xref: /dragonfly/sys/vm/vm_swap.c (revision ce7a3582)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *	This product includes software developed by the University of
18  *	California, Berkeley and its contributors.
19  * 4. Neither the name of the University nor the names of its contributors
20  *    may be used to endorse or promote products derived from this software
21  *    without specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33  * SUCH DAMAGE.
34  *
35  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
36  * $FreeBSD: src/sys/vm/vm_swap.c,v 1.96.2.2 2001/10/14 18:46:47 iedowse Exp $
37  * $DragonFly: src/sys/vm/vm_swap.c,v 1.36 2007/07/20 17:21:54 dillon Exp $
38  */
39 
40 #include "opt_swap.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/sysproto.h>
45 #include <sys/buf.h>
46 #include <sys/proc.h>
47 #include <sys/priv.h>
48 #include <sys/nlookup.h>
49 #include <sys/sysctl.h>
50 #include <sys/dmap.h>		/* XXX */
51 #include <sys/vnode.h>
52 #include <sys/fcntl.h>
53 #include <sys/blist.h>
54 #include <sys/kernel.h>
55 #include <sys/lock.h>
56 #include <sys/conf.h>
57 #include <sys/stat.h>
58 
59 #include <vm/vm.h>
60 #include <vm/vm_extern.h>
61 #include <vm/swap_pager.h>
62 #include <vm/vm_zone.h>
63 #include <vm/vm_param.h>
64 
65 #include <sys/thread2.h>
66 #include <sys/mplock2.h>
67 #include <sys/mutex2.h>
68 #include <sys/spinlock2.h>
69 
70 /*
71  * Indirect driver for multi-controller paging.
72  */
73 
74 #ifndef NSWAPDEV
75 #define NSWAPDEV	4
76 #endif
77 static struct swdevt should_be_malloced[NSWAPDEV];
78 struct swdevt *swdevt = should_be_malloced;	/* exported to pstat/systat */
79 static swblk_t nswap;		/* first block after the interleaved devs */
80 static struct mtx swap_mtx = MTX_INITIALIZER;
81 int nswdev = NSWAPDEV;				/* exported to pstat/systat */
82 int vm_swap_size;
83 int vm_swap_max;
84 
85 static int swapoff_one(int index);
86 struct vnode *swapdev_vp;
87 
88 /*
89  * (struct vnode *a_vp, struct bio *b_bio)
90  *
91  * vn_strategy() for swapdev_vp.  Perform swap strategy interleave device
92  * selection.
93  *
94  * No requirements.
95  */
96 static int
97 swapdev_strategy(struct vop_strategy_args *ap)
98 {
99 	struct bio *bio = ap->a_bio;
100 	struct bio *nbio;
101 	struct buf *bp = bio->bio_buf;
102 	int sz, off, seg, index, blkno, nblkno;
103 	struct swdevt *sp;
104 	struct vnode *vp;
105 
106 	vp = ap->a_vp;
107 	sz = howmany(bp->b_bcount, PAGE_SIZE);
108 	blkno = (int)(bio->bio_offset >> PAGE_SHIFT);
109 
110 	/*
111 	 * Convert interleaved swap into per-device swap.  Note that
112 	 * the block size is left in PAGE_SIZE'd chunks (for the newswap)
113 	 * here.
114 	 */
115 	nbio = push_bio(bio);
116 	if (nswdev > 1) {
117 		off = blkno % dmmax;
118 		if (off + sz > dmmax) {
119 			bp->b_error = EINVAL;
120 			bp->b_flags |= B_ERROR;
121 			biodone(bio);
122 			return 0;
123 		}
124 		seg = blkno / dmmax;
125 		index = seg % nswdev;
126 		seg /= nswdev;
127 		nbio->bio_offset = (off_t)(seg * dmmax + off) << PAGE_SHIFT;
128 	} else {
129 		index = 0;
130 		nbio->bio_offset = bio->bio_offset;
131 	}
132 	nblkno = (int)(nbio->bio_offset >> PAGE_SHIFT);
133 	sp = &swdevt[index];
134 	if (nblkno + sz > sp->sw_nblks) {
135 		bp->b_error = EINVAL;
136 		bp->b_flags |= B_ERROR;
137 		/* I/O was never started on nbio, must biodone(bio) */
138 		biodone(bio);
139 		return 0;
140 	}
141 	if (sp->sw_vp == NULL) {
142 		bp->b_error = ENODEV;
143 		bp->b_flags |= B_ERROR;
144 		/* I/O was never started on nbio, must biodone(bio) */
145 		biodone(bio);
146 		return 0;
147 	}
148 
149 	/*
150 	 * Issue a strategy call on the appropriate swap vnode.  Note that
151 	 * bp->b_vp is not modified.  Strategy code is always supposed to
152 	 * use the passed vp.
