xref: /dragonfly/sys/vm/vm_swapcache.c (revision 896f2e3a)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81 
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker, int *swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker, int swindex,
89 				vm_object_t object);
90 struct thread *swapcached_thread;
91 
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93 
94 int vm_swapcache_read_enable;
95 int vm_swapcache_inactive_heuristic;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 1;	/* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112 
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116 	CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117 
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127 	CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129 	CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132 
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146 	CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147 
148 #define SWAPMAX(adj)	\
149 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150 
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158 	vm_swapcache_read_enable = 0;
159 	vm_swapcache_data_enable = 0;
160 	vm_swapcache_meta_enable = 0;
161 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
162 }
163 
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174 	static struct vm_page page_marker[PQ_L2_SIZE];
175 	static struct vm_object swmarker;
176 	static int swindex;
177 	int q;
178 
179 	/*
180 	 * Thread setup
181 	 */
182 	curthread->td_flags |= TDF_SYSTHREAD;
183 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
185 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186 			      NULL, SHUTDOWN_PRI_SECOND);
187 
188 	/*
189 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
190 	 */
191 	bzero(&page_marker, sizeof(page_marker));
192 	for (q = 0; q < PQ_L2_SIZE; ++q) {
193 		page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
194 		page_marker[q].queue = PQ_INACTIVE + q;
195 		page_marker[q].pc = q;
196 		page_marker[q].wire_count = 1;
197 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
198 		TAILQ_INSERT_HEAD(
199 			&vm_page_queues[PQ_INACTIVE + q].pl,
200 			&page_marker[q], pageq);
201 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
202 	}
203 
204 	vm_swapcache_min_hysteresis = 1024;
205 	vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
206 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
207 
208 	/*
209 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
210 	 */
211 	bzero(&swmarker, sizeof(swmarker));
212 	swmarker.type = OBJT_MARKER;
213 	swindex = 0;
214 	lwkt_gettoken(&vmobj_tokens[swindex]);
215 	TAILQ_INSERT_HEAD(&vm_object_lists[swindex],
216 			  &swmarker, object_list);
217 	lwkt_reltoken(&vmobj_tokens[swindex]);
218 
219 	for (;;) {
220 		int reached_end;
221 		int scount;
222 		int count;
223 
224 		/*
225 		 * Handle shutdown
226 		 */
227 		kproc_suspend_loop();
228 
229 		/*
230 		 * Check every 5 seconds when not enabled or if no swap
231 		 * is present.
232 		 */
233 		if ((vm_swapcache_data_enable == 0 &&
234 		     vm_swapcache_meta_enable == 0 &&
235 		     vm_swap_cache_use <= SWAPMAX(0)) ||
236 		    vm_swap_max == 0) {
237 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238 			continue;
239 		}
240 
241 		/*
242 		 * Polling rate when enabled is approximately 10 hz.
243 		 */
244 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
245 
246 		/*
247 		 * State hysteresis.  Generate write activity up to 75% of
248 		 * swap, then clean out swap assignments down to 70%, then
249 		 * repeat.
250 		 */
251 		if (state == SWAPC_WRITING) {
252 			if (vm_swap_cache_use > SWAPMAX(0))
253 				state = SWAPC_CLEANING;
254 		} else {
255 			if (vm_swap_cache_use < SWAPMAX(-10))
256 				state = SWAPC_WRITING;
257 		}
258 
259 		/*
260 		 * We are allowed to continue accumulating burst value
261 		 * in either state.  Allow the user to set curburst > maxburst
262 		 * for the initial load-in.
263 		 */
264 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
266 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
267 				vm_swapcache_curburst = vm_swapcache_maxburst;
268 		}
269 
270 		/*
271 		 * We don't want to nickle-and-dime the scan as that will
272 		 * create unnecessary fragmentation.  The minimum burst
273 		 * is one-seconds worth of accumulation.
