xref: /dragonfly/sys/vm/vm_swap.c (revision 2b3f93ea)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
32  * $FreeBSD: src/sys/vm/vm_swap.c,v 1.96.2.2 2001/10/14 18:46:47 iedowse Exp $
33  */
34 
35 #include "opt_swap.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysmsg.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/caps.h>
43 #include <sys/nlookup.h>
44 #include <sys/sysctl.h>
45 #include <sys/dmap.h>		/* XXX */
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/blist.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/conf.h>
52 #include <sys/stat.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/swap_pager.h>
57 #include <vm/vm_zone.h>
58 #include <vm/vm_param.h>
59 
60 #include <sys/mutex2.h>
61 #include <sys/spinlock2.h>
62 
63 /*
64  * Indirect driver for multi-controller paging.
65  */
66 
67 #ifndef NSWAPDEV
68 #define NSWAPDEV	4
69 #endif
70 static struct swdevt should_be_malloced[NSWAPDEV];
71 struct swdevt *swdevt = should_be_malloced;	/* exported to pstat/systat */
72 static swblk_t nswap;		/* first block after the interleaved devs */
73 static struct mtx swap_mtx = MTX_INITIALIZER("swpmtx");
74 int nswdev = NSWAPDEV;				/* exported to pstat/systat */
75 swblk_t vm_swap_size;
76 swblk_t vm_swap_max;
77 
78 static int swapoff_one(int index);
79 struct vnode *swapdev_vp;
80 
81 /*
82  * (struct vnode *a_vp, struct bio *b_bio)
83  *
84  * vn_strategy() for swapdev_vp.  Perform swap strategy interleave device
85  * selection.
86  *
87  * This function supports the KVABIO API.  If the underlying vnode/device
88  * does not, it will make appropriate adjustments.
89  *
90  * No requirements.
91  */
92 static int
swapdev_strategy(struct vop_strategy_args * ap)93 swapdev_strategy(struct vop_strategy_args *ap)
94 {
95 	struct bio *bio = ap->a_bio;
96 	struct bio *nbio;
97 	struct buf *bp = bio->bio_buf;
98 	swblk_t sz, off, seg, blkno, nblkno;
99 	int index;
100 	struct swdevt *sp;
101 	sz = howmany(bp->b_bcount, PAGE_SIZE);
102 	blkno = (swblk_t)(bio->bio_offset >> PAGE_SHIFT);
103 
104 	/*
105 	 * Convert interleaved swap into per-device swap.  Note that
106 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
107 	 * here.
108 	 */
109 	nbio = push_bio(bio);
110 	if (nswdev > 1) {
111 		off = blkno % SWB_DMMAX;
112 		if (off + sz > SWB_DMMAX) {
113 			bp->b_error = EINVAL;
114 			bp->b_flags |= B_ERROR;
115 			biodone(bio);
116 			return 0;
117 		}
118 		seg = blkno / SWB_DMMAX;
119 		index = seg % nswdev;
120 		seg /= nswdev;
121 		nbio->bio_offset = (off_t)(seg * SWB_DMMAX + off) << PAGE_SHIFT;
122 	} else {
123 		index = 0;
124 		nbio->bio_offset = bio->bio_offset;
125 	}
126 	nblkno = (swblk_t)(nbio->bio_offset >> PAGE_SHIFT);
127 	sp = &swdevt[index];
128 	if (nblkno + sz > sp->sw_nblks) {
129 		bp->b_error = EINVAL;
130 		bp->b_flags |= B_ERROR;
131 		/* I/O was never started on nbio, must biodone(bio) */
132 		biodone(bio);
133 		return 0;
134 	}
135 	if (sp->sw_vp == NULL) {
136 		bp->b_error = ENODEV;
137 		bp->b_flags |= B_ERROR;
138 		/* I/O was never started on nbio, must biodone(bio) */
139 		biodone(bio);
140 		return 0;
141 	}
142 
143 	/*
144 	 * Issue a strategy call on the appropriate swap vnode.  Note that
145 	 * bp->b_vp is not modified.  Strategy code is always supposed to
146 	 * use the passed vp.
147 	 *
148 	 * We have to use vn_strategy() here even if we know we have a
149 	 * device in order to properly break up requests which exceed the
150 	 * device's DMA limits.
