xref: /dragonfly/sys/vm/vm_swap.c (revision 1aa0974c)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
32  * $FreeBSD: src/sys/vm/vm_swap.c,v 1.96.2.2 2001/10/14 18:46:47 iedowse Exp $
33  */
34 
35 #include "opt_swap.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/nlookup.h>
44 #include <sys/sysctl.h>
45 #include <sys/dmap.h>		/* XXX */
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/blist.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/conf.h>
52 #include <sys/stat.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/swap_pager.h>
57 #include <vm/vm_zone.h>
58 #include <vm/vm_param.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/mplock2.h>
62 #include <sys/mutex2.h>
63 #include <sys/spinlock2.h>
64 
65 /*
66  * Indirect driver for multi-controller paging.
67  */
68 
69 #ifndef NSWAPDEV
70 #define NSWAPDEV	4
71 #endif
72 static struct swdevt should_be_malloced[NSWAPDEV];
73 struct swdevt *swdevt = should_be_malloced;	/* exported to pstat/systat */
74 static swblk_t nswap;		/* first block after the interleaved devs */
75 static struct mtx swap_mtx = MTX_INITIALIZER("swpmtx");
76 int nswdev = NSWAPDEV;				/* exported to pstat/systat */
77 int vm_swap_size;
78 int vm_swap_max;
79 
80 static int swapoff_one(int index);
81 struct vnode *swapdev_vp;
82 
83 /*
84  * (struct vnode *a_vp, struct bio *b_bio)
85  *
86  * vn_strategy() for swapdev_vp.  Perform swap strategy interleave device
87  * selection.
88  *
89  * No requirements.
90  */
91 static int
92 swapdev_strategy(struct vop_strategy_args *ap)
93 {
94 	struct bio *bio = ap->a_bio;
95 	struct bio *nbio;
96 	struct buf *bp = bio->bio_buf;
97 	int sz, off, seg, index, blkno, nblkno;
98 	struct swdevt *sp;
99 	sz = howmany(bp->b_bcount, PAGE_SIZE);
100 	blkno = (int)(bio->bio_offset >> PAGE_SHIFT);
101 
102 	/*
103 	 * Convert interleaved swap into per-device swap.  Note that
104 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
105 	 * here.
106 	 */
107 	nbio = push_bio(bio);
108 	if (nswdev > 1) {
109 		off = blkno % dmmax;
110 		if (off + sz > dmmax) {
111 			bp->b_error = EINVAL;
112 			bp->b_flags |= B_ERROR;
113 			biodone(bio);
114 			return 0;
115 		}
116 		seg = blkno / dmmax;
117 		index = seg % nswdev;
118 		seg /= nswdev;
119 		nbio->bio_offset = (off_t)(seg * dmmax + off) << PAGE_SHIFT;
120 	} else {
121 		index = 0;
122 		nbio->bio_offset = bio->bio_offset;
123 	}
124 	nblkno = (int)(nbio->bio_offset >> PAGE_SHIFT);
125 	sp = &swdevt[index];
126 	if (nblkno + sz > sp->sw_nblks) {
127 		bp->b_error = EINVAL;
128 		bp->b_flags |= B_ERROR;
129 		/* I/O was never started on nbio, must biodone(bio) */
130 		biodone(bio);
131 		return 0;
132 	}
133 	if (sp->sw_vp == NULL) {
134 		bp->b_error = ENODEV;
135 		bp->b_flags |= B_ERROR;
136 		/* I/O was never started on nbio, must biodone(bio) */
137 		biodone(bio);
138 		return 0;
139 	}
140 
141 	/*
142 	 * Issue a strategy call on the appropriate swap vnode.  Note that
143 	 * bp->b_vp is not modified.  Strategy code is always supposed to
144 	 * use the passed vp.
145 	 *
146 	 * We have to use vn_strategy() here even if we know we have a
147 	 * device in order to properly break up requests which exceed the
148 	 * device's DMA limits.