274 		 */
275 		if (state != SWAPC_WRITING) {
276 			vm_swapcache_cleaning(&swmarker, &swindex);
277 			continue;
278 		}
279 		if (vm_swapcache_curburst < vm_swapcache_accrate)
280 			continue;
281 
282 		reached_end = 0;
283 		count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284 		scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
285 
286 		if (burst == SWAPB_BURSTING) {
287 			if (vm_swapcache_writing_heuristic()) {
288 				for (q = 0; q < PQ_L2_SIZE; ++q) {
289 					reached_end +=
290 						vm_swapcache_writing(
291 							&page_marker[q],
292 							count,
293 							scount);
294 				}
295 			}
296 			if (vm_swapcache_curburst <= 0)
297 				burst = SWAPB_RECOVERING;
298 		} else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299 			if (vm_swapcache_writing_heuristic()) {
300 				for (q = 0; q < PQ_L2_SIZE; ++q) {
301 					reached_end +=
302 						vm_swapcache_writing(
303 							&page_marker[q],
304 							count,
305 							scount);
306 				}
307 			}
308 			burst = SWAPB_BURSTING;
309 		}
310 		if (reached_end == PQ_L2_SIZE) {
311 			vm_swapcache_inactive_heuristic =
312 				-vm_swapcache_hysteresis;
313 		}
314 	}
315 
316 	/*
317 	 * Cleanup (NOT REACHED)
318 	 */
319 	for (q = 0; q < PQ_L2_SIZE; ++q) {
320 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
321 		TAILQ_REMOVE(
322 			&vm_page_queues[PQ_INACTIVE + q].pl,
323 			&page_marker[q], pageq);
324 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
325 	}
326 
327 	lwkt_gettoken(&vmobj_tokens[swindex]);
328 	TAILQ_REMOVE(&vm_object_lists[swindex], &swmarker, object_list);
329 	lwkt_reltoken(&vmobj_tokens[swindex]);
330 }
331 
332 static struct kproc_desc swpc_kp = {
333 	"swapcached",
334 	vm_swapcached_thread,
335 	&swapcached_thread
336 };
337 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
338 
339 /*
340  * Deal with an overflow of the heuristic counter or if the user
341  * manually changes the hysteresis.
342  *
343  * Try to avoid small incremental pageouts by waiting for enough
344  * pages to buildup in the inactive queue to hopefully get a good
345  * burst in.  This heuristic is bumped by the VM system and reset
346  * when our scan hits the end of the queue.
347  *
348  * Return TRUE if we need to take a writing pass.
349  */
350 static int
351 vm_swapcache_writing_heuristic(void)
352 {
353 	int hyst;
354 
355 	hyst = vmstats.v_inactive_count / 4;
356 	if (hyst < vm_swapcache_min_hysteresis)
357 		hyst = vm_swapcache_min_hysteresis;
358 	cpu_ccfence();
359 	vm_swapcache_hysteresis = hyst;
360 
361 	if (vm_swapcache_inactive_heuristic < -hyst)
362 		vm_swapcache_inactive_heuristic = -hyst;
363 
364 	return (vm_swapcache_inactive_heuristic >= 0);
365 }
366 
367 /*
368  * Take a writing pass on one of the inactive queues, return non-zero if
369  * we hit the end of the queue.
370  */
371 static int
372 vm_swapcache_writing(vm_page_t marker, int count, int scount)
373 {
374 	vm_object_t object;
375 	struct vnode *vp;
376 	vm_page_t m;
377 	int isblkdev;
378 
379 	/*
380 	 * Scan the inactive queue from our marker to locate
381 	 * suitable pages to push to the swap cache.
382 	 *
383 	 * We are looking for clean vnode-backed pages.
384 	 */
385 	vm_page_queues_spin_lock(marker->queue);
386 	while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
387 	       count > 0 && scount-- > 0) {
388 		KKASSERT(m->queue == marker->queue);
389 
390 		if (vm_swapcache_curburst < 0)
391 			break;
392 		TAILQ_REMOVE(
393 			&vm_page_queues[marker->queue].pl, marker, pageq);
394 		TAILQ_INSERT_AFTER(
395 			&vm_page_queues[marker->queue].pl, m, marker, pageq);
396 
397 		/*
398 		 * Ignore markers and ignore pages that already have a swap
399 		 * assignment.
400 		 */
401 		if (m->flags & (PG_MARKER | PG_SWAPPED))
402 			continue;
403 		if (vm_page_busy_try(m, TRUE))
404 			continue;
405 		vm_page_queues_spin_unlock(marker->queue);
406 
407 		if ((object = m->object) == NULL) {
408 			vm_page_wakeup(m);
409 			vm_page_queues_spin_lock(marker->queue);
410 			continue;
411 		}
412 		vm_object_hold(object);
413 		if (m->object != object) {
414 			vm_object_drop(object);
415 			vm_page_wakeup(m);
416 			vm_page_queues_spin_lock(marker->queue);
417 			continue;
418 		}
419 		if (vm_swapcache_test(m)) {
420 			vm_object_drop(object);
421 			vm_page_wakeup(m);
422 			vm_page_queues_spin_lock(marker->queue);
423 			continue;
424 		}
425 
426 		vp = object->handle;
427 		if (vp == NULL) {
428 			vm_object_drop(object);
429 			vm_page_wakeup(m);
430 			vm_page_queues_spin_lock(marker->queue);
431 			continue;
432 		}
433 
434 		switch(vp->v_type) {
435 		case VREG:
436 			/*
437 			 * PG_NOTMETA generically means 'don't swapcache this',
438 			 * and HAMMER will set this for regular data buffers
439 			 * (and leave it unset for meta-data buffers) as
440 			 * appropriate when double buffering is enabled.
