'next'
977 			 * pointer.  To prevent an inordinate number of
978 			 * restarts we use our marker to remember our place.
979 			 *
980 			 * decrement page_shortage on success to account for
981 			 * the (future) cleaned page.  Otherwise we could wind
982 			 * up laundering or cleaning too many pages.
983 			 */
984 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
985 			if (vm_pageout_clean(m) != 0) {
986 				--page_shortage;
987 				--maxlaunder;
988 			}
989 			next = TAILQ_NEXT(&marker, pageq);
990 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
991 			if (vp != NULL)
992 				vput(vp);
993 		}
994 	}
995 
996 	/*
997 	 * Compute the number of pages we want to try to move from the
998 	 * active queue to the inactive queue.
999 	 */
1000 	page_shortage = vm_paging_target() +
1001 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
1002 	page_shortage += addl_page_shortage;
1003 
1004 	/*
1005 	 * Scan the active queue for things we can deactivate. We nominally
1006 	 * track the per-page activity counter and use it to locate
1007 	 * deactivation candidates.
1008 	 *
1009 	 * NOTE: we are still in a critical section.
1010 	 */
1011 	pcount = vmstats.v_active_count;
1012 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1013 
1014 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1015 		/*
1016 		 * Give interrupts a chance.
1017 		 */
1018 		crit_exit();
1019 		crit_enter();
1020 
1021 		/*
1022 		 * If the page was ripped out from under us, just stop.
1023 		 */
1024 		if (m->queue != PQ_ACTIVE)
1025 			break;
1026 		next = TAILQ_NEXT(m, pageq);
1027 
1028 		/*
1029 		 * Don't deactivate pages that are busy.
1030 		 */
1031 		if ((m->busy != 0) ||
1032 		    (m->flags & PG_BUSY) ||
1033 		    (m->hold_count != 0)) {
1034 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1035 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1036 			m = next;
1037 			continue;
1038 		}
1039 
1040 		/*
1041 		 * The count for pagedaemon pages is done after checking the
1042 		 * page for eligibility...
1043 		 */
1044 		mycpu->gd_cnt.v_pdpages++;
1045 
1046 		/*
1047 		 * Check to see "how much" the page has been used.
1048 		 */
1049 		actcount = 0;
1050 		if (m->object->ref_count != 0) {
1051 			if (m->flags & PG_REFERENCED) {
1052 				actcount += 1;
1053 			}
1054 			actcount += pmap_ts_referenced(m);
1055 			if (actcount) {
1056 				m->act_count += ACT_ADVANCE + actcount;
1057 				if (m->act_count > ACT_MAX)
1058 					m->act_count = ACT_MAX;
1059 			}
1060 		}
1061 
1062 		/*
1063 		 * Since we have "tested" this bit, we need to clear it now.
1064 		 */
1065 		vm_page_flag_clear(m, PG_REFERENCED);
1066 
1067 		/*
1068 		 * Only if an object is currently being used, do we use the
1069 		 * page activation count stats.
1070 		 */
1071 		if (actcount && (m->object->ref_count != 0)) {
1072 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1073 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1074 		} else {
1075 			m->act_count -= min(m->act_count, ACT_DECLINE);
1076 			if (vm_pageout_algorithm ||
1077 			    m->object->ref_count == 0 ||
1078 			    m->act_count < pass) {
1079 				page_shortage--;
1080 				if (m->object->ref_count == 0) {
1081 					vm_page_protect(m, VM_PROT_NONE);
1082 					if (m->dirty == 0)
1083 						vm_page_cache(m);
1084 					else
1085 						vm_page_deactivate(m);
1086 				} else {
1087 					vm_page_deactivate(m);
1088 				}
1089 			} else {
1090 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1091 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1092 			}
1093 		}
1094 		m = next;
1095 	}
1096 
1097 	/*
1098 	 * We try to maintain some *really* free pages, this allows interrupt
1099 	 * code to be guaranteed space.  Since both cache and free queues
1100 	 * are considered basically 'free', moving pages from cache to free
1101 	 * does not effect other calculations.
1102 	 *
1103 	 * NOTE: we are still in a critical section.