151 	 */
152 	vn_strategy(sp->sw_vp, nbio);
153 
154 	return 0;
155 }
156 
157 static int
swapdev_inactive(struct vop_inactive_args * ap)158 swapdev_inactive(struct vop_inactive_args *ap)
159 {
160 	vrecycle(ap->a_vp);
161 	return(0);
162 }
163 
164 static int
swapdev_reclaim(struct vop_reclaim_args * ap)165 swapdev_reclaim(struct vop_reclaim_args *ap)
166 {
167 	return(0);
168 }
169 
170 /*
171  * Create a special vnode op vector for swapdev_vp - we only use
172  * vn_strategy(), everything else returns an error.
173  */
174 static struct vop_ops swapdev_vnode_vops = {
175 	.vop_default =		vop_defaultop,
176 	.vop_strategy =		swapdev_strategy,
177 	.vop_inactive =		swapdev_inactive,
178 	.vop_reclaim =		swapdev_reclaim
179 };
180 static struct vop_ops *swapdev_vnode_vops_p = &swapdev_vnode_vops;
181 
182 VNODEOP_SET(swapdev_vnode_vops);
183 
184 /*
185  * swapon_args(char *name)
186  *
187  * System call swapon(name) enables swapping on device name,
188  * which must be in the swdevsw.  Return EBUSY
189  * if already swapping on this device.
190  *
191  * No requirements.
192  */
193 int
sys_swapon(struct sysmsg * sysmsg,const struct swapon_args * uap)194 sys_swapon(struct sysmsg *sysmsg, const struct swapon_args *uap)
195 {
196 	struct thread *td = curthread;
197 	struct vattr attr;
198 	struct vnode *vp;
199 	struct nlookupdata nd;
200 	int error;
201 
202 	error = caps_priv_check_self(SYSCAP_RESTRICTEDROOT);
203 	if (error)
204 		return (error);
205 
206 	mtx_lock(&swap_mtx);
207 	vp = NULL;
208 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
209 	if (error == 0)
210 		error = nlookup(&nd);
211 	if (error == 0)
212 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
213 	nlookup_done(&nd);
214 	if (error) {
215 		mtx_unlock(&swap_mtx);
216 		return (error);
217 	}
218 
219 	if (vn_isdisk(vp, &error)) {
220 		error = swaponvp(td, vp, 0);
221 	} else if (vp->v_type == VREG && vp->v_tag == VT_NFS &&
222 		   (error = VOP_GETATTR(vp, &attr)) == 0) {
223 		/*
224 		 * Allow direct swapping to NFS regular files in the same
225 		 * way that nfs_mountroot() sets up diskless swapping.
226 		 */
227 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
228 	}
229 	if (error)
230 		vrele(vp);
231 	mtx_unlock(&swap_mtx);
232 
233 	return (error);
234 }
235 
236 /*
237  * Swfree(index) frees the index'th portion of the swap map.
238  * Each of the nswdev devices provides 1/nswdev'th of the swap
239  * space, which is laid out with blocks of SWB_DMMAX pages circularly
240  * among the devices.
241  *
242  * The new swap code uses page-sized blocks.  The old swap code used
243  * DEV_BSIZE'd chunks.
244  *
245  * XXX locking when multiple swapon's run in parallel
246  */
247 int
swaponvp(struct thread * td,struct vnode * vp,u_quad_t nblks)248 swaponvp(struct thread *td, struct vnode *vp, u_quad_t nblks)
249 {
250 	swblk_t aligned_nblks;
251 	int64_t dpsize;
252 	struct ucred *cred;
253 	struct swdevt *sp;
254 	swblk_t vsbase;
255 	swblk_t dvbase;
256 	cdev_t dev;
257 	int index;
258 	int error;
259 	swblk_t blk;
260 
261 	cred = td->td_ucred;
262 
263 	lwkt_gettoken(&vm_token);	/* needed for vm_swap_size and blist */
264 	mtx_lock(&swap_mtx);
265 
266 	/*
267 	 * Setup swapdev_vp.  We support the KVABIO API for this vnode's
268 	 * strategy function.
