xref: /dragonfly/sys/vm/vm_swapcache.c (revision 0db87cb7)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81 
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker, int *swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker, int swindex,
89 				vm_object_t object);
90 struct thread *swapcached_thread;
91 
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93 
94 int vm_swapcache_read_enable;
95 int vm_swapcache_inactive_heuristic;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 1;	/* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112 
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116 	CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117 
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127 	CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129 	CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132 
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146 	CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147 
148 #define SWAPMAX(adj)	\
149 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150 
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158 	vm_swapcache_read_enable = 0;
159 	vm_swapcache_data_enable = 0;
160 	vm_swapcache_meta_enable = 0;
161 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
162 }
163 
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174 	static struct vm_page page_marker[PQ_L2_SIZE];
175 	static struct vm_object swmarker;
176 	static int swindex;
177 	int q;
178 
179 	/*
180 	 * Thread setup
181 	 */
182 	curthread->td_flags |= TDF_SYSTHREAD;
183 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
185 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186 			      NULL, SHUTDOWN_PRI_SECOND);
187 
188 	/*
189 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
190 	 */
191 	bzero(&page_marker, sizeof(page_marker));
192 	for (q = 0; q < PQ_L2_SIZE; ++q) {
193 		page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
194 		page_marker[q].queue = PQ_INACTIVE + q;
195 		page_marker[q].pc = q;
196 		page_marker[q].wire_count = 1;
197 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
198 		TAILQ_INSERT_HEAD(
199 			&vm_page_queues[PQ_INACTIVE + q].pl,
200 			&page_marker[q], pageq);
201 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
202 	}
203 
204 	vm_swapcache_min_hysteresis = 1024;
205 	vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
206 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
207 
208 	/*
209 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
210 	 */
211 	bzero(&swmarker, sizeof(swmarker));
212 	swmarker.type = OBJT_MARKER;
213 	swindex = 0;
214 	lwkt_gettoken(&vmobj_tokens[swindex]);
215 	TAILQ_INSERT_HEAD(&vm_object_lists[swindex],
216 			  &swmarker, object_list);
217 	lwkt_reltoken(&vmobj_tokens[swindex]);
218 
219 	for (;;) {
220 		int reached_end;
221 		int scount;
222 		int count;
223 
224 		/*
225 		 * Handle shutdown
226 		 */
227 		kproc_suspend_loop();
228 
229 		/*
230 		 * Check every 5 seconds when not enabled or if no swap
231 		 * is present.
232 		 */
233 		if ((vm_swapcache_data_enable == 0 &&
234 		     vm_swapcache_meta_enable == 0 &&
235 		     vm_swap_cache_use <= SWAPMAX(0)) ||
236 		    vm_swap_max == 0) {
237 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238 			continue;
239 		}
240 
241 		/*
242 		 * Polling rate when enabled is approximately 10 hz.
243 		 */
244 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
245 
246 		/*
247 		 * State hysteresis.  Generate write activity up to 75% of
248 		 * swap, then clean out swap assignments down to 70%, then
249 		 * repeat.
250 		 */
251 		if (state == SWAPC_WRITING) {
252 			if (vm_swap_cache_use > SWAPMAX(0))
253 				state = SWAPC_CLEANING;
254 		} else {
255 			if (vm_swap_cache_use < SWAPMAX(-10))
256 				state = SWAPC_WRITING;
257 		}
258 
259 		/*
260 		 * We are allowed to continue accumulating burst value
261 		 * in either state.  Allow the user to set curburst > maxburst
262 		 * for the initial load-in.
263 		 */
264 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
266 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
267 				vm_swapcache_curburst = vm_swapcache_maxburst;
268 		}
269 
270 		/*
271 		 * We don't want to nickle-and-dime the scan as that will
272 		 * create unnecessary fragmentation.  The minimum burst
273 		 * is one-seconds worth of accumulation.
