xref: /dragonfly/sys/vm/vm_swap.c (revision 20c2db9a)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
36  * $FreeBSD: src/sys/vm/vm_swap.c,v 1.96.2.2 2001/10/14 18:46:47 iedowse Exp $
37  */
38 
39 #include "opt_swap.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/sysproto.h>
44 #include <sys/buf.h>
45 #include <sys/proc.h>
46 #include <sys/priv.h>
47 #include <sys/nlookup.h>
48 #include <sys/sysctl.h>
49 #include <sys/dmap.h>		/* XXX */
50 #include <sys/vnode.h>
51 #include <sys/fcntl.h>
52 #include <sys/blist.h>
53 #include <sys/kernel.h>
54 #include <sys/lock.h>
55 #include <sys/conf.h>
56 #include <sys/stat.h>
57 
58 #include <vm/vm.h>
59 #include <vm/vm_extern.h>
60 #include <vm/swap_pager.h>
61 #include <vm/vm_zone.h>
62 #include <vm/vm_param.h>
63 
64 #include <sys/thread2.h>
65 #include <sys/mplock2.h>
66 #include <sys/mutex2.h>
67 #include <sys/spinlock2.h>
68 
69 /*
70  * Indirect driver for multi-controller paging.
71  */
72 
73 #ifndef NSWAPDEV
74 #define NSWAPDEV	4
75 #endif
76 static struct swdevt should_be_malloced[NSWAPDEV];
77 struct swdevt *swdevt = should_be_malloced;	/* exported to pstat/systat */
78 static swblk_t nswap;		/* first block after the interleaved devs */
79 static struct mtx swap_mtx = MTX_INITIALIZER;
80 int nswdev = NSWAPDEV;				/* exported to pstat/systat */
81 int vm_swap_size;
82 int vm_swap_max;
83 
84 static int swapoff_one(int index);
85 struct vnode *swapdev_vp;
86 
87 /*
88  * (struct vnode *a_vp, struct bio *b_bio)
89  *
90  * vn_strategy() for swapdev_vp.  Perform swap strategy interleave device
91  * selection.
92  *
93  * No requirements.
94  */
95 static int
96 swapdev_strategy(struct vop_strategy_args *ap)
97 {
98 	struct bio *bio = ap->a_bio;
99 	struct bio *nbio;
100 	struct buf *bp = bio->bio_buf;
101 	int sz, off, seg, index, blkno, nblkno;
102 	struct swdevt *sp;
103 	sz = howmany(bp->b_bcount, PAGE_SIZE);
104 	blkno = (int)(bio->bio_offset >> PAGE_SHIFT);
105 
106 	/*
107 	 * Convert interleaved swap into per-device swap.  Note that
108 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
109 	 * here.
110 	 */
111 	nbio = push_bio(bio);
112 	if (nswdev > 1) {
113 		off = blkno % dmmax;
114 		if (off + sz > dmmax) {
115 			bp->b_error = EINVAL;
116 			bp->b_flags |= B_ERROR;
117 			biodone(bio);
118 			return 0;
119 		}
120 		seg = blkno / dmmax;
121 		index = seg % nswdev;
122 		seg /= nswdev;
123 		nbio->bio_offset = (off_t)(seg * dmmax + off) << PAGE_SHIFT;
124 	} else {
125 		index = 0;
126 		nbio->bio_offset = bio->bio_offset;
127 	}
128 	nblkno = (int)(nbio->bio_offset >> PAGE_SHIFT);
129 	sp = &swdevt[index];
130 	if (nblkno + sz > sp->sw_nblks) {
131 		bp->b_error = EINVAL;
132 		bp->b_flags |= B_ERROR;
133 		/* I/O was never started on nbio, must biodone(bio) */
134 		biodone(bio);
135 		return 0;
136 	}
137 	if (sp->sw_vp == NULL) {
138 		bp->b_error = ENODEV;
139 		bp->b_flags |= B_ERROR;
140 		/* I/O was never started on nbio, must biodone(bio) */
141 		biodone(bio);
142 		return 0;
143 	}
144 
145 	/*
146 	 * Issue a strategy call on the appropriate swap vnode.  Note that
147 	 * bp->b_vp is not modified.  Strategy code is always supposed to
148 	 * use the passed vp.
