xref: /dragonfly/sys/vm/vm_swap.c (revision 9348a738)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
32  * $FreeBSD: src/sys/vm/vm_swap.c,v 1.96.2.2 2001/10/14 18:46:47 iedowse Exp $
33  */
34 
35 #include "opt_swap.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/sysproto.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/priv.h>
43 #include <sys/nlookup.h>
44 #include <sys/sysctl.h>
45 #include <sys/dmap.h>		/* XXX */
46 #include <sys/vnode.h>
47 #include <sys/fcntl.h>
48 #include <sys/blist.h>
49 #include <sys/kernel.h>
50 #include <sys/lock.h>
51 #include <sys/conf.h>
52 #include <sys/stat.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 #include <vm/swap_pager.h>
57 #include <vm/vm_zone.h>
58 #include <vm/vm_param.h>
59 
60 #include <sys/thread2.h>
61 #include <sys/mutex2.h>
62 #include <sys/spinlock2.h>
63 
64 /*
65  * Indirect driver for multi-controller paging.
66  */
67 
68 #ifndef NSWAPDEV
69 #define NSWAPDEV	4
70 #endif
71 static struct swdevt should_be_malloced[NSWAPDEV];
72 struct swdevt *swdevt = should_be_malloced;	/* exported to pstat/systat */
73 static swblk_t nswap;		/* first block after the interleaved devs */
74 static struct mtx swap_mtx = MTX_INITIALIZER("swpmtx");
75 int nswdev = NSWAPDEV;				/* exported to pstat/systat */
76 swblk_t vm_swap_size;
77 swblk_t vm_swap_max;
78 
79 static int swapoff_one(int index);
80 struct vnode *swapdev_vp;
81 
82 /*
83  * (struct vnode *a_vp, struct bio *b_bio)
84  *
85  * vn_strategy() for swapdev_vp.  Perform swap strategy interleave device
86  * selection.
87  *
88  * No requirements.
89  */
90 static int
91 swapdev_strategy(struct vop_strategy_args *ap)
92 {
93 	struct bio *bio = ap->a_bio;
94 	struct bio *nbio;
95 	struct buf *bp = bio->bio_buf;
96 	swblk_t sz, off, seg, blkno, nblkno;
97 	int index;
98 	struct swdevt *sp;
99 	sz = howmany(bp->b_bcount, PAGE_SIZE);
100 	blkno = (swblk_t)(bio->bio_offset >> PAGE_SHIFT);
101 
102 	/*
103 	 * Convert interleaved swap into per-device swap.  Note that
104 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
105 	 * here.
106 	 */
107 	nbio = push_bio(bio);
108 	if (nswdev > 1) {
109 		off = blkno % SWB_DMMAX;
110 		if (off + sz > SWB_DMMAX) {
111 			bp->b_error = EINVAL;
112 			bp->b_flags |= B_ERROR;
113 			biodone(bio);
114 			return 0;
115 		}
116 		seg = blkno / SWB_DMMAX;
117 		index = seg % nswdev;
118 		seg /= nswdev;
119 		nbio->bio_offset = (off_t)(seg * SWB_DMMAX + off) << PAGE_SHIFT;
120 	} else {
121 		index = 0;
122 		nbio->bio_offset = bio->bio_offset;
123 	}
124 	nblkno = (swblk_t)(nbio->bio_offset >> PAGE_SHIFT);
125 	sp = &swdevt[index];
126 	if (nblkno + sz > sp->sw_nblks) {
127 		bp->b_error = EINVAL;
128 		bp->b_flags |= B_ERROR;
129 		/* I/O was never started on nbio, must biodone(bio) */
130 		biodone(bio);
131 		return 0;
132 	}
133 	if (sp->sw_vp == NULL) {
134 		bp->b_error = ENODEV;
135 		bp->b_flags |= B_ERROR;
136 		/* I/O was never started on nbio, must biodone(bio) */
137 		biodone(bio);
138 		return 0;
139 	}
140 
141 	/*
142 	 * Issue a strategy call on the appropriate swap vnode.  Note that
143 	 * bp->b_vp is not modified.  Strategy code is always supposed to
144 	 * use the passed vp.