153 	 *
154 	 * We have to use vn_strategy() here even if we know we have a
155 	 * device in order to properly break up requests which exceed the
156 	 * device's DMA limits.
157 	 */
158 	vn_strategy(sp->sw_vp, nbio);
159 	return 0;
160 }
161 
162 static int
163 swapdev_inactive(struct vop_inactive_args *ap)
164 {
165 	vrecycle(ap->a_vp);
166 	return(0);
167 }
168 
169 static int
170 swapdev_reclaim(struct vop_reclaim_args *ap)
171 {
172 	return(0);
173 }
174 
175 /*
176  * Create a special vnode op vector for swapdev_vp - we only use
177  * vn_strategy(), everything else returns an error.
178  */
179 static struct vop_ops swapdev_vnode_vops = {
180 	.vop_default =		vop_defaultop,
181 	.vop_strategy =		swapdev_strategy,
182 	.vop_inactive =		swapdev_inactive,
183 	.vop_reclaim =		swapdev_reclaim
184 };
185 static struct vop_ops *swapdev_vnode_vops_p = &swapdev_vnode_vops;
186 
187 VNODEOP_SET(swapdev_vnode_vops);
188 
189 /*
190  * swapon_args(char *name)
191  *
192  * System call swapon(name) enables swapping on device name,
193  * which must be in the swdevsw.  Return EBUSY
194  * if already swapping on this device.
195  *
196  * No requirements.
197  */
198 int
199 sys_swapon(struct swapon_args *uap)
200 {
201 	struct thread *td = curthread;
202 	struct vattr attr;
203 	struct vnode *vp;
204 	struct nlookupdata nd;
205 	int error;
206 	struct ucred *cred;
207 
208 	cred = td->td_ucred;
209 
210 	error = priv_check(td, PRIV_ROOT);
211 	if (error)
212 		return (error);
213 
214 	mtx_lock(&swap_mtx);
215 	get_mplock();
216 	vp = NULL;
217 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
218 	if (error == 0)
219 		error = nlookup(&nd);
220 	if (error == 0)
221 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
222 	nlookup_done(&nd);
223 	if (error) {
224 		rel_mplock();
225 		mtx_unlock(&swap_mtx);
226 		return (error);
227 	}
228 
229 	if (vn_isdisk(vp, &error)) {
230 		error = swaponvp(td, vp, 0);
231 	} else if (vp->v_type == VREG && vp->v_tag == VT_NFS &&
232 		   (error = VOP_GETATTR(vp, &attr)) == 0) {
233 		/*
234 		 * Allow direct swapping to NFS regular files in the same
235 		 * way that nfs_mountroot() sets up diskless swapping.
236 		 */
237 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
238 	}
239 	if (error)
240 		vrele(vp);
241 	rel_mplock();
242 	mtx_unlock(&swap_mtx);
243 
244 	return (error);
245 }
246 
247 /*
248  * Swfree(index) frees the index'th portion of the swap map.
249  * Each of the nswdev devices provides 1/nswdev'th of the swap
250  * space, which is laid out with blocks of dmmax pages circularly
251  * among the devices.
252  *
253  * The new swap code uses page-sized blocks.  The old swap code used
254  * DEV_BSIZE'd chunks.
