xref: /dragonfly/sys/vm/vm_pager.c (revision 6e285212)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pager.c	8.6 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pager.c,v 1.54.2.2 2001/11/18 07:11:00 dillon Exp $
65  * $DragonFly: src/sys/vm/vm_pager.c,v 1.2 2003/06/17 04:29:00 dillon Exp $
66  */
67 
68 /*
69  *	Paging space routine stubs.  Emulates a matchmaker-like interface
70  *	for builtin pagers.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kernel.h>
76 #include <sys/vnode.h>
77 #include <sys/buf.h>
78 #include <sys/ucred.h>
79 #include <sys/malloc.h>
80 #include <sys/proc.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 
89 MALLOC_DEFINE(M_VMPGDATA, "VM pgdata", "XXX: VM pager private data");
90 
91 extern struct pagerops defaultpagerops;
92 extern struct pagerops swappagerops;
93 extern struct pagerops vnodepagerops;
94 extern struct pagerops devicepagerops;
95 extern struct pagerops physpagerops;
96 
97 int cluster_pbuf_freecnt = -1;	/* unlimited to begin with */
98 
99 static int dead_pager_getpages __P((vm_object_t, vm_page_t *, int, int));
100 static vm_object_t dead_pager_alloc __P((void *, vm_ooffset_t, vm_prot_t,
101 	vm_ooffset_t));
102 static void dead_pager_putpages __P((vm_object_t, vm_page_t *, int, int, int *));
103 static boolean_t dead_pager_haspage __P((vm_object_t, vm_pindex_t, int *, int *));
104 static void dead_pager_dealloc __P((vm_object_t));
105 
106 static int
107 dead_pager_getpages(obj, ma, count, req)
108 	vm_object_t obj;
109 	vm_page_t *ma;
110 	int count;
111 	int req;
112 {
113 	return VM_PAGER_FAIL;
114 }
115 
116 static vm_object_t
117 dead_pager_alloc(handle, size, prot, off)
118 	void *handle;
119 	vm_ooffset_t size;
120 	vm_prot_t prot;
121 	vm_ooffset_t off;
122 {
123 	return NULL;
124 }
125 
126 static void
127 dead_pager_putpages(object, m, count, flags, rtvals)
128 	vm_object_t object;
129 	vm_page_t *m;
130 	int count;
131 	int flags;
132 	int *rtvals;
133 {
134 	int i;
135 
136 	for (i = 0; i < count; i++) {
137 		rtvals[i] = VM_PAGER_AGAIN;
138 	}
139 }
140 
141 static int
142 dead_pager_haspage(object, pindex, prev, next)
143 	vm_object_t object;
144 	vm_pindex_t pindex;
145 	int *prev;
146 	int *next;
147 {
148 	if (prev)
149 		*prev = 0;
150 	if (next)
151 		*next = 0;
152 	return FALSE;
153 }
154 
155 static void
156 dead_pager_dealloc(object)
157 	vm_object_t object;
158 {
159 	return;
160 }
161 
162 static struct pagerops deadpagerops = {
163 	NULL,
164 	dead_pager_alloc,
165 	dead_pager_dealloc,
166 	dead_pager_getpages,
167 	dead_pager_putpages,
168 	dead_pager_haspage,
169 	NULL
170 };
171 
172 struct pagerops *pagertab[] = {
173 	&defaultpagerops,	/* OBJT_DEFAULT */
174 	&swappagerops,		/* OBJT_SWAP */
175 	&vnodepagerops,		/* OBJT_VNODE */
176 	&devicepagerops,	/* OBJT_DEVICE */
177 	&physpagerops,		/* OBJT_PHYS */
178 	&deadpagerops		/* OBJT_DEAD */
179 };
180 
181 int npagers = sizeof(pagertab) / sizeof(pagertab[0]);
182 
183 /*
184  * Kernel address space for mapping pages.
185  * Used by pagers where KVAs are needed for IO.
186  *
187  * XXX needs to be large enough to support the number of pending async
188  * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
189  * (MAXPHYS == 64k) if you want to get the most efficiency.