145 	 *
146 	 * We have to use vn_strategy() here even if we know we have a
147 	 * device in order to properly break up requests which exceed the
148 	 * device's DMA limits.
149 	 */
150 	vn_strategy(sp->sw_vp, nbio);
151 	return 0;
152 }
153 
154 static int
155 swapdev_inactive(struct vop_inactive_args *ap)
156 {
157 	vrecycle(ap->a_vp);
158 	return(0);
159 }
160 
161 static int
162 swapdev_reclaim(struct vop_reclaim_args *ap)
163 {
164 	return(0);
165 }
166 
167 /*
168  * Create a special vnode op vector for swapdev_vp - we only use
169  * vn_strategy(), everything else returns an error.
170  */
171 static struct vop_ops swapdev_vnode_vops = {
172 	.vop_default =		vop_defaultop,
173 	.vop_strategy =		swapdev_strategy,
174 	.vop_inactive =		swapdev_inactive,
175 	.vop_reclaim =		swapdev_reclaim
176 };
177 static struct vop_ops *swapdev_vnode_vops_p = &swapdev_vnode_vops;
178 
179 VNODEOP_SET(swapdev_vnode_vops);
180 
181 /*
182  * swapon_args(char *name)
183  *
184  * System call swapon(name) enables swapping on device name,
185  * which must be in the swdevsw.  Return EBUSY
186  * if already swapping on this device.
187  *
188  * No requirements.
189  */
190 int
191 sys_swapon(struct swapon_args *uap)
192 {
193 	struct thread *td = curthread;
194 	struct vattr attr;
195 	struct vnode *vp;
196 	struct nlookupdata nd;
197 	int error;
198 
199 	error = priv_check(td, PRIV_ROOT);
200 	if (error)
201 		return (error);
202 
203 	mtx_lock(&swap_mtx);
204 	vp = NULL;
205 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
206 	if (error == 0)
207 		error = nlookup(&nd);
208 	if (error == 0)
209 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
210 	nlookup_done(&nd);
211 	if (error) {
212 		mtx_unlock(&swap_mtx);
213 		return (error);
214 	}
215 
216 	if (vn_isdisk(vp, &error)) {
217 		error = swaponvp(td, vp, 0);
218 	} else if (vp->v_type == VREG && vp->v_tag == VT_NFS &&
219 		   (error = VOP_GETATTR(vp, &attr)) == 0) {
220 		/*
221 		 * Allow direct swapping to NFS regular files in the same
222 		 * way that nfs_mountroot() sets up diskless swapping.
223 		 */
224 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
225 	}
226 	if (error)
227 		vrele(vp);
228 	mtx_unlock(&swap_mtx);
229 
230 	return (error);
231 }
232 
233 /*
234  * Swfree(index) frees the index'th portion of the swap map.
235  * Each of the nswdev devices provides 1/nswdev'th of the swap
236  * space, which is laid out with blocks of SWB_DMMAX pages circularly
237  * among the devices.
238  *
239  * The new swap code uses page-sized blocks.  The old swap code used
240  * DEV_BSIZE'd chunks.
241  *
242  * XXX locking when multiple swapon's run in parallel
243  */
244 int
245 swaponvp(struct thread *td, struct vnode *vp, u_quad_t nblks)
246 {
247 	swblk_t aligned_nblks;
248 	int64_t dpsize;
249 	struct ucred *cred;
250 	struct swdevt *sp;
251 	swblk_t vsbase;
252 	swblk_t dvbase;
253 	cdev_t dev;
254 	int index;
255 	int error;
256 	swblk_t blk;
257 
258 	cred = td->td_ucred;
259 
260 	lwkt_gettoken(&vm_token);	/* needed for vm_swap_size and blist */
261 	mtx_lock(&swap_mtx);
262 
263 	if (!swapdev_vp) {
264 		error = getspecialvnode(VT_NON, NULL, &swapdev_vnode_vops_p,
265 				    &swapdev_vp, 0, 0);
266 		if (error)
267 			panic("Cannot get vnode for swapdev");
268 		swapdev_vp->v_type = VNON;	/* Untyped */
269 		vx_unlock(swapdev_vp);
270 	}
271 
272 	for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) {
273 		if (sp->sw_vp == vp) {
274 			error = EBUSY;
275 			goto done;
276 		}
277 		if (!sp->sw_vp)
278 			goto found;
279 
280 	}
281 	error = EINVAL;
282 	goto done;
283     found:
284 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
285 	error = VOP_OPEN(vp, FREAD | FWRITE, cred, NULL);
286 	vn_unlock(vp);
287 	if (error)
288 		goto done;
289 
290 	/*
291 	 * v_rdev is not valid until after the VOP_OPEN() call.  dev_psize()
292 	 * must be supported if a character device has been specified.