255  *
256  * XXX locking when multiple swapon's run in parallel
257  */
258 int
259 swaponvp(struct thread *td, struct vnode *vp, u_quad_t nblks)
260 {
261 	swblk_t aligned_nblks;
262 	int64_t dpsize;
263 	struct ucred *cred;
264 	struct swdevt *sp;
265 	swblk_t vsbase;
266 	swblk_t dvbase;
267 	cdev_t dev;
268 	int index;
269 	int error;
270 	swblk_t blk;
271 
272 	cred = td->td_ucred;
273 
274 	lwkt_gettoken(&vm_token);	/* needed for vm_swap_size and blist */
275 	mtx_lock(&swap_mtx);
276 
277 	if (!swapdev_vp) {
278 		error = getspecialvnode(VT_NON, NULL, &swapdev_vnode_vops_p,
279 				    &swapdev_vp, 0, 0);
280 		if (error)
281 			panic("Cannot get vnode for swapdev");
282 		swapdev_vp->v_type = VNON;	/* Untyped */
283 		vx_unlock(swapdev_vp);
284 	}
285 
286 	for (sp = swdevt, index = 0 ; index < nswdev; index++, sp++) {
287 		if (sp->sw_vp == vp) {
288 			error = EBUSY;
289 			goto done;
290 		}
291 		if (!sp->sw_vp)
292 			goto found;
293 
294 	}
295 	error = EINVAL;
296 	goto done;
297     found:
298 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
299 	error = VOP_OPEN(vp, FREAD | FWRITE, cred, NULL);
300 	vn_unlock(vp);
301 	if (error)
302 		goto done;
303 
304 	/*
305 	 * v_rdev is not valid until after the VOP_OPEN() call.  dev_psize()
306 	 * must be supported if a character device has been specified.
307 	 */
308 	if (vp->v_type == VCHR)
309 		dev = vp->v_rdev;
310 	else
311 		dev = NULL;
312 
313 	if (nblks == 0 && dev != NULL) {
314 		dpsize = dev_dpsize(dev);
315 		if (dpsize == -1) {
316 			VOP_CLOSE(vp, FREAD | FWRITE);
317 			error = ENXIO;
318 			goto done;
319 		}
320 		nblks = (u_quad_t)dpsize;
321 	}
322 	if (nblks == 0) {
323 		VOP_CLOSE(vp, FREAD | FWRITE);
324 		error = ENXIO;
325 		goto done;
326 	}
327 
328 	/*
329 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
330 	 * First chop nblks off to page-align it, then convert.
331 	 *
332 	 * sw->sw_nblks is in page-sized chunks now too.
333 	 */
334 	nblks &= ~(u_quad_t)(ctodb(1) - 1);
335 	nblks = dbtoc(nblks);
336 
337 	/*
338 	 * Post-conversion nblks must not be >= BLIST_MAXBLKS, and
339 	 * we impose a 4-swap-device limit so we have to divide it out
340 	 * further.  Going beyond this will result in overflows in the
341 	 * blist code.
342 	 *
343 	 * Post-conversion nblks must fit within a (swblk_t), which
344 	 * this test also ensures.
345 	 */
346 	if (nblks > BLIST_MAXBLKS / nswdev) {
347 		kprintf("exceeded maximum of %d blocks per swap unit\n",
348 			(int)BLIST_MAXBLKS / nswdev);
349 		VOP_CLOSE(vp, FREAD | FWRITE);
350 		error = ENXIO;
351 		goto done;
352 	}
353 
354 	sp->sw_vp = vp;
355 	sp->sw_dev = dev2udev(dev);
356 	sp->sw_device = dev;
357 	sp->sw_flags = SW_FREED;
358 	sp->sw_nused = 0;
359 
360 	/*
361 	 * nblks, nswap, and dmmax are PAGE_SIZE'd parameters now, not
362 	 * DEV_BSIZE'd.   aligned_nblks is used to calculate the
363 	 * size of the swap bitmap, taking into account the stripe size.
364 	 */
365 	aligned_nblks = (swblk_t)((nblks + (dmmax - 1)) & ~(u_long)(dmmax - 1));
366 	sp->sw_nblks = aligned_nblks;
367 
368 	if (aligned_nblks * nswdev > nswap)
369 		nswap = aligned_nblks * nswdev;
370 
371 	if (swapblist == NULL)
372 		swapblist = blist_create(nswap);
373 	else
374 		blist_resize(&swapblist, nswap, 0);
375 
376 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
377 		blk = min(aligned_nblks - dvbase, dmmax);
378 		vsbase = index * dmmax + dvbase * nswdev;
379 		blist_free(swapblist, vsbase, blk);
380 		vm_swap_size += blk;
381 		vm_swap_max += blk;
382 	}
383 	swap_pager_newswap();
384 	error = 0;
385 done:
386 	mtx_unlock(&swap_mtx);
387 	lwkt_reltoken(&vm_token);
388 	return (error);
389 }
390 
391 /*
392  * swapoff_args(char *name)
393  *
394  * System call swapoff(name) disables swapping on device name,
395  * which must be an active swap device. Return ENOMEM
396  * if there is not enough memory to page in the contents of
397  * the given device.