149 	 */
150 	vn_strategy(sp->sw_vp, nbio);
151 	return 0;
152 }
153 
154 static int
155 swapdev_inactive(struct vop_inactive_args *ap)
156 {
157 	vrecycle(ap->a_vp);
158 	return(0);
159 }
160 
161 static int
162 swapdev_reclaim(struct vop_reclaim_args *ap)
163 {
164 	return(0);
165 }
166 
167 /*
168  * Create a special vnode op vector for swapdev_vp - we only use
169  * vn_strategy(), everything else returns an error.
170  */
171 static struct vop_ops swapdev_vnode_vops = {
172 	.vop_default =		vop_defaultop,
173 	.vop_strategy =		swapdev_strategy,
174 	.vop_inactive =		swapdev_inactive,
175 	.vop_reclaim =		swapdev_reclaim
176 };
177 static struct vop_ops *swapdev_vnode_vops_p = &swapdev_vnode_vops;
178 
179 VNODEOP_SET(swapdev_vnode_vops);
180 
181 /*
182  * swapon_args(char *name)
183  *
184  * System call swapon(name) enables swapping on device name,
185  * which must be in the swdevsw.  Return EBUSY
186  * if already swapping on this device.
187  *
188  * No requirements.
189  */
190 int
191 sys_swapon(struct swapon_args *uap)
192 {
193 	struct thread *td = curthread;
194 	struct vattr attr;
195 	struct vnode *vp;
196 	struct nlookupdata nd;
197 	int error;
198 
199 	error = priv_check(td, PRIV_ROOT);
200 	if (error)
201 		return (error);
202 
203 	mtx_lock(&swap_mtx);
204 	get_mplock();
205 	vp = NULL;
206 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
207 	if (error == 0)
208 		error = nlookup(&nd);
209 	if (error == 0)
210 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
211 	nlookup_done(&nd);
212 	if (error) {
213 		rel_mplock();
214 		mtx_unlock(&swap_mtx);
215 		return (error);
216 	}
217 
218 	if (vn_isdisk(vp, &error)) {
219 		error = swaponvp(td, vp, 0);
220 	} else if (vp->v_type == VREG && vp->v_tag == VT_NFS &&
221 		   (error = VOP_GETATTR(vp, &attr)) == 0) {
222 		/*
223 		 * Allow direct swapping to NFS regular files in the same
224 		 * way that nfs_mountroot() sets up diskless swapping.
225 		 */
226 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
227 	}
228 	if (error)
229 		vrele(vp);
230 	rel_mplock();
231 	mtx_unlock(&swap_mtx);
232 
233 	return (error);
234 }
235 
236 /*
237  * Swfree(index) frees the index'th portion of the swap map.
238  * Each of the nswdev devices provides 1/nswdev'th of the swap
239  * space, which is laid out with blocks of dmmax pages circularly
240  * among the devices.
241  *
242  * The new swap code uses page-sized blocks.  The old swap code used
243  * DEV_BSIZE'd chunks.
244  *
245  * XXX locking when multiple swapon's run in parallel
246  */
247 int
248 swaponvp(struct thread *td, struct vnode *vp, u_quad_t nblks)
249 {
250 	swblk_t aligned_nblks;
251 	int64_t dpsize;
252 	struct ucred *cred;
253 	struct swdevt *sp;
254 	swblk_t vsbase;
255 	swblk_t dvbase;
256 	cdev_t dev;
257 	int index;
258 	int error;
259 	swblk_t blk;
260 
261 	cred = td->td_ucred;
262 
263 	lwkt_gettoken(&vm_token);	/* needed for vm_swap_size and blist */
264 	mtx_lock(&swap_mtx);
265 
266 	if (!swapdev_vp) {
267 		error = getspecialvnode(VT_NON, NULL, &swapdev_vnode_vops_p,
268 				    &swapdev_vp, 0, 0);
269 		if (error)
270 			panic("Cannot get vnode for swapdev");
271 		swapdev_vp->v_type = VNON;	/* Untyped */
272 		vx_unlock(swapdev_vp);
273 	}
274 
275 	for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) {
276 		if (sp->sw_vp == vp) {
277 			error = EBUSY;
278 			goto done;
279 		}
280 		if (!sp->sw_vp)
281 			goto found;
282 
283 	}
284 	error = EINVAL;
285 	goto done;
286     found:
287 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
288 	error = VOP_OPEN(vp, FREAD | FWRITE, cred, NULL);
289 	vn_unlock(vp);
290 	if (error)
291 		goto done;
292 
293 	/*
294 	 * v_rdev is not valid until after the VOP_OPEN() call.  dev_psize()
295 	 * must be supported if a character device has been specified.