274 		 */
275 		if (state != SWAPC_WRITING) {
276 			vm_swapcache_cleaning(&swmarker, &swindex);
277 			continue;
278 		}
279 		if (vm_swapcache_curburst < vm_swapcache_accrate)
280 			continue;
281 
282 		reached_end = 0;
283 		count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284 		scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
285 
286 		if (burst == SWAPB_BURSTING) {
287 			if (vm_swapcache_writing_heuristic()) {
288 				for (q = 0; q < PQ_L2_SIZE; ++q) {
289 					reached_end +=
290 						vm_swapcache_writing(
291 							&page_marker[q],
292 							count,
293 							scount);
294 				}
295 			}
296 			if (vm_swapcache_curburst <= 0)
297 				burst = SWAPB_RECOVERING;
298 		} else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299 			if (vm_swapcache_writing_heuristic()) {
300 				for (q = 0; q < PQ_L2_SIZE; ++q) {
301 					reached_end +=
302 						vm_swapcache_writing(
303 							&page_marker[q],
304 							count,
305 							scount);
306 				}
307 			}
308 			burst = SWAPB_BURSTING;
309 		}
310 		if (reached_end == PQ_L2_SIZE) {
311 			vm_swapcache_inactive_heuristic =
312 				-vm_swapcache_hysteresis;
313 		}
314 	}
315 
316 	/*
317 	 * Cleanup (NOT REACHED)
318 	 */
319 	for (q = 0; q < PQ_L2_SIZE; ++q) {
320 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
321 		TAILQ_REMOVE(
322 			&vm_page_queues[PQ_INACTIVE + q].pl,
323 			&page_marker[q], pageq);
324 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
325 	}
326 
327 	lwkt_gettoken(&vmobj_tokens[swindex]);
328 	TAILQ_REMOVE(&vm_object_lists[swindex], &swmarker, object_list);
329 	lwkt_reltoken(&vmobj_tokens[swindex]);
330 }
331 
332 static struct kproc_desc swpc_kp = {
333 	"swapcached",
334 	vm_swapcached_thread,
335 	&swapcached_thread
336 };
337 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
338 
339 /*
340  * Deal with an overflow of the heuristic counter or if the user
341  * manually changes the hysteresis.
342  *
343  * Try to avoid small incremental pageouts by waiting for enough
344  * pages to buildup in the inactive queue to hopefully get a good
345  * burst in.  This heuristic is bumped by the VM system and reset
346  * when our scan hits the end of the queue.
347  *
348  * Return TRUE if we need to take a writing pass.
349  */
350 static int
351 vm_swapcache_writing_heuristic(void)
352 {
353 	int hyst;
354 
355 	hyst = vmstats.v_inactive_count / 4;
356 	if (hyst < vm_swapcache_min_hysteresis)
357 		hyst = vm_swapcache_min_hysteresis;
358 	cpu_ccfence();
359 	vm_swapcache_hysteresis = hyst;
360 
361 	if (vm_swapcache_inactive_heuristic < -hyst)
362 		vm_swapcache_inactive_heuristic = -hyst;
363 
364 	return (vm_swapcache_inactive_heuristic >= 0);
365 }
366 
367 /*
368  * Take a writing pass on one of the inactive queues, return non-zero if
369  * we hit the end of the queue.
370  */
371 static int
372 vm_swapcache_writing(vm_page_t marker, int count, int scount)
373 {
374 	vm_object_t object;
375 	struct vnode *vp;
376 	vm_page_t m;
377 	int isblkdev;
378 
379 	/*
380 	 * Scan the inactive queue from our marker to locate
381 	 * suitable pages to push to the swap cache.
382 	 *
383 	 * We are looking for clean vnode-backed pages.
384 	 */
385 	vm_page_queues_spin_lock(marker->queue);
386 	while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
387 	       count > 0 && scount-- > 0) {
388 		KKASSERT(m->queue == marker->queue);
389 
390 		/*
391 		 * Stop using swap if paniced, dumping, or dumped.
392 		 * Don't try to write if our curburst has been exhausted.
393 		 */
394 		if (panicstr || dumping)
395 			break;
396 		if (vm_swapcache_curburst < 0)
397 			break;
398 
399 		/*
400 		 * Move marker
401 		 */
402 		TAILQ_REMOVE(
403 			&vm_page_queues[marker->queue].pl, marker, pageq);
404 		TAILQ_INSERT_AFTER(
405 			&vm_page_queues[marker->queue].pl, m, marker, pageq);
406 
407 		/*
408 		 * Ignore markers and ignore pages that already have a swap
409 		 * assignment.