269 	 */
270 	if (!swapdev_vp) {
271 		error = getspecialvnode(VT_NON, NULL, &swapdev_vnode_vops_p,
272 				    &swapdev_vp, 0, 0);
273 		if (error)
274 			panic("Cannot get vnode for swapdev");
275 		swapdev_vp->v_type = VNON;	/* Untyped */
276 		vsetflags(swapdev_vp, VKVABIO);
277 		vx_unlock(swapdev_vp);
278 	}
279 
280 	for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) {
281 		if (sp->sw_vp == vp) {
282 			error = EBUSY;
283 			goto done;
284 		}
285 		if (!sp->sw_vp)
286 			goto found;
287 
288 	}
289 	error = EINVAL;
290 	goto done;
291     found:
292 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
293 	error = VOP_OPEN(vp, FREAD | FWRITE, cred, NULL);
294 	vn_unlock(vp);
295 	if (error)
296 		goto done;
297 
298 	/*
299 	 * v_rdev is not valid until after the VOP_OPEN() call.  dev_psize()
300 	 * must be supported if a character device has been specified.
301 	 */
302 	if (vp->v_type == VCHR)
303 		dev = vp->v_rdev;
304 	else
305 		dev = NULL;
306 
307 	if (nblks == 0 && dev != NULL) {
308 		dpsize = dev_dpsize(dev);
309 		if (dpsize == -1) {
310 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
311 			VOP_CLOSE(vp, FREAD | FWRITE, NULL);
312 			vn_unlock(vp);
313 			error = ENXIO;
314 			goto done;
315 		}
316 		nblks = (u_quad_t)dpsize;
317 	}
318 	if (nblks == 0) {
319 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
320 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
321 		vn_unlock(vp);
322 		error = ENXIO;
323 		goto done;
324 	}
325 
326 	/*
327 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
328 	 * First chop nblks off to page-align it, then convert.
329 	 *
330 	 * sw->sw_nblks is in page-sized chunks now too.
331 	 */
332 	nblks &= ~(u_quad_t)(ctodb(1) - 1);
333 	nblks = dbtoc(nblks);
334 
335 	/*
336 	 * Post-conversion nblks must not be >= BLIST_MAXBLKS, and
337 	 * we impose a 4-swap-device limit so we have to divide it out
338 	 * further.  Going beyond this will result in overflows in the
339 	 * blist code.
340 	 *
341 	 * Post-conversion nblks must fit within a (swblk_t), which
342 	 * this test also ensures.
343 	 */
344 	if (nblks > BLIST_MAXBLKS / nswdev) {
345 		kprintf("exceeded maximum of %ld blocks per swap unit\n",
346 			(long)BLIST_MAXBLKS / nswdev);
347 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
348 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
349 		vn_unlock(vp);
350 		error = ENXIO;
351 		goto done;
352 	}
353 
354 	sp->sw_vp = vp;
355 	sp->sw_dev = devid_from_dev(dev);
356 	sp->sw_device = dev;
357 	sp->sw_flags = SW_FREED;
358 	sp->sw_nused = 0;
359 
360 	/*
361 	 * nblks, nswap, and SWB_DMMAX are PAGE_SIZE'd parameters now, not
362 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
363 	 * size of the swap bitmap, taking into account the stripe size.
364 	 */
365 	aligned_nblks = (swblk_t)((nblks + SWB_DMMASK) &
366 				  ~(u_swblk_t)SWB_DMMASK);
367 	sp->sw_nblks = aligned_nblks;
368 
369 	if (aligned_nblks * nswdev > nswap)
370 		nswap = aligned_nblks * nswdev;
371 
372 	if (swapblist == NULL)
373 		swapblist = blist_create(nswap);
374 	else
375 		blist_resize(&swapblist, nswap, 0);
376 
377 	for (dvbase = SWB_DMMAX; dvbase < aligned_nblks; dvbase += SWB_DMMAX) {
378 		blk = min(aligned_nblks - dvbase, SWB_DMMAX);
379 		vsbase = index * SWB_DMMAX + dvbase * nswdev;
380 		blist_free(swapblist, vsbase, blk);
381 		vm_swap_size += blk;
382 		vm_swap_max += blk;
383 	}
384 	swap_pager_newswap();
385 	error = 0;
386 done:
387 	mtx_unlock(&swap_mtx);
388 	lwkt_reltoken(&vm_token);
389 	return (error);
390 }
391 
392 /*
393  * swapoff_args(char *name)
394  *
395  * System call swapoff(name) disables swapping on device name,
396  * which must be an active swap device. Return ENOMEM
397  * if there is not enough memory to page in the contents of
398  * the given device.