296 	 */
297 	if (vp->v_type == VCHR)
298 		dev = vp->v_rdev;
299 	else
300 		dev = NULL;
301 
302 	if (nblks == 0 && dev != NULL) {
303 		dpsize = dev_dpsize(dev);
304 		if (dpsize == -1) {
305 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
306 			VOP_CLOSE(vp, FREAD | FWRITE, NULL);
307 			vn_unlock(vp);
308 			error = ENXIO;
309 			goto done;
310 		}
311 		nblks = (u_quad_t)dpsize;
312 	}
313 	if (nblks == 0) {
314 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
315 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
316 		vn_unlock(vp);
317 		error = ENXIO;
318 		goto done;
319 	}
320 
321 	/*
322 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
323 	 * First chop nblks off to page-align it, then convert.
324 	 *
325 	 * sw->sw_nblks is in page-sized chunks now too.
326 	 */
327 	nblks &= ~(u_quad_t)(ctodb(1) - 1);
328 	nblks = dbtoc(nblks);
329 
330 	/*
331 	 * Post-conversion nblks must not be >= BLIST_MAXBLKS, and
332 	 * we impose a 4-swap-device limit so we have to divide it out
333 	 * further.  Going beyond this will result in overflows in the
334 	 * blist code.
335 	 *
336 	 * Post-conversion nblks must fit within a (swblk_t), which
337 	 * this test also ensures.
338 	 */
339 	if (nblks > BLIST_MAXBLKS / nswdev) {
340 		kprintf("exceeded maximum of %d blocks per swap unit\n",
341 			(int)BLIST_MAXBLKS / nswdev);
342 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
343 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
344 		vn_unlock(vp);
345 		error = ENXIO;
346 		goto done;
347 	}
348 
349 	sp->sw_vp = vp;
350 	sp->sw_dev = dev2udev(dev);
351 	sp->sw_device = dev;
352 	sp->sw_flags = SW_FREED;
353 	sp->sw_nused = 0;
354 
355 	/*
356 	 * nblks, nswap, and dmmax are PAGE_SIZE'd parameters now, not
357 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
358 	 * size of the swap bitmap, taking into account the stripe size.
359 	 */
360 	aligned_nblks = (swblk_t)((nblks + (dmmax - 1)) & ~(u_long)(dmmax - 1));
361 	sp->sw_nblks = aligned_nblks;
362 
363 	if (aligned_nblks * nswdev > nswap)
364 		nswap = aligned_nblks * nswdev;
365 
366 	if (swapblist == NULL)
367 		swapblist = blist_create(nswap);
368 	else
369 		blist_resize(&swapblist, nswap, 0);
370 
371 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
372 		blk = min(aligned_nblks - dvbase, dmmax);
373 		vsbase = index * dmmax + dvbase * nswdev;
374 		blist_free(swapblist, vsbase, blk);
375 		vm_swap_size += blk;
376 		vm_swap_max += blk;
377 	}
378 	swap_pager_newswap();
379 	error = 0;
380 done:
381 	mtx_unlock(&swap_mtx);
382 	lwkt_reltoken(&vm_token);
383 	return (error);
384 }
385 
386 /*
387  * swapoff_args(char *name)
388  *
389  * System call swapoff(name) disables swapping on device name,
390  * which must be an active swap device. Return ENOMEM
391  * if there is not enough memory to page in the contents of
392  * the given device.