293 	 */
294 	if (vp->v_type == VCHR)
295 		dev = vp->v_rdev;
296 	else
297 		dev = NULL;
298 
299 	if (nblks == 0 && dev != NULL) {
300 		dpsize = dev_dpsize(dev);
301 		if (dpsize == -1) {
302 			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
303 			VOP_CLOSE(vp, FREAD | FWRITE, NULL);
304 			vn_unlock(vp);
305 			error = ENXIO;
306 			goto done;
307 		}
308 		nblks = (u_quad_t)dpsize;
309 	}
310 	if (nblks == 0) {
311 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
312 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
313 		vn_unlock(vp);
314 		error = ENXIO;
315 		goto done;
316 	}
317 
318 	/*
319 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
320 	 * First chop nblks off to page-align it, then convert.
321 	 *
322 	 * sw->sw_nblks is in page-sized chunks now too.
323 	 */
324 	nblks &= ~(u_quad_t)(ctodb(1) - 1);
325 	nblks = dbtoc(nblks);
326 
327 	/*
328 	 * Post-conversion nblks must not be >= BLIST_MAXBLKS, and
329 	 * we impose a 4-swap-device limit so we have to divide it out
330 	 * further.  Going beyond this will result in overflows in the
331 	 * blist code.
332 	 *
333 	 * Post-conversion nblks must fit within a (swblk_t), which
334 	 * this test also ensures.
335 	 */
336 	if (nblks > BLIST_MAXBLKS / nswdev) {
337 		kprintf("exceeded maximum of %ld blocks per swap unit\n",
338 			(long)BLIST_MAXBLKS / nswdev);
339 		vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
340 		VOP_CLOSE(vp, FREAD | FWRITE, NULL);
341 		vn_unlock(vp);
342 		error = ENXIO;
343 		goto done;
344 	}
345 
346 	sp->sw_vp = vp;
347 	sp->sw_dev = dev2udev(dev);
348 	sp->sw_device = dev;
349 	sp->sw_flags = SW_FREED;
350 	sp->sw_nused = 0;
351 
352 	/*
353 	 * nblks, nswap, and SWB_DMMAX are PAGE_SIZE'd parameters now, not
354 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
355 	 * size of the swap bitmap, taking into account the stripe size.
356 	 */
357 	aligned_nblks = (swblk_t)((nblks + SWB_DMMASK) &
358 				  ~(u_swblk_t)SWB_DMMASK);
359 	sp->sw_nblks = aligned_nblks;
360 
361 	if (aligned_nblks * nswdev > nswap)
362 		nswap = aligned_nblks * nswdev;
363 
364 	if (swapblist == NULL)
365 		swapblist = blist_create(nswap);
366 	else
367 		blist_resize(&swapblist, nswap, 0);
368 
369 	for (dvbase = SWB_DMMAX; dvbase < aligned_nblks; dvbase += SWB_DMMAX) {
370 		blk = min(aligned_nblks - dvbase, SWB_DMMAX);
371 		vsbase = index * SWB_DMMAX + dvbase * nswdev;
372 		blist_free(swapblist, vsbase, blk);
373 		vm_swap_size += blk;
374 		vm_swap_max += blk;
375 	}
376 	swap_pager_newswap();
377 	error = 0;
378 done:
379 	mtx_unlock(&swap_mtx);
380 	lwkt_reltoken(&vm_token);
381 	return (error);
382 }
383 
384 /*
385  * swapoff_args(char *name)
386  *
387  * System call swapoff(name) disables swapping on device name,
388  * which must be an active swap device. Return ENOMEM
389  * if there is not enough memory to page in the contents of
390  * the given device.