1104 	 */
1105 
1106 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1107 		static int cache_rover = 0;
1108 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1109 		if (!m)
1110 			break;
1111 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1112 		    m->busy ||
1113 		    m->hold_count ||
1114 		    m->wire_count) {
1115 #ifdef INVARIANTS
1116 			printf("Warning: busy page %p found in cache\n", m);
1117 #endif
1118 			vm_page_deactivate(m);
1119 			continue;
1120 		}
1121 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1122 		vm_pageout_page_free(m);
1123 		mycpu->gd_cnt.v_dfree++;
1124 	}
1125 
1126 	crit_exit();
1127 
1128 #if !defined(NO_SWAPPING)
1129 	/*
1130 	 * Idle process swapout -- run once per second.
1131 	 */
1132 	if (vm_swap_idle_enabled) {
1133 		static long lsec;
1134 		if (time_second != lsec) {
1135 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1136 			vm_req_vmdaemon();
1137 			lsec = time_second;
1138 		}
1139 	}
1140 #endif
1141 
1142 	/*
1143 	 * If we didn't get enough free pages, and we have skipped a vnode
1144 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1145 	 * if we did not get enough free pages.
1146 	 */
1147 	if (vm_paging_target() > 0) {
1148 		if (vnodes_skipped && vm_page_count_min())
1149 			speedup_syncer();
1150 #if !defined(NO_SWAPPING)
1151 		if (vm_swap_enabled && vm_page_count_target()) {
1152 			vm_req_vmdaemon();
1153 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1154 		}
1155 #endif
1156 	}
1157 
1158 	/*
1159 	 * If we are out of swap and were not able to reach our paging
1160 	 * target, kill the largest process.
1161 	 */
1162 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1163 	    (swap_pager_full && vm_paging_target() > 0)) {
1164 #if 0
1165 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1166 #endif
1167 		info.bigproc = NULL;
1168 		info.bigsize = 0;
1169 		allproc_scan(vm_pageout_scan_callback, &info);
1170 		if (info.bigproc != NULL) {
1171 			killproc(info.bigproc, "out of swap space");
1172 			info.bigproc->p_nice = PRIO_MIN;
1173 			info.bigproc->p_usched->resetpriority(&info.bigproc->p_lwp);
1174 			wakeup(&vmstats.v_free_count);
1175 			PRELE(info.bigproc);
1176 		}
1177 	}
1178 }
1179 
1180 static int
1181 vm_pageout_scan_callback(struct proc *p, void *data)
1182 {
1183 	struct vm_pageout_scan_info *info = data;
1184 	vm_offset_t size;
1185 
1186 	/*
1187 	 * if this is a system process, skip it
1188 	 */
1189 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1190 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1191 		return (0);
1192 	}
1193 
1194 	/*
1195 	 * if the process is in a non-running type state,
1196 	 * don't touch it.
1197 	 */
1198 	if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1199 		return (0);
1200 	}
1201 
1202 	/*
1203 	 * get the process size
1204 	 */
1205 	size = vmspace_resident_count(p->p_vmspace) +
1206 		vmspace_swap_count(p->p_vmspace);
1207 
1208 	/*
1209 	 * If the this process is bigger than the biggest one
1210 	 * remember it.
1211 	 */
1212 	if (size > info->bigsize) {
1213 		if (info->bigproc)
1214 			PRELE(info->bigproc);
1215 		PHOLD(p);
1216 		info->bigproc = p;
1217 		info->bigsize = size;
1218 	}
1219 	return(0);
1220 }
1221 
1222 /*
1223  * This routine tries to maintain the pseudo LRU active queue,
1224  * so that during long periods of time where there is no paging,
1225  * that some statistic accumulation still occurs.  This code
1226  * helps the situation where paging just starts to occur.
1227  */
1228 static void
1229 vm_pageout_page_stats(void)
1230 {
1231 	vm_page_t m,next;
1232 	int pcount,tpcount;		/* Number of pages to check */
1233 	static int fullintervalcount = 0;
1234 	int page_shortage;
1235 
1236 	page_shortage =
1237 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1238 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1239 
1240 	if (page_shortage <= 0)
1241 		return;
1242 
1243 	crit_enter();
1244 
1245 	pcount = vmstats.v_active_count;
1246 	fullintervalcount += vm_pageout_stats_interval;
1247 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1248 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1249 		if (pcount > tpcount)
1250 			pcount = tpcount;
1251 	} else {
1252 		fullintervalcount = 0;
1253 	}
1254 
1255 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1256 	while ((m != NULL) && (pcount-- > 0)) {
1257 		int actcount;
1258 
1259 		if (m->queue != PQ_ACTIVE) {
1260 			break;
1261 		}
1262 
1263 		next = TAILQ_NEXT(m, pageq);
1264 		/*
1265 		 * Don't deactivate pages that are busy.