190  */
191 #define PAGER_MAP_SIZE	(8 * 1024 * 1024)
192 
193 int pager_map_size = PAGER_MAP_SIZE;
194 vm_map_t pager_map;
195 static int bswneeded;
196 static vm_offset_t swapbkva;		/* swap buffers kva */
197 
198 void
199 vm_pager_init()
200 {
201 	struct pagerops **pgops;
202 
203 	/*
204 	 * Initialize known pagers
205 	 */
206 	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
207 		if (pgops && ((*pgops)->pgo_init != NULL))
208 			(*(*pgops)->pgo_init) ();
209 }
210 
211 void
212 vm_pager_bufferinit()
213 {
214 	struct buf *bp;
215 	int i;
216 
217 	bp = swbuf;
218 	/*
219 	 * Now set up swap and physical I/O buffer headers.
220 	 */
221 	for (i = 0; i < nswbuf; i++, bp++) {
222 		TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
223 		BUF_LOCKINIT(bp);
224 		LIST_INIT(&bp->b_dep);
225 		bp->b_rcred = bp->b_wcred = NOCRED;
226 		bp->b_xflags = 0;
227 	}
228 
229 	cluster_pbuf_freecnt = nswbuf / 2;
230 
231 	swapbkva = kmem_alloc_pageable(pager_map, nswbuf * MAXPHYS);
232 	if (!swapbkva)
233 		panic("Not enough pager_map VM space for physical buffers");
234 }
235 
236 /*
237  * Allocate an instance of a pager of the given type.
238  * Size, protection and offset parameters are passed in for pagers that
239  * need to perform page-level validation (e.g. the device pager).
240  */
241 vm_object_t
242 vm_pager_allocate(objtype_t type, void *handle, vm_ooffset_t size, vm_prot_t prot,
243 		  vm_ooffset_t off)
244 {
245 	struct pagerops *ops;
246 
247 	ops = pagertab[type];
248 	if (ops)
249 		return ((*ops->pgo_alloc) (handle, size, prot, off));
250 	return (NULL);
251 }
252 
253 void
254 vm_pager_deallocate(object)
255 	vm_object_t object;
256 {
257 	(*pagertab[object->type]->pgo_dealloc) (object);
258 }
259 
260 /*
261  *      vm_pager_strategy:
262  *
263  *      called with no specific spl
264  *      Execute strategy routine directly to pager.
265  */
266 
267 void
268 vm_pager_strategy(vm_object_t object, struct buf *bp)
269 {
270 	if (pagertab[object->type]->pgo_strategy) {
271 	    (*pagertab[object->type]->pgo_strategy)(object, bp);
272 	} else {
273 		bp->b_flags |= B_ERROR;
274 		bp->b_error = ENXIO;
275 		biodone(bp);
276 	}
277 }
278 
279 /*
280  * vm_pager_get_pages() - inline, see vm/vm_pager.h
281  * vm_pager_put_pages() - inline, see vm/vm_pager.h
282  * vm_pager_has_page() - inline, see vm/vm_pager.h
283  * vm_pager_page_inserted() - inline, see vm/vm_pager.h
284  * vm_pager_page_removed() - inline, see vm/vm_pager.h
285  */
286 
287 #if 0
288 /*
289  *	vm_pager_sync:
290  *
291  *	Called by pageout daemon before going back to sleep.
292  *	Gives pagers a chance to clean up any completed async pageing
293  *	operations.
294  */
295 void
296 vm_pager_sync()
297 {
298 	struct pagerops **pgops;
299 
300 	for (pgops = pagertab; pgops < &pagertab[npagers]; pgops++)
301 		if (pgops && ((*pgops)->pgo_sync != NULL))
302 			(*(*pgops)->pgo_sync) ();
303 }
304 
305 #endif
306 
307 vm_offset_t
308 vm_pager_map_page(m)
309 	vm_page_t m;
310 {
311 	vm_offset_t kva;
312 
313 	kva = kmem_alloc_wait(pager_map, PAGE_SIZE);
314 	pmap_kenter(kva, VM_PAGE_TO_PHYS(m));
315 	return (kva);
316 }
317 
318 void
319 vm_pager_unmap_page(kva)
320 	vm_offset_t kva;
321 {
322 	pmap_kremove(kva);
323 	kmem_free_wakeup(pager_map, kva, PAGE_SIZE);
324 }
325 
326 vm_object_t
327 vm_pager_object_lookup(pg_list, handle)
328 	register struct pagerlst *pg_list;
329 	void *handle;
330 {
331 	register vm_object_t object;
332 
333 	for (object = TAILQ_FIRST(pg_list); object != NULL; object = TAILQ_NEXT(object,pager_object_list))
334 		if (object->handle == handle)
335 			return (object);
336 	return (NULL);
337 }
338 
339 /*
340  * initialize a physical buffer
341  */
342 
343 static void
344 initpbuf(struct buf *bp)
345 {
346 	bp->b_rcred = NOCRED;
347 	bp->b_wcred = NOCRED;
348 	bp->b_qindex = QUEUE_NONE;
349 	bp->b_data = (caddr_t) (MAXPHYS * (bp - swbuf)) + swapbkva;
350 	bp->b_kvabase = bp->b_data;
351 	bp->b_kvasize = MAXPHYS;
352 	bp->b_xflags = 0;
353 	bp->b_flags = 0;
354 	bp->b_error = 0;
355 	BUF_LOCK(bp, LK_EXCLUSIVE);
356 }
357 
358 /*
359  * allocate a physical buffer
360  *
361  *	There are a limited number (nswbuf) of physical buffers.  We need
362  *	to make sure that no single subsystem is able to hog all of them,
363  *	so each subsystem implements a counter which is typically initialized
364  *	to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
365  *	increments it on release, and blocks if the counter hits zero.  A
366  *	subsystem may initialize the counter to -1 to disable the feature,
367  *	but it must still be sure to match up all uses of getpbuf() with
368  *	relpbuf() using the same variable.