441 			 */
442 			if (m->flags & PG_NOTMETA) {
443 				vm_object_drop(object);
444 				vm_page_wakeup(m);
445 				vm_page_queues_spin_lock(marker->queue);
446 				continue;
447 			}
448 
449 			/*
450 			 * If data_enable is 0 do not try to swapcache data.
451 			 * If use_chflags is set then only swapcache data for
452 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
453 			 */
454 			if (vm_swapcache_data_enable == 0 ||
455 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
456 			     vm_swapcache_use_chflags)) {
457 				vm_object_drop(object);
458 				vm_page_wakeup(m);
459 				vm_page_queues_spin_lock(marker->queue);
460 				continue;
461 			}
462 			if (vm_swapcache_maxfilesize &&
463 			    object->size >
464 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
465 				vm_object_drop(object);
466 				vm_page_wakeup(m);
467 				vm_page_queues_spin_lock(marker->queue);
468 				continue;
469 			}
470 			isblkdev = 0;
471 			break;
472 		case VCHR:
473 			/*
474 			 * PG_NOTMETA generically means 'don't swapcache this',
475 			 * and HAMMER will set this for regular data buffers
476 			 * (and leave it unset for meta-data buffers) as
477 			 * appropriate when double buffering is enabled.
478 			 */
479 			if (m->flags & PG_NOTMETA) {
480 				vm_object_drop(object);
481 				vm_page_wakeup(m);
482 				vm_page_queues_spin_lock(marker->queue);
483 				continue;
484 			}
485 			if (vm_swapcache_meta_enable == 0) {
486 				vm_object_drop(object);
487 				vm_page_wakeup(m);
488 				vm_page_queues_spin_lock(marker->queue);
489 				continue;
490 			}
491 			isblkdev = 1;
492 			break;
493 		default:
494 			vm_object_drop(object);
495 			vm_page_wakeup(m);
496 			vm_page_queues_spin_lock(marker->queue);
497 			continue;
498 		}
499 
500 
501 		/*
502 		 * Assign swap and initiate I/O.
503 		 *
504 		 * (adjust for the --count which also occurs in the loop)
505 		 */
506 		count -= vm_swapcached_flush(m, isblkdev);
507 
508 		/*
509 		 * Setup for next loop using marker.
510 		 */
511 		vm_object_drop(object);
512 		vm_page_queues_spin_lock(marker->queue);
513 	}
514 
515 	/*
516 	 * The marker could wind up at the end, which is ok.  If we hit the
517 	 * end of the list adjust the heuristic.
518 	 *
519 	 * Earlier inactive pages that were dirty and become clean
520 	 * are typically moved to the end of PQ_INACTIVE by virtue
521 	 * of vfs_vmio_release() when they become unwired from the
522 	 * buffer cache.
523 	 */
524 	vm_page_queues_spin_unlock(marker->queue);
525 
526 	/*
527 	 * m invalid but can be used to test for NULL
528 	 */
529 	return (m == NULL);
530 }
531 
532 /*
533  * Flush the specified page using the swap_pager.  The page
534  * must be busied by the caller and its disposition will become
535  * the responsibility of this function.
536  *
537  * Try to collect surrounding pages, including pages which may
538  * have already been assigned swap.  Try to cluster within a
539  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
540  * to match what swap_pager_putpages() can do.
541  *
542  * We also want to try to match against the buffer cache blocksize
543  * but we don't really know what it is here.  Since the buffer cache
544  * wires and unwires pages in groups the fact that we skip wired pages
545  * should be sufficient.