1266 		 */
1267 		if ((m->busy != 0) ||
1268 		    (m->flags & PG_BUSY) ||
1269 		    (m->hold_count != 0)) {
1270 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1271 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1272 			m = next;
1273 			continue;
1274 		}
1275 
1276 		actcount = 0;
1277 		if (m->flags & PG_REFERENCED) {
1278 			vm_page_flag_clear(m, PG_REFERENCED);
1279 			actcount += 1;
1280 		}
1281 
1282 		actcount += pmap_ts_referenced(m);
1283 		if (actcount) {
1284 			m->act_count += ACT_ADVANCE + actcount;
1285 			if (m->act_count > ACT_MAX)
1286 				m->act_count = ACT_MAX;
1287 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1288 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1289 		} else {
1290 			if (m->act_count == 0) {
1291 				/*
1292 				 * We turn off page access, so that we have
1293 				 * more accurate RSS stats.  We don't do this
1294 				 * in the normal page deactivation when the
1295 				 * system is loaded VM wise, because the
1296 				 * cost of the large number of page protect
1297 				 * operations would be higher than the value
1298 				 * of doing the operation.
1299 				 */
1300 				vm_page_protect(m, VM_PROT_NONE);
1301 				vm_page_deactivate(m);
1302 			} else {
1303 				m->act_count -= min(m->act_count, ACT_DECLINE);
1304 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1305 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1306 			}
1307 		}
1308 
1309 		m = next;
1310 	}
1311 	crit_exit();
1312 }
1313 
1314 static int
1315 vm_pageout_free_page_calc(vm_size_t count)
1316 {
1317 	if (count < vmstats.v_page_count)
1318 		 return 0;
1319 	/*
1320 	 * free_reserved needs to include enough for the largest swap pager
1321 	 * structures plus enough for any pv_entry structs when paging.
1322 	 */
1323 	if (vmstats.v_page_count > 1024)
1324 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1325 	else
1326 		vmstats.v_free_min = 4;
1327 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1328 		vmstats.v_interrupt_free_min;
1329 	vmstats.v_free_reserved = vm_pageout_page_count +
1330 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1331 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1332 	vmstats.v_free_min += vmstats.v_free_reserved;
1333 	vmstats.v_free_severe += vmstats.v_free_reserved;
1334 	return 1;
1335 }
1336 
1337 
1338 /*
1339  *	vm_pageout is the high level pageout daemon.
1340  */
1341 static void
1342 vm_pageout(void)
1343 {
1344 	int pass;
1345 
1346 	/*
1347 	 * Initialize some paging parameters.
1348 	 */
1349 
1350 	vmstats.v_interrupt_free_min = 2;
1351 	if (vmstats.v_page_count < 2000)
1352 		vm_pageout_page_count = 8;
1353 
1354 	vm_pageout_free_page_calc(vmstats.v_page_count);
1355 	/*
1356 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1357 	 * that these are more a measure of the VM cache queue hysteresis
1358 	 * then the VM free queue.  Specifically, v_free_target is the
1359 	 * high water mark (free+cache pages).
1360 	 *
1361 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1362 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1363 	 * be big enough to handle memory needs while the pageout daemon
1364 	 * is signalled and run to free more pages.
1365 	 */
1366 	if (vmstats.v_free_count > 6144)
1367 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1368 	else
1369 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1370 
1371 	if (vmstats.v_free_count > 2048) {
1372 		vmstats.v_cache_min = vmstats.v_free_target;
1373 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1374 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1375 	} else {
1376 		vmstats.v_cache_min = 0;
1377 		vmstats.v_cache_max = 0;
1378 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1379 	}
1380 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1381 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1382 
1383 	/* XXX does not really belong here */
1384 	if (vm_page_max_wired == 0)
1385 		vm_page_max_wired = vmstats.v_free_count / 3;
1386 
1387 	if (vm_pageout_stats_max == 0)
1388 		vm_pageout_stats_max = vmstats.v_free_target;
1389 
1390 	/*
1391 	 * Set interval in seconds for stats scan.
1392 	 */
1393 	if (vm_pageout_stats_interval == 0)
1394 		vm_pageout_stats_interval = 5;
1395 	if (vm_pageout_full_stats_interval == 0)
1396 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1397 
1398 
1399 	/*
1400 	 * Set maximum free per pass
1401 	 */
1402 	if (vm_pageout_stats_free_max == 0)
1403 		vm_pageout_stats_free_max = 5;
1404 
1405 	swap_pager_swap_init();
1406 	pass = 0;
1407 	/*
1408 	 * The pageout daemon is never done, so loop forever.