149 	 *
150 	 * We have to use vn_strategy() here even if we know we have a
151 	 * device in order to properly break up requests which exceed the
152 	 * device's DMA limits.
153 	 */
154 	vn_strategy(sp->sw_vp, nbio);
155 	return 0;
156 }
157 
158 static int
159 swapdev_inactive(struct vop_inactive_args *ap)
160 {
161 	vrecycle(ap->a_vp);
162 	return(0);
163 }
164 
165 static int
166 swapdev_reclaim(struct vop_reclaim_args *ap)
167 {
168 	return(0);
169 }
170 
171 /*
172  * Create a special vnode op vector for swapdev_vp - we only use
173  * vn_strategy(), everything else returns an error.
174  */
175 static struct vop_ops swapdev_vnode_vops = {
176 	.vop_default =		vop_defaultop,
177 	.vop_strategy =		swapdev_strategy,
178 	.vop_inactive =		swapdev_inactive,
179 	.vop_reclaim =		swapdev_reclaim
180 };
181 static struct vop_ops *swapdev_vnode_vops_p = &swapdev_vnode_vops;
182 
183 VNODEOP_SET(swapdev_vnode_vops);
184 
185 /*
186  * swapon_args(char *name)
187  *
188  * System call swapon(name) enables swapping on device name,
189  * which must be in the swdevsw.  Return EBUSY
190  * if already swapping on this device.
191  *
192  * No requirements.
193  */
194 int
195 sys_swapon(struct swapon_args *uap)
196 {
197 	struct thread *td = curthread;
198 	struct vattr attr;
199 	struct vnode *vp;
200 	struct nlookupdata nd;
201 	int error;
202 
203 	error = priv_check(td, PRIV_ROOT);
204 	if (error)
205 		return (error);
206 
207 	mtx_lock(&swap_mtx);
208 	get_mplock();
209 	vp = NULL;
210 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
211 	if (error == 0)
212 		error = nlookup(&nd);
213 	if (error == 0)
214 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
215 	nlookup_done(&nd);
216 	if (error) {
217 		rel_mplock();
218 		mtx_unlock(&swap_mtx);
219 		return (error);
220 	}
221 
222 	if (vn_isdisk(vp, &error)) {
223 		error = swaponvp(td, vp, 0);
224 	} else if (vp->v_type == VREG && vp->v_tag == VT_NFS &&
225 		   (error = VOP_GETATTR(vp, &attr)) == 0) {
226 		/*
227 		 * Allow direct swapping to NFS regular files in the same
228 		 * way that nfs_mountroot() sets up diskless swapping.
229 		 */
230 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
231 	}
232 	if (error)
233 		vrele(vp);
234 	rel_mplock();
235 	mtx_unlock(&swap_mtx);
236 
237 	return (error);
238 }
239 
240 /*
241  * Swfree(index) frees the index'th portion of the swap map.
242  * Each of the nswdev devices provides 1/nswdev'th of the swap
243  * space, which is laid out with blocks of dmmax pages circularly
244  * among the devices.
245  *
246  * The new swap code uses page-sized blocks.  The old swap code used
247  * DEV_BSIZE'd chunks.