546  *
547  * Returns a count of pages we might have flushed (minimum 1)
548  */
549 static
550 int
551 vm_swapcached_flush(vm_page_t m, int isblkdev)
552 {
553 	vm_object_t object;
554 	vm_page_t marray[SWAP_META_PAGES];
555 	vm_pindex_t basei;
556 	int rtvals[SWAP_META_PAGES];
557 	int x;
558 	int i;
559 	int j;
560 	int count;
561 	int error;
562 
563 	vm_page_io_start(m);
564 	vm_page_protect(m, VM_PROT_READ);
565 	object = m->object;
566 	vm_object_hold(object);
567 
568 	/*
569 	 * Try to cluster around (m), keeping in mind that the swap pager
570 	 * can only do SMAP_META_PAGES worth of continguous write.
571 	 */
572 	x = (int)m->pindex & SWAP_META_MASK;
573 	marray[x] = m;
574 	basei = m->pindex;
575 	vm_page_wakeup(m);
576 
577 	for (i = x - 1; i >= 0; --i) {
578 		m = vm_page_lookup_busy_try(object, basei - x + i,
579 					    TRUE, &error);
580 		if (error || m == NULL)
581 			break;
582 		if (vm_swapcache_test(m)) {
583 			vm_page_wakeup(m);
584 			break;
585 		}
586 		if (isblkdev && (m->flags & PG_NOTMETA)) {
587 			vm_page_wakeup(m);
588 			break;
589 		}
590 		vm_page_io_start(m);
591 		vm_page_protect(m, VM_PROT_READ);
592 		if (m->queue - m->pc == PQ_CACHE) {
593 			vm_page_unqueue_nowakeup(m);
594 			vm_page_deactivate(m);
595 		}
596 		marray[i] = m;
597 		vm_page_wakeup(m);
598 	}
599 	++i;
600 
601 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
602 		m = vm_page_lookup_busy_try(object, basei - x + j,
603 					    TRUE, &error);
604 		if (error || m == NULL)
605 			break;
606 		if (vm_swapcache_test(m)) {
607 			vm_page_wakeup(m);
608 			break;
609 		}
610 		if (isblkdev && (m->flags & PG_NOTMETA)) {
611 			vm_page_wakeup(m);
612 			break;
613 		}
614 		vm_page_io_start(m);
615 		vm_page_protect(m, VM_PROT_READ);
616 		if (m->queue - m->pc == PQ_CACHE) {
617 			vm_page_unqueue_nowakeup(m);
618 			vm_page_deactivate(m);
619 		}
620 		marray[j] = m;
621 		vm_page_wakeup(m);
622 	}
623 
624 	count = j - i;
625 	vm_object_pip_add(object, count);
626 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
627 	vm_swapcache_write_count += count * PAGE_SIZE;
628 	vm_swapcache_curburst -= count * PAGE_SIZE;
629 
630 	while (i < j) {
631 		if (rtvals[i] != VM_PAGER_PEND) {
632 			vm_page_busy_wait(marray[i], FALSE, "swppgfd");
633 			vm_page_io_finish(marray[i]);
634 			vm_page_wakeup(marray[i]);
635 			vm_object_pip_wakeup(object);
636 		}
637 		++i;
638 	}
639 	vm_object_drop(object);
640 	return(count);
641 }
642 
643 /*
644  * Test whether a VM page is suitable for writing to the swapcache.
645  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
646  *
647  * Returns 0 on success, 1 on failure
648  */
649 static int
650 vm_swapcache_test(vm_page_t m)
651 {
652 	vm_object_t object;
653 
654 	if (m->flags & PG_UNMANAGED)
655 		return(1);
656 	if (m->hold_count || m->wire_count)
657 		return(1);
658 	if (m->valid != VM_PAGE_BITS_ALL)
659 		return(1);
660 	if (m->dirty & m->valid)
661 		return(1);
662 	if ((object = m->object) == NULL)
663 		return(1);
664 	if (object->type != OBJT_VNODE ||
665 	    (object->flags & OBJ_DEAD)) {
666 		return(1);
667 	}
668 	vm_page_test_dirty(m);
669 	if (m->dirty & m->valid)
670 		return(1);
671 	return(0);
672 }
673 
674 /*
675  * Cleaning pass.
676  *
677  * We clean whole objects up to 16MB
678  */
679 static
680 void
681 vm_swapcache_cleaning(vm_object_t marker, int *swindexp)
682 {
683 	vm_object_t object;
684 	struct vnode *vp;
685 	int count;
686 	int scount;
687 	int n;
688 
689 	count = vm_swapcache_maxlaunder;
690 	scount = vm_swapcache_maxscan;
691 
692 	/*
693 	 * Look for vnode objects
694 	 */
695 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
696 
697 outerloop:
698 	while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
699 		/*
700 		 * We have to skip markers.  We cannot hold/drop marker
701 		 * objects!