393  *
394  * No requirements.
395  */
396 int
397 sys_swapoff(struct swapoff_args *uap)
398 {
399 	struct vnode *vp;
400 	struct nlookupdata nd;
401 	struct swdevt *sp;
402 	int error, index;
403 
404 	error = priv_check(curthread, PRIV_ROOT);
405 	if (error)
406 		return (error);
407 
408 	mtx_lock(&swap_mtx);
409 	get_mplock();
410 	vp = NULL;
411 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
412 	if (error == 0)
413 		error = nlookup(&nd);
414 	if (error == 0)
415 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
416 	nlookup_done(&nd);
417 	if (error)
418 		goto done;
419 
420 	for (sp = swdevt, index = 0; index < nswdev; index++, sp++) {
421 		if (sp->sw_vp == vp)
422 			goto found;
423 	}
424 	error = EINVAL;
425 	goto done;
426 found:
427 	error = swapoff_one(index);
428 
429 done:
430 	rel_mplock();
431 	mtx_unlock(&swap_mtx);
432 	return (error);
433 }
434 
435 static int
436 swapoff_one(int index)
437 {
438 	swblk_t blk, aligned_nblks;
439 	swblk_t dvbase, vsbase;
440 	u_int pq_active_clean, pq_inactive_clean;
441 	struct swdevt *sp;
442 	struct vm_page marker;
443 	vm_page_t m;
444 	int q;
445 
446 	mtx_lock(&swap_mtx);
447 
448 	sp = &swdevt[index];
449 	aligned_nblks = sp->sw_nblks;
450 	pq_active_clean = pq_inactive_clean = 0;
451 
452 	/*
453 	 * We can turn off this swap device safely only if the
454 	 * available virtual memory in the system will fit the amount
455 	 * of data we will have to page back in, plus an epsilon so
456 	 * the system doesn't become critically low on swap space.
457 	 */
458 	for (q = 0; q < PQ_L2_SIZE; ++q) {
459 		bzero(&marker, sizeof(marker));
460 		marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
461 		marker.queue = PQ_ACTIVE + q;
462 		marker.pc = q;
463 		marker.wire_count = 1;
464 
465 		vm_page_queues_spin_lock(marker.queue);
466 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
467 				  &marker, pageq);
468 
469 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
470 			TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
471 				     &marker, pageq);
472 			TAILQ_INSERT_AFTER(&vm_page_queues[marker.queue].pl, m,
473 					   &marker, pageq);
474 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
475 				continue;
476 
477 			if (vm_page_busy_try(m, FALSE) == 0) {
478 				vm_page_queues_spin_unlock(marker.queue);
479 				if (m->dirty == 0) {
480 					vm_page_test_dirty(m);
481 					if (m->dirty == 0)
482 						++pq_active_clean;
483 				}
484 				vm_page_wakeup(m);
485 				vm_page_queues_spin_lock(marker.queue);
486 			}
487 		}
488 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl, &marker, pageq);
489 		vm_page_queues_spin_unlock(marker.queue);
490 
491 		marker.queue = PQ_INACTIVE + q;
492 		marker.pc = q;
493 		vm_page_queues_spin_lock(marker.queue);
494 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
495 				  &marker, pageq);
496 
497 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
498 			TAILQ_REMOVE(
499 				&vm_page_queues[marker.queue].pl,
500 				&marker, pageq);
501 			TAILQ_INSERT_AFTER(
502 				&vm_page_queues[marker.queue].pl,
503 				m, &marker, pageq);
504 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
505 				continue;
506 
507 			if (vm_page_busy_try(m, FALSE) == 0) {
508 				vm_page_queues_spin_unlock(marker.queue);
509 				if (m->dirty == 0) {
510 					vm_page_test_dirty(m);
511 					if (m->dirty == 0)
512 						++pq_inactive_clean;
513 				}
514 				vm_page_wakeup(m);
515 				vm_page_queues_spin_lock(marker.queue);
516 			}
517 		}
518 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
519 			     &marker, pageq);
520 		vm_page_queues_spin_unlock(marker.queue);
521 	}
522 
523 	if (vmstats.v_free_count + vmstats.v_cache_count + pq_active_clean +
524 	    pq_inactive_clean + vm_swap_size < aligned_nblks + nswap_lowat) {
525 		mtx_unlock(&swap_mtx);
526 		return (ENOMEM);
527 	}
528 
529 	/*
530 	 * Prevent further allocations on this device
531 	 */
532 	sp->sw_flags |= SW_CLOSING;
533 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
534 		blk = min(aligned_nblks - dvbase, dmmax);
535 		vsbase = index * dmmax + dvbase * nswdev;
536 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
537 		vm_swap_max -= blk;
538 	}
539 
540 	/*
541 	 * Page in the contents of the device and close it.