248  *
249  * XXX locking when multiple swapon's run in parallel
250  */
251 int
252 swaponvp(struct thread *td, struct vnode *vp, u_quad_t nblks)
253 {
254 	swblk_t aligned_nblks;
255 	int64_t dpsize;
256 	struct ucred *cred;
257 	struct swdevt *sp;
258 	swblk_t vsbase;
259 	swblk_t dvbase;
260 	cdev_t dev;
261 	int index;
262 	int error;
263 	swblk_t blk;
264 
265 	cred = td->td_ucred;
266 
267 	lwkt_gettoken(&vm_token);	/* needed for vm_swap_size and blist */
268 	mtx_lock(&swap_mtx);
269 
270 	if (!swapdev_vp) {
271 		error = getspecialvnode(VT_NON, NULL, &swapdev_vnode_vops_p,
272 				    &swapdev_vp, 0, 0);
273 		if (error)
274 			panic("Cannot get vnode for swapdev");
275 		swapdev_vp->v_type = VNON;	/* Untyped */
276 		vx_unlock(swapdev_vp);
277 	}
278 
279 	for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) {
280 		if (sp->sw_vp == vp) {
281 			error = EBUSY;
282 			goto done;
283 		}
284 		if (!sp->sw_vp)
285 			goto found;
286 
287 	}
288 	error = EINVAL;
289 	goto done;
290     found:
291 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
292 	error = VOP_OPEN(vp, FREAD | FWRITE, cred, NULL);
293 	vn_unlock(vp);
294 	if (error)
295 		goto done;
296 
297 	/*
298 	 * v_rdev is not valid until after the VOP_OPEN() call.  dev_psize()
299 	 * must be supported if a character device has been specified.
300 	 */
301 	if (vp->v_type == VCHR)
302 		dev = vp->v_rdev;
303 	else
304 		dev = NULL;
305 
306 	if (nblks == 0 && dev != NULL) {
307 		dpsize = dev_dpsize(dev);
308 		if (dpsize == -1) {
309 			VOP_CLOSE(vp, FREAD | FWRITE);
310 			error = ENXIO;
311 			goto done;
312 		}
313 		nblks = (u_quad_t)dpsize;
314 	}
315 	if (nblks == 0) {
316 		VOP_CLOSE(vp, FREAD | FWRITE);
317 		error = ENXIO;
318 		goto done;
319 	}
320 
321 	/*
322 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
323 	 * First chop nblks off to page-align it, then convert.
324 	 *
325 	 * sw->sw_nblks is in page-sized chunks now too.
326 	 */
327 	nblks &= ~(u_quad_t)(ctodb(1) - 1);
328 	nblks = dbtoc(nblks);
329 
330 	/*
331 	 * Post-conversion nblks must not be >= BLIST_MAXBLKS, and
332 	 * we impose a 4-swap-device limit so we have to divide it out
333 	 * further.  Going beyond this will result in overflows in the
334 	 * blist code.
335 	 *
336 	 * Post-conversion nblks must fit within a (swblk_t), which
337 	 * this test also ensures.
338 	 */
339 	if (nblks > BLIST_MAXBLKS / nswdev) {
340 		kprintf("exceeded maximum of %d blocks per swap unit\n",
341 			(int)BLIST_MAXBLKS / nswdev);
342 		VOP_CLOSE(vp, FREAD | FWRITE);
343 		error = ENXIO;
344 		goto done;
345 	}
346 
347 	sp->sw_vp = vp;
348 	sp->sw_dev = dev2udev(dev);
349 	sp->sw_device = dev;
350 	sp->sw_flags = SW_FREED;
351 	sp->sw_nused = 0;
352 
353 	/*
354 	 * nblks, nswap, and dmmax are PAGE_SIZE'd parameters now, not
355 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
356 	 * size of the swap bitmap, taking into account the stripe size.
357 	 */
358 	aligned_nblks = (swblk_t)((nblks + (dmmax - 1)) & ~(u_long)(dmmax - 1));
359 	sp->sw_nblks = aligned_nblks;
360 
361 	if (aligned_nblks * nswdev > nswap)
362 		nswap = aligned_nblks * nswdev;
363 
364 	if (swapblist == NULL)
365 		swapblist = blist_create(nswap);
366 	else
367 		blist_resize(&swapblist, nswap, 0);
368 
369 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
370 		blk = min(aligned_nblks - dvbase, dmmax);
371 		vsbase = index * dmmax + dvbase * nswdev;
372 		blist_free(swapblist, vsbase, blk);
373 		vm_swap_size += blk;
374 		vm_swap_max += blk;
375 	}
376 	swap_pager_newswap();
377 	error = 0;
378 done:
379 	mtx_unlock(&swap_mtx);
380 	lwkt_reltoken(&vm_token);
381 	return (error);
382 }
383 
384 /*
385  * swapoff_args(char *name)
386  *
387  * System call swapoff(name) disables swapping on device name,
388  * which must be an active swap device. Return ENOMEM
389  * if there is not enough memory to page in the contents of
390  * the given device.