702 		 */
703 		if (object->type == OBJT_MARKER) {
704 			vm_swapcache_movemarker(marker, *swindexp, object);
705 			continue;
706 		}
707 
708 		/*
709 		 * Safety, or in case there are millions of VM objects
710 		 * without swapcache backing.
711 		 */
712 		if (--scount <= 0)
713 			goto breakout;
714 
715 		/*
716 		 * We must hold the object before potentially yielding.
717 		 */
718 		vm_object_hold(object);
719 		lwkt_yield();
720 
721 		/*
722 		 * Only operate on live VNODE objects that are either
723 		 * VREG or VCHR (VCHR for meta-data).
724 		 */
725 		if ((object->type != OBJT_VNODE) ||
726 		    ((object->flags & OBJ_DEAD) ||
727 		     object->swblock_count == 0) ||
728 		    ((vp = object->handle) == NULL) ||
729 		    (vp->v_type != VREG && vp->v_type != VCHR)) {
730 			vm_object_drop(object);
731 			/* object may be invalid now */
732 			vm_swapcache_movemarker(marker, *swindexp, object);
733 			continue;
734 		}
735 
736 		/*
737 		 * Reset the object pindex stored in the marker if the
738 		 * working object has changed.
739 		 */
740 		if (marker->backing_object != object) {
741 			marker->size = 0;
742 			marker->backing_object_offset = 0;
743 			marker->backing_object = object;
744 		}
745 
746 		/*
747 		 * Look for swblocks starting at our iterator.
748 		 *
749 		 * The swap_pager_condfree() function attempts to free
750 		 * swap space starting at the specified index.  The index
751 		 * will be updated on return.  The function will return
752 		 * a scan factor (NOT the number of blocks freed).
753 		 *
754 		 * If it must cut its scan of the object short due to an
755 		 * excessive number of swblocks, or is able to free the
756 		 * requested number of blocks, it will return n >= count
757 		 * and we break and pick it back up on a future attempt.
758 		 *
759 		 * Scan the object linearly and try to batch large sets of
760 		 * blocks that are likely to clean out entire swap radix
761 		 * tree leafs.
762 		 */
763 		lwkt_token_swap();
764 		lwkt_reltoken(&vmobj_tokens[*swindexp]);
765 
766 		n = swap_pager_condfree(object, &marker->size,
767 				    (count + SWAP_META_MASK) & ~SWAP_META_MASK);
768 
769 		vm_object_drop(object);		/* object may be invalid now */
770 		lwkt_gettoken(&vmobj_tokens[*swindexp]);
771 
772 		/*
773 		 * If we have exhausted the object or deleted our per-pass
774 		 * page limit then move us to the next object.  Note that
775 		 * the current object may no longer be on the vm_object_list.
776 		 */
777 		if (n <= 0 ||
778 		    marker->backing_object_offset > vm_swapcache_cleanperobj) {
779 			vm_swapcache_movemarker(marker, *swindexp, object);
780 		}
781 
782 		/*
783 		 * If we have exhausted our max-launder stop for now.
784 		 */
785 		count -= n;
786 		marker->backing_object_offset += n * PAGE_SIZE;
787 		if (count < 0)
788 			goto breakout;
789 	}
790 
791 	/*
792 	 * Iterate vm_object_lists[] hash table
793 	 */
794 	TAILQ_REMOVE(&vm_object_lists[*swindexp], marker, object_list);
795 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
796 	if (++*swindexp >= VMOBJ_HSIZE)
797 		*swindexp = 0;
798 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
799 	TAILQ_INSERT_HEAD(&vm_object_lists[*swindexp], marker, object_list);
800 
801 	if (*swindexp != 0)
802 		goto outerloop;
803 
804 breakout:
805 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
806 }
807 
808 /*
809  * Move the marker past the current object.  Object can be stale, but we
810  * still need it to determine if the marker has to be moved.  If the object
811  * is still the 'current object' (object after the marker), we hop-scotch
812  * the marker past it.
813  */
814 static void
815 vm_swapcache_movemarker(vm_object_t marker, int swindex, vm_object_t object)
816 {
817 	if (TAILQ_NEXT(marker, object_list) == object) {
818 		TAILQ_REMOVE(&vm_object_lists[swindex], marker, object_list);
819 		TAILQ_INSERT_AFTER(&vm_object_lists[swindex], object,
820 				   marker, object_list);
821 	}
822 }
823