542 	 */
543 	if (swap_pager_swapoff(index) && swap_pager_swapoff(index)) {
544 		mtx_unlock(&swap_mtx);
545 		return (EINTR);
546 	}
547 
548 	vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
549 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, NULL);
550 	vn_unlock(sp->sw_vp);
551 	vrele(sp->sw_vp);
552 	bzero(swdevt + index, sizeof(struct swdevt));
553 
554 	/*
555 	 * Resize the bitmap based on the nem largest swap device,
556 	 * or free the bitmap if there are no more devices.
557 	 */
558 	for (sp = swdevt, aligned_nblks = 0; sp < swdevt + nswdev; sp++) {
559 		if (sp->sw_vp)
560 			aligned_nblks = max(aligned_nblks, sp->sw_nblks);
561 	}
562 
563 	nswap = aligned_nblks * nswdev;
564 
565 	if (nswap == 0) {
566 		blist_destroy(swapblist);
567 		swapblist = NULL;
568 		vrele(swapdev_vp);
569 		swapdev_vp = NULL;
570 	} else {
571 		blist_resize(&swapblist, nswap, 0);
572 	}
573 
574 	mtx_unlock(&swap_mtx);
575 	return (0);
576 }
577 
578 /*
579  * Account for swap space in individual swdevt's.  The caller ensures
580  * that the provided range falls into a single swdevt.
581  *
582  * +count	space freed
583  * -count	space allocated
584  */
585 void
586 swapacctspace(swblk_t base, swblk_t count)
587 {
588 	int index;
589 	int seg;
590 
591 	vm_swap_size += count;
592 	seg = base / dmmax;
593 	index = seg % nswdev;
594 	swdevt[index].sw_nused -= count;
595 }
596 
597 /*
598  * Retrieve swap info
599  */
600 static int
601 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
602 {
603 	struct xswdev xs;
604 	struct swdevt *sp;
605 	int	error;
606 	int	n;
607 
608 	error = 0;
609 	for (n = 0; n < nswdev; ++n) {
610 		sp = &swdevt[n];
611 
612 		xs.xsw_size = sizeof(xs);
613 		xs.xsw_version = XSWDEV_VERSION;
614 		xs.xsw_blksize = PAGE_SIZE;
615 		xs.xsw_dev = sp->sw_dev;
616 		xs.xsw_flags = sp->sw_flags;
617 		xs.xsw_nblks = sp->sw_nblks;
618 		xs.xsw_used = sp->sw_nused;
619 
620 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
621 		if (error)
622 			break;
623 	}
624 	return (error);
625 }
626 
627 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0,
628 	   "Number of swap devices");
629 SYSCTL_NODE(_vm, OID_AUTO, swap_info_array, CTLFLAG_RD, sysctl_vm_swap_info,
630 	    "Swap statistics by device");
631