1409 	 */
1410 	while (TRUE) {
1411 		int error;
1412 
1413 		/*
1414 		 * If we have enough free memory, wakeup waiters.  Do
1415 		 * not clear vm_pages_needed until we reach our target,
1416 		 * otherwise we may be woken up over and over again and
1417 		 * waste a lot of cpu.
1418 		 */
1419 		crit_enter();
1420 		if (vm_pages_needed && !vm_page_count_min()) {
1421 			if (vm_paging_needed() <= 0)
1422 				vm_pages_needed = 0;
1423 			wakeup(&vmstats.v_free_count);
1424 		}
1425 		if (vm_pages_needed) {
1426 			/*
1427 			 * Still not done, take a second pass without waiting
1428 			 * (unlimited dirty cleaning), otherwise sleep a bit
1429 			 * and try again.
1430 			 */
1431 			++pass;
1432 			if (pass > 1)
1433 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1434 		} else {
1435 			/*
1436 			 * Good enough, sleep & handle stats.  Prime the pass
1437 			 * for the next run.
1438 			 */
1439 			if (pass > 1)
1440 				pass = 1;
1441 			else
1442 				pass = 0;
1443 			error = tsleep(&vm_pages_needed,
1444 				0, "psleep", vm_pageout_stats_interval * hz);
1445 			if (error && !vm_pages_needed) {
1446 				crit_exit();
1447 				pass = 0;
1448 				vm_pageout_page_stats();
1449 				continue;
1450 			}
1451 		}
1452 
1453 		if (vm_pages_needed)
1454 			mycpu->gd_cnt.v_pdwakeups++;
1455 		crit_exit();
1456 		vm_pageout_scan(pass);
1457 		vm_pageout_deficit = 0;
1458 	}
1459 }
1460 
1461 void
1462 pagedaemon_wakeup(void)
1463 {
1464 	if (!vm_pages_needed && curthread != pagethread) {
1465 		vm_pages_needed++;
1466 		wakeup(&vm_pages_needed);
1467 	}
1468 }
1469 
1470 #if !defined(NO_SWAPPING)
1471 static void
1472 vm_req_vmdaemon(void)
1473 {
1474 	static int lastrun = 0;
1475 
1476 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1477 		wakeup(&vm_daemon_needed);
1478 		lastrun = ticks;
1479 	}
1480 }
1481 
1482 static int vm_daemon_callback(struct proc *p, void *data __unused);
1483 
1484 static void
1485 vm_daemon(void)
1486 {
1487 	while (TRUE) {
1488 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1489 		if (vm_pageout_req_swapout) {
1490 			swapout_procs(vm_pageout_req_swapout);
1491 			vm_pageout_req_swapout = 0;
1492 		}
1493 		/*
1494 		 * scan the processes for exceeding their rlimits or if
1495 		 * process is swapped out -- deactivate pages
1496 		 */
1497 		allproc_scan(vm_daemon_callback, NULL);
1498 	}
1499 }
1500 
1501 static int
1502 vm_daemon_callback(struct proc *p, void *data __unused)
1503 {
1504 	vm_pindex_t limit, size;
1505 
1506 	/*
1507 	 * if this is a system process or if we have already
1508 	 * looked at this process, skip it.
1509 	 */
1510 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1511 		return (0);
1512 
1513 	/*
1514 	 * if the process is in a non-running type state,
1515 	 * don't touch it.
1516 	 */
1517 	if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1518 		return (0);
1519 
1520 	/*
1521 	 * get a limit
1522 	 */
1523 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1524 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1525 
1526 	/*
1527 	 * let processes that are swapped out really be
1528 	 * swapped out.  Set the limit to nothing to get as
1529 	 * many pages out to swap as possible.
1530 	 */
1531 	if (p->p_flag & P_SWAPPEDOUT)
1532 		limit = 0;
1533 
1534 	size = vmspace_resident_count(p->p_vmspace);
1535 	if (limit >= 0 && size >= limit) {
1536 		vm_pageout_map_deactivate_pages(
1537 		    &p->p_vmspace->vm_map, limit);
1538 	}
1539 	return (0);
1540 }
1541 
1542 #endif
1543