391  *
392  * No requirements.
393  */
394 int
395 sys_swapoff(struct swapoff_args *uap)
396 {
397 	struct vnode *vp;
398 	struct nlookupdata nd;
399 	struct swdevt *sp;
400 	int error, index;
401 
402 	error = priv_check(curthread, PRIV_ROOT);
403 	if (error)
404 		return (error);
405 
406 	mtx_lock(&swap_mtx);
407 	vp = NULL;
408 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
409 	if (error == 0)
410 		error = nlookup(&nd);
411 	if (error == 0)
412 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
413 	nlookup_done(&nd);
414 	if (error)
415 		goto done;
416 
417 	for (sp = swdevt, index = 0; index < nswdev; index++, sp++) {
418 		if (sp->sw_vp == vp)
419 			goto found;
420 	}
421 	error = EINVAL;
422 	goto done;
423 found:
424 	error = swapoff_one(index);
425 	swap_pager_newswap();
426 
427 done:
428 	mtx_unlock(&swap_mtx);
429 	return (error);
430 }
431 
432 static int
433 swapoff_one(int index)
434 {
435 	swblk_t blk, aligned_nblks;
436 	swblk_t dvbase, vsbase;
437 	u_int pq_active_clean, pq_inactive_clean;
438 	struct swdevt *sp;
439 	struct vm_page marker;
440 	vm_page_t m;
441 	int q;
442 
443 	mtx_lock(&swap_mtx);
444 
445 	sp = &swdevt[index];
446 	aligned_nblks = sp->sw_nblks;
447 	pq_active_clean = pq_inactive_clean = 0;
448 
449 	/*
450 	 * We can turn off this swap device safely only if the
451 	 * available virtual memory in the system will fit the amount
452 	 * of data we will have to page back in, plus an epsilon so
453 	 * the system doesn't become critically low on swap space.
454 	 */
455 	for (q = 0; q < PQ_L2_SIZE; ++q) {
456 		bzero(&marker, sizeof(marker));
457 		marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
458 		marker.queue = PQ_ACTIVE + q;
459 		marker.pc = q;
460 		marker.wire_count = 1;
461 
462 		vm_page_queues_spin_lock(marker.queue);
463 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
464 				  &marker, pageq);
465 
466 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
467 			TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
468 				     &marker, pageq);
469 			TAILQ_INSERT_AFTER(&vm_page_queues[marker.queue].pl, m,
470 					   &marker, pageq);
471 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
472 				continue;
473 
474 			if (vm_page_busy_try(m, FALSE) == 0) {
475 				vm_page_queues_spin_unlock(marker.queue);
476 				if (m->dirty == 0) {
477 					vm_page_test_dirty(m);
478 					if (m->dirty == 0)
479 						++pq_active_clean;
480 				}
481 				vm_page_wakeup(m);
482 				vm_page_queues_spin_lock(marker.queue);
483 			}
484 		}
485 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl, &marker, pageq);
486 		vm_page_queues_spin_unlock(marker.queue);
487 
488 		marker.queue = PQ_INACTIVE + q;
489 		marker.pc = q;
490 		vm_page_queues_spin_lock(marker.queue);
491 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
492 				  &marker, pageq);
493 
494 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
495 			TAILQ_REMOVE(
496 				&vm_page_queues[marker.queue].pl,
497 				&marker, pageq);
498 			TAILQ_INSERT_AFTER(
499 				&vm_page_queues[marker.queue].pl,
500 				m, &marker, pageq);
501 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
502 				continue;
503 
504 			if (vm_page_busy_try(m, FALSE) == 0) {
505 				vm_page_queues_spin_unlock(marker.queue);