391  *
392  * No requirements.
393  */
394 int
395 sys_swapoff(struct swapoff_args *uap)
396 {
397 	struct vnode *vp;
398 	struct nlookupdata nd;
399 	struct swdevt *sp;
400 	int error, index;
401 
402 	error = priv_check(curthread, PRIV_ROOT);
403 	if (error)
404 		return (error);
405 
406 	mtx_lock(&swap_mtx);
407 	get_mplock();
408 	vp = NULL;
409 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
410 	if (error == 0)
411 		error = nlookup(&nd);
412 	if (error == 0)
413 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
414 	nlookup_done(&nd);
415 	if (error)
416 		goto done;
417 
418 	for (sp = swdevt, index = 0; index < nswdev; index++, sp++) {
419 		if (sp->sw_vp == vp)
420 			goto found;
421 	}
422 	error = EINVAL;
423 	goto done;
424 found:
425 	error = swapoff_one(index);
426 
427 done:
428 	rel_mplock();
429 	mtx_unlock(&swap_mtx);
430 	return (error);
431 }
432 
433 static int
434 swapoff_one(int index)
435 {
436 	swblk_t blk, aligned_nblks;
437 	swblk_t dvbase, vsbase;
438 	u_int pq_active_clean, pq_inactive_clean;
439 	struct swdevt *sp;
440 	struct vm_page marker;
441 	vm_page_t m;
442 	int q;
443 
444 	mtx_lock(&swap_mtx);
445 
446 	sp = &swdevt[index];
447 	aligned_nblks = sp->sw_nblks;
448 	pq_active_clean = pq_inactive_clean = 0;
449 
450 	/*
451 	 * We can turn off this swap device safely only if the
452 	 * available virtual memory in the system will fit the amount
453 	 * of data we will have to page back in, plus an epsilon so
454 	 * the system doesn't become critically low on swap space.
455 	 */
456 	for (q = 0; q < PQ_L2_SIZE; ++q) {
457 		bzero(&marker, sizeof(marker));
458 		marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
459 		marker.queue = PQ_ACTIVE + q;
460 		marker.pc = q;
461 		marker.wire_count = 1;
462 
463 		vm_page_queues_spin_lock(marker.queue);
464 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
465 				  &marker, pageq);
466 
467 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
468 			TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
469 				     &marker, pageq);
470 			TAILQ_INSERT_AFTER(&vm_page_queues[marker.queue].pl, m,
471 					   &marker, pageq);
472 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
473 				continue;
474 
475 			if (vm_page_busy_try(m, FALSE) == 0) {
476 				vm_page_queues_spin_unlock(marker.queue);
477 				if (m->dirty == 0) {
478 					vm_page_test_dirty(m);
479 					if (m->dirty == 0)
480 						++pq_active_clean;
481 				}
482 				vm_page_wakeup(m);
483 				vm_page_queues_spin_lock(marker.queue);
484 			}
485 		}
486 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl, &marker, pageq);
487 		vm_page_queues_spin_unlock(marker.queue);
488 
489 		marker.queue = PQ_INACTIVE + q;
490 		marker.pc = q;
491 		vm_page_queues_spin_lock(marker.queue);
492 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
493 				  &marker, pageq);
494 
495 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
496 			TAILQ_REMOVE(
497 				&vm_page_queues[marker.queue].pl,
498 				&marker, pageq);
499 			TAILQ_INSERT_AFTER(
500 				&vm_page_queues[marker.queue].pl,
501 				m, &marker, pageq);
502 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
503 				continue;
504 
505 			if (vm_page_busy_try(m, FALSE) == 0) {