410 		 */
411 		if (m->flags & (PG_MARKER | PG_SWAPPED))
412 			continue;
413 		if (vm_page_busy_try(m, TRUE))
414 			continue;
415 		vm_page_queues_spin_unlock(marker->queue);
416 
417 		if ((object = m->object) == NULL) {
418 			vm_page_wakeup(m);
419 			vm_page_queues_spin_lock(marker->queue);
420 			continue;
421 		}
422 		vm_object_hold(object);
423 		if (m->object != object) {
424 			vm_object_drop(object);
425 			vm_page_wakeup(m);
426 			vm_page_queues_spin_lock(marker->queue);
427 			continue;
428 		}
429 		if (vm_swapcache_test(m)) {
430 			vm_object_drop(object);
431 			vm_page_wakeup(m);
432 			vm_page_queues_spin_lock(marker->queue);
433 			continue;
434 		}
435 
436 		vp = object->handle;
437 		if (vp == NULL) {
438 			vm_object_drop(object);
439 			vm_page_wakeup(m);
440 			vm_page_queues_spin_lock(marker->queue);
441 			continue;
442 		}
443 
444 		switch(vp->v_type) {
445 		case VREG:
446 			/*
447 			 * PG_NOTMETA generically means 'don't swapcache this',
448 			 * and HAMMER will set this for regular data buffers
449 			 * (and leave it unset for meta-data buffers) as
450 			 * appropriate when double buffering is enabled.
451 			 */
452 			if (m->flags & PG_NOTMETA) {
453 				vm_object_drop(object);
454 				vm_page_wakeup(m);
455 				vm_page_queues_spin_lock(marker->queue);
456 				continue;
457 			}
458 
459 			/*
460 			 * If data_enable is 0 do not try to swapcache data.
461 			 * If use_chflags is set then only swapcache data for
462 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
463 			 */
464 			if (vm_swapcache_data_enable == 0 ||
465 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
466 			     vm_swapcache_use_chflags)) {
467 				vm_object_drop(object);
468 				vm_page_wakeup(m);
469 				vm_page_queues_spin_lock(marker->queue);
470 				continue;
471 			}
472 			if (vm_swapcache_maxfilesize &&
473 			    object->size >
474 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
475 				vm_object_drop(object);
476 				vm_page_wakeup(m);
477 				vm_page_queues_spin_lock(marker->queue);
478 				continue;
479 			}
480 			isblkdev = 0;
481 			break;
482 		case VCHR:
483 			/*
484 			 * PG_NOTMETA generically means 'don't swapcache this',
485 			 * and HAMMER will set this for regular data buffers
486 			 * (and leave it unset for meta-data buffers) as
487 			 * appropriate when double buffering is enabled.
488 			 */
489 			if (m->flags & PG_NOTMETA) {
490 				vm_object_drop(object);
491 				vm_page_wakeup(m);
492 				vm_page_queues_spin_lock(marker->queue);
493 				continue;
494 			}
495 			if (vm_swapcache_meta_enable == 0) {
496 				vm_object_drop(object);
497 				vm_page_wakeup(m);
498 				vm_page_queues_spin_lock(marker->queue);
499 				continue;
500 			}
501 			isblkdev = 1;
502 			break;
503 		default:
504 			vm_object_drop(object);
505 			vm_page_wakeup(m);
506 			vm_page_queues_spin_lock(marker->queue);
507 			continue;
508 		}
509 
510 
511 		/*
512 		 * Assign swap and initiate I/O.
513 		 *
514 		 * (adjust for the --count which also occurs in the loop)
515 		 */
516 		count -= vm_swapcached_flush(m, isblkdev);
517 
518 		/*
519 		 * Setup for next loop using marker.
520 		 */
521 		vm_object_drop(object);
522 		vm_page_queues_spin_lock(marker->queue);
523 	}
524 
525 	/*
526 	 * The marker could wind up at the end, which is ok.  If we hit the
527 	 * end of the list adjust the heuristic.
528 	 *
529 	 * Earlier inactive pages that were dirty and become clean
530 	 * are typically moved to the end of PQ_INACTIVE by virtue
531 	 * of vfs_vmio_release() when they become unwired from the
532 	 * buffer cache.
533 	 */
534 	vm_page_queues_spin_unlock(marker->queue);
535 
536 	/*
537 	 * m invalid but can be used to test for NULL
538 	 */
539 	return (m == NULL);
540 }
541 
542 /*
543  * Flush the specified page using the swap_pager.  The page
544  * must be busied by the caller and its disposition will become
545  * the responsibility of this function.
546  *
547  * Try to collect surrounding pages, including pages which may
548  * have already been assigned swap.  Try to cluster within a
549  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
550  * to match what swap_pager_putpages() can do.
551  *
552  * We also want to try to match against the buffer cache blocksize
553  * but we don't really know what it is here.  Since the buffer cache
554  * wires and unwires pages in groups the fact that we skip wired pages
555  * should be sufficient.