398  *
399  * No requirements.
400  */
401 int
402 sys_swapoff(struct swapoff_args *uap)
403 {
404 	struct vnode *vp;
405 	struct nlookupdata nd;
406 	struct swdevt *sp;
407 	int error, index;
408 
409 	error = priv_check(curthread, PRIV_ROOT);
410 	if (error)
411 		return (error);
412 
413 	mtx_lock(&swap_mtx);
414 	get_mplock();
415 	vp = NULL;
416 	error = nlookup_init(&nd, uap->name, UIO_USERSPACE, NLC_FOLLOW);
417 	if (error == 0)
418 		error = nlookup(&nd);
419 	if (error == 0)
420 		error = cache_vref(&nd.nl_nch, nd.nl_cred, &vp);
421 	nlookup_done(&nd);
422 	if (error)
423 		goto done;
424 
425 	for (sp = swdevt, index = 0; index < nswdev; index++, sp++) {
426 		if (sp->sw_vp == vp)
427 			goto found;
428 	}
429 	error = EINVAL;
430 	goto done;
431 found:
432 	error = swapoff_one(index);
433 
434 done:
435 	rel_mplock();
436 	mtx_unlock(&swap_mtx);
437 	return (error);
438 }
439 
440 static int
441 swapoff_one(int index)
442 {
443 	swblk_t blk, aligned_nblks;
444 	swblk_t dvbase, vsbase;
445 	u_int pq_active_clean, pq_inactive_clean;
446 	struct swdevt *sp;
447 	struct vm_page marker;
448 	vm_page_t m;
449 	int q;
450 
451 	mtx_lock(&swap_mtx);
452 
453 	sp = &swdevt[index];
454 	aligned_nblks = sp->sw_nblks;
455 	pq_active_clean = pq_inactive_clean = 0;
456 
457 	/*
458 	 * We can turn off this swap device safely only if the
459 	 * available virtual memory in the system will fit the amount
460 	 * of data we will have to page back in, plus an epsilon so
461 	 * the system doesn't become critically low on swap space.
462 	 */
463 	for (q = 0; q < PQ_L2_SIZE; ++q) {
464 		bzero(&marker, sizeof(marker));
465 		marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
466 		marker.queue = PQ_ACTIVE + q;
467 		marker.pc = q;
468 		marker.wire_count = 1;
469 
470 		vm_page_queues_spin_lock(marker.queue);
471 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
472 				  &marker, pageq);
473 
474 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
475 			TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
476 				     &marker, pageq);
477 			TAILQ_INSERT_AFTER(&vm_page_queues[marker.queue].pl, m,
478 					   &marker, pageq);
479 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
480 				continue;
481 
482 			if (vm_page_busy_try(m, FALSE) == 0) {
483 				vm_page_queues_spin_unlock(marker.queue);
484 				if (m->dirty == 0) {
485 					vm_page_test_dirty(m);
486 					if (m->dirty == 0)
487 						++pq_active_clean;
488 				}
489 				vm_page_wakeup(m);
490 				vm_page_queues_spin_lock(marker.queue);
491 			}
492 		}
493 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl, &marker, pageq);
494 		vm_page_queues_spin_unlock(marker.queue);
495 
496 		marker.queue = PQ_INACTIVE + q;
497 		marker.pc = q;
498 		vm_page_queues_spin_lock(marker.queue);
499 		TAILQ_INSERT_HEAD(&vm_page_queues[marker.queue].pl,
500 				  &marker, pageq);
501 
502 		while ((m = TAILQ_NEXT(&marker, pageq)) != NULL) {
503 			TAILQ_REMOVE(
504 				&vm_page_queues[marker.queue].pl,
505 				&marker, pageq);
506 			TAILQ_INSERT_AFTER(
507 				&vm_page_queues[marker.queue].pl,
508 				m, &marker, pageq);
509 			if (m->flags & (PG_MARKER | PG_FICTITIOUS))
510 				continue;
511 