506 				if (m->dirty == 0) {
507 					vm_page_test_dirty(m);
508 					if (m->dirty == 0)
509 						++pq_inactive_clean;
510 				}
511 				vm_page_wakeup(m);
512 				vm_page_queues_spin_lock(marker.queue);
513 			}
514 		}
515 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
516 			     &marker, pageq);
517 		vm_page_queues_spin_unlock(marker.queue);
518 	}
519 
520 	if (vmstats.v_free_count + vmstats.v_cache_count + pq_active_clean +
521 	    pq_inactive_clean + vm_swap_size < aligned_nblks + nswap_lowat) {
522 		mtx_unlock(&swap_mtx);
523 		return (ENOMEM);
524 	}
525 
526 	/*
527 	 * Prevent further allocations on this device
528 	 */
529 	sp->sw_flags |= SW_CLOSING;
530 	for (dvbase = SWB_DMMAX; dvbase < aligned_nblks; dvbase += SWB_DMMAX) {
531 		blk = min(aligned_nblks - dvbase, SWB_DMMAX);
532 		vsbase = index * SWB_DMMAX + dvbase * nswdev;
533 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
534 		vm_swap_max -= blk;
535 	}
536 
537 	/*
538 	 * Page in the contents of the device and close it.
539 	 */
540 	if (swap_pager_swapoff(index) && swap_pager_swapoff(index)) {
541 		mtx_unlock(&swap_mtx);
542 		return (EINTR);
543 	}
544 
545 	vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
546 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, NULL);
547 	vn_unlock(sp->sw_vp);
548 	vrele(sp->sw_vp);
549 	bzero(swdevt + index, sizeof(struct swdevt));
550 
551 	/*
552 	 * Resize the bitmap based on the nem largest swap device,
553 	 * or free the bitmap if there are no more devices.
554 	 */
555 	for (sp = swdevt, aligned_nblks = 0; sp < swdevt + nswdev; sp++) {
556 		if (sp->sw_vp)
557 			aligned_nblks = max(aligned_nblks, sp->sw_nblks);
558 	}
559 
560 	nswap = aligned_nblks * nswdev;
561 
562 	if (nswap == 0) {
563 		blist_destroy(swapblist);
564 		swapblist = NULL;
565 		vrele(swapdev_vp);
566 		swapdev_vp = NULL;
567 	} else {
568 		blist_resize(&swapblist, nswap, 0);
569 	}
570 
571 	mtx_unlock(&swap_mtx);
572 	return (0);
573 }
574 
575 /*
576  * Account for swap space in individual swdevt's.  The caller ensures
577  * that the provided range falls into a single swdevt.
578  *
579  * +count	space freed
580  * -count	space allocated
581  */
582 void
583 swapacctspace(swblk_t base, swblk_t count)
584 {
585 	int index;
586 	swblk_t seg;
587 
588 	vm_swap_size += count;
589 	seg = base / SWB_DMMAX;
590 	index = seg % nswdev;
591 	swdevt[index].sw_nused -= count;
592 }
593 
594 /*
595  * Retrieve swap info
596  */
597 static int
598 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
599 {
600 	struct xswdev xs;
601 	struct swdevt *sp;
602 	int	error;
603 	int	n;
604 
605 	error = 0;
606 	for (n = 0; n < nswdev; ++n) {
607 		sp = &swdevt[n];
608 
609 		xs.xsw_size = sizeof(xs);
610 		xs.xsw_version = XSWDEV_VERSION;
611 		xs.xsw_blksize = PAGE_SIZE;
612 		xs.xsw_dev = sp->sw_dev;
613 		xs.xsw_flags = sp->sw_flags;
614 		xs.xsw_nblks = sp->sw_nblks;
615 		xs.xsw_used = sp->sw_nused;
616 
617 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
618 		if (error)
619 			break;
620 	}
621 	return (error);
622 }
623 
624 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0,
625 	   "Number of swap devices");
626 SYSCTL_NODE(_vm, OID_AUTO, swap_info_array, CTLFLAG_RD, sysctl_vm_swap_info,
627 	    "Swap statistics by device");
628