399  *
400  * No requirements.
401  */
402 int
sys_swapoff(struct sysmsg * sysmsg,const struct swapoff_args * uap)403 sys_swapoff(struct sysmsg *sysmsg, const struct swapoff_args *uap)
404 {
405 	struct vnode *vp;
406 	struct nlookupdata nd;
407 	struct swdevt *sp;
408 	int error, index;
409 
410 	error = caps_priv_check_self(SYSCAP_RESTRICTEDROOT);
411 	if (error)
412 		return (error);
413 
414 	mtx_lock(&swap_mtx);
415 	vp = NULL;
416 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
417 	if (error == 0)
418 		error = nlookup(&nd);
419 	if (error == 0)
420 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
421 	nlookup_done(&nd);
422 	if (error)
423 		goto done;
424 
425 	for (sp = swdevt, index = 0; index < nswdev; index++, sp++) {
426 		if (sp->sw_vp == vp)
427 			goto found;
428 	}
429 	error = EINVAL;
430 	goto done;
431 found:
432 	error = swapoff_one(index);
433 	swap_pager_newswap();
434 
435 done:
436 	mtx_unlock(&swap_mtx);
437 	return (error);
438 }
439 
440 static int
swapoff_one(int index)441 swapoff_one(int index)
442 {
443 	swblk_t blk, aligned_nblks;
444 	swblk_t dvbase, vsbase;
445 	u_int pq_active_clean, pq_inactive_clean;
446 	struct swdevt *sp;
447 	struct vm_page marker;
448 	vm_page_t m;
449 	int q;
450 
451 	mtx_lock(&swap_mtx);
452 
453 	sp = &swdevt[index];
454 	aligned_nblks = sp->sw_nblks;
455 	pq_active_clean = pq_inactive_clean = 0;
456 
457 	/*
458 	 * We can turn off this swap device safely only if the
459 	 * available virtual memory in the system will fit the amount
460 	 * of data we will have to page back in, plus an epsilon so
461 	 * the system doesn't become critically low on swap space.
462 	 */
463 	for (q = 0; q < PQ_L2_SIZE; ++q) {
464 		bzero(&marker, sizeof(marker));
465 		marker.flags = PG_FICTITIOUS | PG_MARKER;
466 		marker.busy_count = PBUSY_LOCKED;
467 		marker.queue = PQ_ACTIVE + q;
468 		marker.pc = q;
469 		marker.wire_count = 1;
470 
471 		vm_page_queues_spin_lock(marker.queue);
472 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
473 				  &marker, pageq);
474 
475 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
476 			TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
477 				     &marker, pageq);
478 			TAILQ_INSERT_AFTER(&vm_page_queues[marker.queue].pl, m,
479 					   &marker, pageq);
480 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
481 				continue;
482 
483 			if (vm_page_busy_try(m, FALSE) == 0) {
484 				vm_page_queues_spin_unlock(marker.queue);
485 				if (m->dirty == 0) {
486 					vm_page_test_dirty(m);
487 					if (m->dirty == 0)
488 						++pq_active_clean;
489 				}
490 				vm_page_wakeup(m);
491 				vm_page_queues_spin_lock(marker.queue);
492 			}
493 		}
494 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl, &marker, pageq);
495 		vm_page_queues_spin_unlock(marker.queue);
496 
497 		marker.queue = PQ_INACTIVE + q;
498 		marker.pc = q;
499 		vm_page_queues_spin_lock(marker.queue);
500 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
501 				  &marker, pageq);
502 
503 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
504 			TAILQ_REMOVE(
505 				&vm_page_queues[marker.queue].pl,
506 				&marker, pageq);
507 			TAILQ_INSERT_AFTER(
508 				&vm_page_queues[marker.queue].pl,
509 				m, &marker, pageq);
510 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
511 				continue;
512 
513 			if (vm_page_busy_try(m, FALSE) == 0) {
514 				vm_page_queues_spin_unlock(marker.queue);