369  *
370  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
371  *	relatively soon when the rest of the subsystems get smart about it. XXX
372  */
373 struct buf *
374 getpbuf(pfreecnt)
375 	int *pfreecnt;
376 {
377 	int s;
378 	struct buf *bp;
379 
380 	s = splvm();
381 
382 	for (;;) {
383 		if (pfreecnt) {
384 			while (*pfreecnt == 0) {
385 				tsleep(pfreecnt, PVM, "wswbuf0", 0);
386 			}
387 		}
388 
389 		/* get a bp from the swap buffer header pool */
390 		if ((bp = TAILQ_FIRST(&bswlist)) != NULL)
391 			break;
392 
393 		bswneeded = 1;
394 		tsleep(&bswneeded, PVM, "wswbuf1", 0);
395 		/* loop in case someone else grabbed one */
396 	}
397 	TAILQ_REMOVE(&bswlist, bp, b_freelist);
398 	if (pfreecnt)
399 		--*pfreecnt;
400 	splx(s);
401 
402 	initpbuf(bp);
403 	return bp;
404 }
405 
406 /*
407  * allocate a physical buffer, if one is available.
408  *
409  *	Note that there is no NULL hack here - all subsystems using this
410  *	call understand how to use pfreecnt.
411  */
412 struct buf *
413 trypbuf(pfreecnt)
414 	int *pfreecnt;
415 {
416 	int s;
417 	struct buf *bp;
418 
419 	s = splvm();
420 	if (*pfreecnt == 0 || (bp = TAILQ_FIRST(&bswlist)) == NULL) {
421 		splx(s);
422 		return NULL;
423 	}
424 	TAILQ_REMOVE(&bswlist, bp, b_freelist);
425 
426 	--*pfreecnt;
427 
428 	splx(s);
429 
430 	initpbuf(bp);
431 
432 	return bp;
433 }
434 
435 /*
436  * release a physical buffer
437  *
438  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
439  *	relatively soon when the rest of the subsystems get smart about it. XXX
440  */
441 void
442 relpbuf(bp, pfreecnt)
443 	struct buf *bp;
444 	int *pfreecnt;
445 {
446 	int s;
447 
448 	s = splvm();
449 
450 	if (bp->b_rcred != NOCRED) {
451 		crfree(bp->b_rcred);
452 		bp->b_rcred = NOCRED;
453 	}
454 	if (bp->b_wcred != NOCRED) {
455 		crfree(bp->b_wcred);
456 		bp->b_wcred = NOCRED;
457 	}
458 
459 	if (bp->b_vp)
460 		pbrelvp(bp);
461 
462 	BUF_UNLOCK(bp);
463 
464 	TAILQ_INSERT_HEAD(&bswlist, bp, b_freelist);
465 
466 	if (bswneeded) {
467 		bswneeded = 0;
468 		wakeup(&bswneeded);
469 	}
470 	if (pfreecnt) {
471 		if (++*pfreecnt == 1)
472 			wakeup(pfreecnt);
473 	}
474 	splx(s);
475 }
476 
477 /********************************************************
478  *		CHAINING FUNCTIONS			*
479  ********************************************************
480  *
481  *	These functions support recursion of I/O operations
482  *	on bp's, typically by chaining one or more 'child' bp's
483  *	to the parent.  Synchronous, asynchronous, and semi-synchronous
484  *	chaining is possible.