512 			if (vm_page_busy_try(m, FALSE) == 0) {
513 				vm_page_queues_spin_unlock(marker.queue);
514 				if (m->dirty == 0) {
515 					vm_page_test_dirty(m);
516 					if (m->dirty == 0)
517 						++pq_inactive_clean;
518 				}
519 				vm_page_wakeup(m);
520 				vm_page_queues_spin_lock(marker.queue);
521 			}
522 		}
523 		TAILQ_REMOVE(&vm_page_queues[marker.queue].pl,
524 			     &marker, pageq);
525 		vm_page_queues_spin_unlock(marker.queue);
526 	}
527 
528 	if (vmstats.v_free_count + vmstats.v_cache_count + pq_active_clean +
529 	    pq_inactive_clean + vm_swap_size < aligned_nblks + nswap_lowat) {
530 		mtx_unlock(&swap_mtx);
531 		return (ENOMEM);
532 	}
533 
534 	/*
535 	 * Prevent further allocations on this device
536 	 */
537 	sp->sw_flags |= SW_CLOSING;
538 	for (dvbase = dmmax; dvbase < aligned_nblks; dvbase += dmmax) {
539 		blk = min(aligned_nblks - dvbase, dmmax);
540 		vsbase = index * dmmax + dvbase * nswdev;
541 		vm_swap_size -= blist_fill(swapblist, vsbase, blk);
542 		vm_swap_max -= blk;
543 	}
544 
545 	/*
546 	 * Page in the contents of the device and close it.
547 	 */
548 	if (swap_pager_swapoff(index)) {
549 		mtx_unlock(&swap_mtx);
550 		return (EINTR);
551 	}
552 
553 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE);
554 	vrele(sp->sw_vp);
555 	bzero(swdevt + index, sizeof(struct swdevt));
556 
557 	/*
558 	 * Resize the bitmap based on the nem largest swap device,
559 	 * or free the bitmap if there are no more devices.
560 	 */
561 	for (sp = swdevt, aligned_nblks = 0; sp < swdevt + nswdev; sp++) {
562 		if (sp->sw_vp)
563 			aligned_nblks = max(aligned_nblks, sp->sw_nblks);
564 	}
565 
566 	nswap = aligned_nblks * nswdev;
567 
568 	if (nswap == 0) {
569 		blist_destroy(swapblist);
570 		swapblist = NULL;
571 		vrele(swapdev_vp);
572 		swapdev_vp = NULL;
573 	} else {
574 		blist_resize(&swapblist, nswap, 0);
575 	}
576 
577 	mtx_unlock(&swap_mtx);
578 	return (0);
579 }
580 
581 /*
582  * Account for swap space in individual swdevt's.  The caller ensures
583  * that the provided range falls into a single swdevt.
584  *
585  * +count	space freed
586  * -count	space allocated
587  */
588 void
589 swapacctspace(swblk_t base, swblk_t count)
590 {
591 	int index;
592 	int seg;
593 
594 	vm_swap_size += count;
595 	seg = base / dmmax;
596 	index = seg % nswdev;
597 	swdevt[index].sw_nused -= count;
598 }
599 
600 /*
601  * Retrieve swap info
602  */
603 static int
604 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
605 {
606 	struct xswdev xs;
607 	struct swdevt *sp;
608 	int	error;
609 	int	n;
610 
611 	error = 0;
612 	for (n = 0; n < nswdev; ++n) {
613 		sp = &swdevt[n];
614 
615 		xs.xsw_size = sizeof(xs);
616 		xs.xsw_version = XSWDEV_VERSION;
617 		xs.xsw_blksize = PAGE_SIZE;
618 		xs.xsw_dev = sp->sw_dev;
619 		xs.xsw_flags = sp->sw_flags;
620 		xs.xsw_nblks = sp->sw_nblks;
621 		xs.xsw_used = sp->sw_nused;
622 
623 		error = SYSCTL_OUT(req, &xs, sizeof(xs));
624 		if (error)
625 			break;
626 	}
627 	return (error);
628 }
629 
630 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswdev, 0,
631 	   "Number of swap devices");
632 SYSCTL_NODE(_vm, OID_AUTO, swap_info_array, CTLFLAG_RD, sysctl_vm_swap_info,
633 	    "Swap statistics by device");
634