515 				if (m->dirty == 0) {
516 					vm_page_test_dirty(m);
517 					if (m->dirty == 0)
518 						++pq_inactive_clean;
519 				}
520 				vm_page_wakeup(m);
521 				vm_page_queues_spin_lock(marker.queue);
522 			}
523 		}
524 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
525 			     &marker, pageq);
526 		vm_page_queues_spin_unlock(marker.queue);
527 	}
528 
529 	if (vmstats.v_free_count + vmstats.v_cache_count + pq_active_clean +
530 	    pq_inactive_clean + vm_swap_size < aligned_nblks + nswap_lowat) {
531 		mtx_unlock(&swap_mtx);
532 		return (ENOMEM);
533 	}
534 
535 	/*
536 	 * Prevent further allocations on this device
537 	 */
538 	sp->sw_flags |= SW_CLOSING;
539 	for (dvbase = SWB_DMMAX; dvbase < aligned_nblks; dvbase += SWB_DMMAX) {
540 		blk = min(aligned_nblks - dvbase, SWB_DMMAX);
541 		vsbase = index * SWB_DMMAX + dvbase * nswdev;
542 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
543 		vm_swap_max -= blk;
544 	}
545 
546 	/*
547 	 * Page in the contents of the device and close it.
548 	 */
549 	if (swap_pager_swapoff(index) && swap_pager_swapoff(index)) {
550 		mtx_unlock(&swap_mtx);
551 		return (EINTR);
552 	}
553 
554 	vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
555 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, NULL);
556 	vn_unlock(sp->sw_vp);
557 	vrele(sp->sw_vp);
558 	bzero(swdevt + index, sizeof(struct swdevt));
559 
560 	/*
561 	 * Resize the bitmap based on the nem largest swap device,
562 	 * or free the bitmap if there are no more devices.
563 	 */
564 	for (sp = swdevt, aligned_nblks = 0; sp < swdevt + nswdev; sp++) {
565 		if (sp->sw_vp)
566 			aligned_nblks = max(aligned_nblks, sp->sw_nblks);
567 	}
568 
569 	nswap = aligned_nblks * nswdev;
570 
571 	if (nswap == 0) {
572 		blist_destroy(swapblist);
573 		swapblist = NULL;
574 		vrele(swapdev_vp);
575 		swapdev_vp = NULL;
576 	} else {
577 		blist_resize(&swapblist, nswap, 0);
578 	}
579 
580 	mtx_unlock(&swap_mtx);
581 	return (0);
582 }
583 
584 /*
585  * Account for swap space in individual swdevt's.  The caller ensures
586  * that the provided range falls into a single swdevt.
587  *
588  * +count	space freed
589  * -count	space allocated
590  */
591 void
swapacctspace(swblk_t base,swblk_t count)592 swapacctspace(swblk_t base, swblk_t count)
593 {
594 	int index;
595 	swblk_t seg;
596 
597 	vm_swap_size += count;
598 	seg = base / SWB_DMMAX;
599 	index = seg % nswdev;
600 	swdevt[index].sw_nused -= count;
601 }
602 
603 /*
604  * Retrieve swap info
605  */
606 static int
sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)607 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
608 {
609 	struct xswdev xs;
610 	struct swdevt *sp;
611 	int	error;
612 	int	n;
613 
614 	error = 0;
615 	for (n = 0; n < nswdev; ++n) {
616 		sp = &swdevt[n];
617 
618 		xs.xsw_size = sizeof(xs);
619 		xs.xsw_version = XSWDEV_VERSION;
620 		xs.xsw_blksize = PAGE_SIZE;
621 		xs.xsw_dev = sp->sw_dev;
622 		xs.xsw_flags = sp->sw_flags;
623 		xs.xsw_nblks = sp->sw_nblks;
624 		xs.xsw_used = sp->sw_nused;
625 
626 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
627 		if (error)
628 			break;
629 	}
630 	return (error);
631 }
632 
633 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0,
634 	   "Number of swap devices");
635 SYSCTL_NODE(_vm, OID_AUTO, swap_info_array, CTLFLAG_RD, sysctl_vm_swap_info,
636 	    "Swap statistics by device");
637