485  */
486 
487 /*
488  *	vm_pager_chain_iodone:
489  *
490  *	io completion routine for child bp.  Currently we fudge a bit
491  *	on dealing with b_resid.   Since users of these routines may issue
492  *	multiple children simultaniously, sequencing of the error can be lost.
493  */
494 
495 static void
496 vm_pager_chain_iodone(struct buf *nbp)
497 {
498 	struct buf *bp;
499 
500 	if ((bp = nbp->b_chain.parent) != NULL) {
501 		if (nbp->b_flags & B_ERROR) {
502 			bp->b_flags |= B_ERROR;
503 			bp->b_error = nbp->b_error;
504 		} else if (nbp->b_resid != 0) {
505 			bp->b_flags |= B_ERROR;
506 			bp->b_error = EINVAL;
507 		} else {
508 			bp->b_resid -= nbp->b_bcount;
509 		}
510 		nbp->b_chain.parent = NULL;
511 		--bp->b_chain.count;
512 		if (bp->b_flags & B_WANT) {
513 			bp->b_flags &= ~B_WANT;
514 			wakeup(bp);
515 		}
516 		if (!bp->b_chain.count && (bp->b_xflags & BX_AUTOCHAINDONE)) {
517 			bp->b_xflags &= ~BX_AUTOCHAINDONE;
518 			if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
519 				bp->b_flags |= B_ERROR;
520 				bp->b_error = EINVAL;
521 			}
522 			biodone(bp);
523 		}
524 	}
525 	nbp->b_flags |= B_DONE;
526 	nbp->b_flags &= ~B_ASYNC;
527 	relpbuf(nbp, NULL);
528 }
529 
530 /*
531  *	getchainbuf:
532  *
533  *	Obtain a physical buffer and chain it to its parent buffer.  When
534  *	I/O completes, the parent buffer will be B_SIGNAL'd.  Errors are
535  *	automatically propogated to the parent
536  *
537  *	Since these are brand new buffers, we do not have to clear B_INVAL
538  *	and B_ERROR because they are already clear.
539  */
540 
541 struct buf *
542 getchainbuf(struct buf *bp, struct vnode *vp, int flags)
543 {
544 	struct buf *nbp = getpbuf(NULL);
545 
546 	nbp->b_chain.parent = bp;
547 	++bp->b_chain.count;
548 
549 	if (bp->b_chain.count > 4)
550 		waitchainbuf(bp, 4, 0);
551 
552 	nbp->b_flags = B_CALL | (bp->b_flags & B_ORDERED) | flags;
553 	nbp->b_rcred = nbp->b_wcred = proc0.p_ucred;
554 	nbp->b_iodone = vm_pager_chain_iodone;
555 
556 	crhold(nbp->b_rcred);
557 	crhold(nbp->b_wcred);
558 
559 	if (vp)
560 		pbgetvp(vp, nbp);
561 	return(nbp);
562 }
563 
564 void
565 flushchainbuf(struct buf *nbp)
566 {
567 	if (nbp->b_bcount) {
568 		nbp->b_bufsize = nbp->b_bcount;
569 		if ((nbp->b_flags & B_READ) == 0)
570 			nbp->b_dirtyend = nbp->b_bcount;
571 		BUF_KERNPROC(nbp);
572 		VOP_STRATEGY(nbp->b_vp, nbp);
573 	} else {
574 		biodone(nbp);
575 	}
576 }
577 
578 void
579 waitchainbuf(struct buf *bp, int count, int done)
580 {
581  	int s;
582 
583 	s = splbio();
584 	while (bp->b_chain.count > count) {
585 		bp->b_flags |= B_WANT;
586 		tsleep(bp, PRIBIO + 4, "bpchain", 0);
587 	}
588 	if (done) {
589 		if (bp->b_resid != 0 && !(bp->b_flags & B_ERROR)) {
590 			bp->b_flags |= B_ERROR;
591 			bp->b_error = EINVAL;
592 		}
593 		biodone(bp);
594 	}
595 	splx(s);
596 }
597 
598 void
599 autochaindone(struct buf *bp)
600 {
601  	int s;
602 
603 	s = splbio();
604 	if (bp->b_chain.count == 0)
605 		biodone(bp);
606 	else
607 		bp->b_xflags |= BX_AUTOCHAINDONE;
608 	splx(s);
609 }
610 
611