506 				vm_page_queues_spin_unlock(marker.queue);
507 				if (m->dirty == 0) {
508 					vm_page_test_dirty(m);
509 					if (m->dirty == 0)
510 						++pq_inactive_clean;
511 				}
512 				vm_page_wakeup(m);
513 				vm_page_queues_spin_lock(marker.queue);
514 			}
515 		}
516 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
517 			     &marker, pageq);
518 		vm_page_queues_spin_unlock(marker.queue);
519 	}
520 
521 	if (vmstats.v_free_count + vmstats.v_cache_count + pq_active_clean +
522 	    pq_inactive_clean + vm_swap_size < aligned_nblks + nswap_lowat) {
523 		mtx_unlock(&swap_mtx);
524 		return (ENOMEM);
525 	}
526 
527 	/*
528 	 * Prevent further allocations on this device
529 	 */
530 	sp->sw_flags |= SW_CLOSING;
531 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
532 		blk = min(aligned_nblks - dvbase, dmmax);
533 		vsbase = index * dmmax + dvbase * nswdev;
534 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
535 		vm_swap_max -= blk;
536 	}
537 
538 	/*
539 	 * Page in the contents of the device and close it.
540 	 */
541 	if (swap_pager_swapoff(index) && swap_pager_swapoff(index)) {
542 		mtx_unlock(&swap_mtx);
543 		return (EINTR);
544 	}
545 
546 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE);
547 	vrele(sp->sw_vp);
548 	bzero(swdevt + index, sizeof(struct swdevt));
549 
550 	/*
551 	 * Resize the bitmap based on the nem largest swap device,
552 	 * or free the bitmap if there are no more devices.
553 	 */
554 	for (sp = swdevt, aligned_nblks = 0; sp < swdevt + nswdev; sp++) {
555 		if (sp->sw_vp)
556 			aligned_nblks = max(aligned_nblks, sp->sw_nblks);
557 	}
558 
559 	nswap = aligned_nblks * nswdev;
560 
561 	if (nswap == 0) {
562 		blist_destroy(swapblist);
563 		swapblist = NULL;
564 		vrele(swapdev_vp);
565 		swapdev_vp = NULL;
566 	} else {
567 		blist_resize(&swapblist, nswap, 0);
568 	}
569 
570 	mtx_unlock(&swap_mtx);
571 	return (0);
572 }
573 
574 /*
575  * Account for swap space in individual swdevt's.  The caller ensures
576  * that the provided range falls into a single swdevt.
577  *
578  * +count	space freed
579  * -count	space allocated
580  */
581 void
582 swapacctspace(swblk_t base, swblk_t count)
583 {
584 	int index;
585 	int seg;
586 
587 	vm_swap_size += count;
588 	seg = base / dmmax;
589 	index = seg % nswdev;
590 	swdevt[index].sw_nused -= count;
591 }
592 
593 /*
594  * Retrieve swap info
595  */
596 static int
597 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
598 {
599 	struct xswdev xs;
600 	struct swdevt *sp;
601 	int	error;
602 	int	n;
603 
604 	error = 0;
605 	for (n = 0; n < nswdev; ++n) {
606 		sp = &swdevt[n];
607 
608 		xs.xsw_size = sizeof(xs);
609 		xs.xsw_version = XSWDEV_VERSION;
610 		xs.xsw_blksize = PAGE_SIZE;
611 		xs.xsw_dev = sp->sw_dev;
612 		xs.xsw_flags = sp->sw_flags;
613 		xs.xsw_nblks = sp->sw_nblks;
614 		xs.xsw_used = sp->sw_nused;
615 
616 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
617 		if (error)
618 			break;
619 	}
620 	return (error);
621 }
622 
623 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0,
624 	   "Number of swap devices");
625 SYSCTL_NODE(_vm, OID_AUTO, swap_info_array, CTLFLAG_RD, sysctl_vm_swap_info,
626 	    "Swap statistics by device");
627