556  *
557  * Returns a count of pages we might have flushed (minimum 1)
558  */
559 static
560 int
561 vm_swapcached_flush(vm_page_t m, int isblkdev)
562 {
563 	vm_object_t object;
564 	vm_page_t marray[SWAP_META_PAGES];
565 	vm_pindex_t basei;
566 	int rtvals[SWAP_META_PAGES];
567 	int x;
568 	int i;
569 	int j;
570 	int count;
571 	int error;
572 
573 	vm_page_io_start(m);
574 	vm_page_protect(m, VM_PROT_READ);
575 	object = m->object;
576 	vm_object_hold(object);
577 
578 	/*
579 	 * Try to cluster around (m), keeping in mind that the swap pager
580 	 * can only do SMAP_META_PAGES worth of continguous write.
581 	 */
582 	x = (int)m->pindex & SWAP_META_MASK;
583 	marray[x] = m;
584 	basei = m->pindex;
585 	vm_page_wakeup(m);
586 
587 	for (i = x - 1; i >= 0; --i) {
588 		m = vm_page_lookup_busy_try(object, basei - x + i,
589 					    TRUE, &error);
590 		if (error || m == NULL)
591 			break;
592 		if (vm_swapcache_test(m)) {
593 			vm_page_wakeup(m);
594 			break;
595 		}
596 		if (isblkdev && (m->flags & PG_NOTMETA)) {
597 			vm_page_wakeup(m);
598 			break;
599 		}
600 		vm_page_io_start(m);
601 		vm_page_protect(m, VM_PROT_READ);
602 		if (m->queue - m->pc == PQ_CACHE) {
603 			vm_page_unqueue_nowakeup(m);
604 			vm_page_deactivate(m);
605 		}
606 		marray[i] = m;
607 		vm_page_wakeup(m);
608 	}
609 	++i;
610 
611 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
612 		m = vm_page_lookup_busy_try(object, basei - x + j,
613 					    TRUE, &error);
614 		if (error || m == NULL)
615 			break;
616 		if (vm_swapcache_test(m)) {
617 			vm_page_wakeup(m);
618 			break;
619 		}
620 		if (isblkdev && (m->flags & PG_NOTMETA)) {
621 			vm_page_wakeup(m);
622 			break;
623 		}
624 		vm_page_io_start(m);
625 		vm_page_protect(m, VM_PROT_READ);
626 		if (m->queue - m->pc == PQ_CACHE) {
627 			vm_page_unqueue_nowakeup(m);
628 			vm_page_deactivate(m);
629 		}
630 		marray[j] = m;
631 		vm_page_wakeup(m);
632 	}
633 
634 	count = j - i;
635 	vm_object_pip_add(object, count);
636 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
637 	vm_swapcache_write_count += count * PAGE_SIZE;
638 	vm_swapcache_curburst -= count * PAGE_SIZE;
639 
640 	while (i < j) {
641 		if (rtvals[i] != VM_PAGER_PEND) {
642 			vm_page_busy_wait(marray[i], FALSE, "swppgfd");
643 			vm_page_io_finish(marray[i]);
644 			vm_page_wakeup(marray[i]);
645 			vm_object_pip_wakeup(object);
646 		}
647 		++i;
648 	}
649 	vm_object_drop(object);
650 	return(count);
651 }
652 
653 /*
654  * Test whether a VM page is suitable for writing to the swapcache.
655  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
656  *
657  * Returns 0 on success, 1 on failure
658  */
659 static int
660 vm_swapcache_test(vm_page_t m)
661 {
662 	vm_object_t object;
663 
664 	if (m->flags & PG_UNMANAGED)
665 		return(1);
666 	if (m->hold_count || m->wire_count)
667 		return(1);
668 	if (m->valid != VM_PAGE_BITS_ALL)
669 		return(1);
670 	if (m->dirty & m->valid)
671 		return(1);
672 	if ((object = m->object) == NULL)
673 		return(1);
674 	if (object->type != OBJT_VNODE ||
675 	    (object->flags & OBJ_DEAD)) {
676 		return(1);
677 	}
678 	vm_page_test_dirty(m);
679 	if (m->dirty & m->valid)
680 		return(1);
681 	return(0);
682 }
683 
684 /*
685  * Cleaning pass.
686  *
687  * We clean whole objects up to 16MB
688  */
689 static
690 void
691 vm_swapcache_cleaning(vm_object_t marker, int *swindexp)
692 {
693 	vm_object_t object;
694 	struct vnode *vp;
695 	int count;
696 	int scount;
697 	int n;
698 
699 	count = vm_swapcache_maxlaunder;
700 	scount = vm_swapcache_maxscan;
701 
702 	/*
703 	 * Look for vnode objects
704 	 */
705 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
706 
707 outerloop:
708 	while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
709 		/*
710 		 * We have to skip markers.  We cannot hold/drop marker
711 		 * objects!
712 		 */
713 		if (object->type == OBJT_MARKER) {
714 			vm_swapcache_movemarker(marker, *swindexp, object);
715 			continue;
716 		}
717 
718 		/*
719 		 * Safety, or in case there are millions of VM objects
720 		 * without swapcache backing.
721 		 */
722 		if (--scount <= 0)
723 			goto breakout;
724 
725 		/*
726 		 * We must hold the object before potentially yielding.
727 		 */
728 		vm_object_hold(object);
729 		lwkt_yield();
730 
731 		/*
732 		 * Only operate on live VNODE objects that are either
733 		 * VREG or VCHR (VCHR for meta-data).
734 		 */
735 		if ((object->type != OBJT_VNODE) ||
736 		    ((object->flags & OBJ_DEAD) ||
737 		     object->swblock_count == 0) ||
738 		    ((vp = object->handle) == NULL) ||
739 		    (vp->v_type != VREG && vp->v_type != VCHR)) {
740 			vm_object_drop(object);
741 			/* object may be invalid now */
742 			vm_swapcache_movemarker(marker, *swindexp, object);
743 			continue;
744 		}
745 
746 		/*
747 		 * Reset the object pindex stored in the marker if the
748 		 * working object has changed.
749 		 */
750 		if (marker->backing_object != object) {
751 			marker->size = 0;
752 			marker->backing_object_offset = 0;
753 			marker->backing_object = object;
754 		}
755 
756 		/*
757 		 * Look for swblocks starting at our iterator.
758 		 *
759 		 * The swap_pager_condfree() function attempts to free
760 		 * swap space starting at the specified index.  The index
761 		 * will be updated on return.  The function will return
762 		 * a scan factor (NOT the number of blocks freed).
763 		 *
764 		 * If it must cut its scan of the object short due to an
765 		 * excessive number of swblocks, or is able to free the
766 		 * requested number of blocks, it will return n >= count
767 		 * and we break and pick it back up on a future attempt.
768 		 *
769 		 * Scan the object linearly and try to batch large sets of
770 		 * blocks that are likely to clean out entire swap radix
771 		 * tree leafs.
772 		 */
773 		lwkt_token_swap();
774 		lwkt_reltoken(&vmobj_tokens[*swindexp]);
775 
776 		n = swap_pager_condfree(object, &marker->size,
777 				    (count + SWAP_META_MASK) & ~SWAP_META_MASK);
778 
779 		vm_object_drop(object);		/* object may be invalid now */
780 		lwkt_gettoken(&vmobj_tokens[*swindexp]);
781 
782 		/*
783 		 * If we have exhausted the object or deleted our per-pass
784 		 * page limit then move us to the next object.  Note that
785 		 * the current object may no longer be on the vm_object_list.
786 		 */
787 		if (n <= 0 ||
788 		    marker->backing_object_offset > vm_swapcache_cleanperobj) {
789 			vm_swapcache_movemarker(marker, *swindexp, object);
790 		}
791 
792 		/*
793 		 * If we have exhausted our max-launder stop for now.
794 		 */
795 		count -= n;
796 		marker->backing_object_offset += n * PAGE_SIZE;
797 		if (count < 0)
798 			goto breakout;
799 	}
800 
801 	/*
802 	 * Iterate vm_object_lists[] hash table
803 	 */
804 	TAILQ_REMOVE(&vm_object_lists[*swindexp], marker, object_list);
805 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
806 	if (++*swindexp >= VMOBJ_HSIZE)
807 		*swindexp = 0;
808 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
809 	TAILQ_INSERT_HEAD(&vm_object_lists[*swindexp], marker, object_list);
810 
811 	if (*swindexp != 0)
812 		goto outerloop;
813 
814 breakout:
815 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
816 }
817 
818 /*
819  * Move the marker past the current object.  Object can be stale, but we
820  * still need it to determine if the marker has to be moved.  If the object
821  * is still the 'current object' (object after the marker), we hop-scotch
822  * the marker past it.
823  */
824 static void
825 vm_swapcache_movemarker(vm_object_t marker, int swindex, vm_object_t object)
826 {
827 	if (TAILQ_NEXT(marker, object_list) == object) {
828 		TAILQ_REMOVE(&vm_object_lists[swindex], marker, object_list);
829 		TAILQ_INSERT_AFTER(&vm_object_lists[swindex], object,
830 				   marker, object_list);
831 	}
832 }
833