xref: /dragonfly/sys/vm/vm_swapcache.c (revision cfd1aba3)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81 
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker, int *swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker, int swindex,
89 				vm_object_t object);
90 struct thread *swapcached_thread;
91 
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93 
94 int vm_swapcache_read_enable;
95 int vm_swapcache_inactive_heuristic;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 1;	/* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112 
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116 	CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117 
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127 	CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129 	CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132 
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146 	CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147 
148 #define SWAPMAX(adj)	\
149 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150 
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158 	vm_swapcache_read_enable = 0;
159 	vm_swapcache_data_enable = 0;
160 	vm_swapcache_meta_enable = 0;
161 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
162 }
163 
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174 	static struct vm_page page_marker[PQ_L2_SIZE];
175 	static struct vm_object swmarker;
176 	static int swindex;
177 	int q;
178 
179 	/*
180 	 * Thread setup
181 	 */
182 	curthread->td_flags |= TDF_SYSTHREAD;
183 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
185 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186 			      NULL, SHUTDOWN_PRI_SECOND);
187 
188 	/*
189 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
190 	 */
191 	bzero(&page_marker, sizeof(page_marker));
192 	for (q = 0; q < PQ_L2_SIZE; ++q) {
193 		page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
194 		page_marker[q].queue = PQ_INACTIVE + q;
195 		page_marker[q].pc = q;
196 		page_marker[q].wire_count = 1;
197 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
198 		TAILQ_INSERT_HEAD(
199 			&vm_page_queues[PQ_INACTIVE + q].pl,
200 			&page_marker[q], pageq);
201 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
202 	}
203 
204 	vm_swapcache_min_hysteresis = 1024;
205 	vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
206 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
207 
208 	/*
209 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
210 	 */
211 	bzero(&swmarker, sizeof(swmarker));
212 	swmarker.type = OBJT_MARKER;
213 	swindex = 0;
214 	lwkt_gettoken(&vmobj_tokens[swindex]);
215 	TAILQ_INSERT_HEAD(&vm_object_lists[swindex],
216 			  &swmarker, object_list);
217 	lwkt_reltoken(&vmobj_tokens[swindex]);
218 
219 	for (;;) {
220 		int reached_end;
221 		int scount;
222 		int count;
223 
224 		/*
225 		 * Handle shutdown
226 		 */
227 		kproc_suspend_loop();
228 
229 		/*
230 		 * Check every 5 seconds when not enabled or if no swap
231 		 * is present.
232 		 */
233 		if ((vm_swapcache_data_enable == 0 &&
234 		     vm_swapcache_meta_enable == 0) ||
235 		    vm_swap_max == 0) {
236 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
237 			continue;
238 		}
239 
240 		/*
241 		 * Polling rate when enabled is approximately 10 hz.
242 		 */
243 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
244 
245 		/*
246 		 * State hysteresis.  Generate write activity up to 75% of
247 		 * swap, then clean out swap assignments down to 70%, then
248 		 * repeat.
249 		 */
250 		if (state == SWAPC_WRITING) {
251 			if (vm_swap_cache_use > SWAPMAX(0))
252 				state = SWAPC_CLEANING;
253 		} else {
254 			if (vm_swap_cache_use < SWAPMAX(-10))
255 				state = SWAPC_WRITING;
256 		}
257 
258 		/*
259 		 * We are allowed to continue accumulating burst value
260 		 * in either state.  Allow the user to set curburst > maxburst
261 		 * for the initial load-in.
262 		 */
263 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
264 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
265 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
266 				vm_swapcache_curburst = vm_swapcache_maxburst;
267 		}
268 
269 		/*
270 		 * We don't want to nickle-and-dime the scan as that will
271 		 * create unnecessary fragmentation.  The minimum burst
272 		 * is one-seconds worth of accumulation.
273 		 */
274 		if (state != SWAPC_WRITING) {
275 			vm_swapcache_cleaning(&swmarker, &swindex);
276 			continue;
277 		}
278 		if (vm_swapcache_curburst < vm_swapcache_accrate)
279 			continue;
280 
281 		reached_end = 0;
282 		count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
283 		scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
284 
285 		if (burst == SWAPB_BURSTING) {
286 			if (vm_swapcache_writing_heuristic()) {
287 				for (q = 0; q < PQ_L2_SIZE; ++q) {
288 					reached_end +=
289 						vm_swapcache_writing(
290 							&page_marker[q],
291 							count,
292 							scount);
293 				}
294 			}
295 			if (vm_swapcache_curburst <= 0)
296 				burst = SWAPB_RECOVERING;
297 		} else if (vm_swapcache_curburst > vm_swapcache_minburst) {
298 			if (vm_swapcache_writing_heuristic()) {
299 				for (q = 0; q < PQ_L2_SIZE; ++q) {
300 					reached_end +=
301 						vm_swapcache_writing(
302 							&page_marker[q],
303 							count,
304 							scount);
305 				}
306 			}
307 			burst = SWAPB_BURSTING;
308 		}
309 		if (reached_end == PQ_L2_SIZE) {
310 			vm_swapcache_inactive_heuristic =
311 				-vm_swapcache_hysteresis;
312 		}
313 	}
314 
315 	/*
316 	 * Cleanup (NOT REACHED)
317 	 */
318 	for (q = 0; q < PQ_L2_SIZE; ++q) {
319 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
320 		TAILQ_REMOVE(
321 			&vm_page_queues[PQ_INACTIVE + q].pl,
322 			&page_marker[q], pageq);
323 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
324 	}
325 
326 	lwkt_gettoken(&vmobj_tokens[swindex]);
327 	TAILQ_REMOVE(&vm_object_lists[swindex], &swmarker, object_list);
328 	lwkt_reltoken(&vmobj_tokens[swindex]);
329 }
330 
331 static struct kproc_desc swpc_kp = {
332 	"swapcached",
333 	vm_swapcached_thread,
334 	&swapcached_thread
335 };
336 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
337 
338 /*
339  * Deal with an overflow of the heuristic counter or if the user
340  * manually changes the hysteresis.
341  *
342  * Try to avoid small incremental pageouts by waiting for enough
343  * pages to buildup in the inactive queue to hopefully get a good
344  * burst in.  This heuristic is bumped by the VM system and reset
345  * when our scan hits the end of the queue.
346  *
347  * Return TRUE if we need to take a writing pass.
348  */
349 static int
350 vm_swapcache_writing_heuristic(void)
351 {
352 	int hyst;
353 
354 	hyst = vmstats.v_inactive_count / 4;
355 	if (hyst < vm_swapcache_min_hysteresis)
356 		hyst = vm_swapcache_min_hysteresis;
357 	cpu_ccfence();
358 	vm_swapcache_hysteresis = hyst;
359 
360 	if (vm_swapcache_inactive_heuristic < -hyst)
361 		vm_swapcache_inactive_heuristic = -hyst;
362 
363 	return (vm_swapcache_inactive_heuristic >= 0);
364 }
365 
366 /*
367  * Take a writing pass on one of the inactive queues, return non-zero if
368  * we hit the end of the queue.
369  */
370 static int
371 vm_swapcache_writing(vm_page_t marker, int count, int scount)
372 {
373 	vm_object_t object;
374 	struct vnode *vp;
375 	vm_page_t m;
376 	int isblkdev;
377 
378 	/*
379 	 * Scan the inactive queue from our marker to locate
380 	 * suitable pages to push to the swap cache.
381 	 *
382 	 * We are looking for clean vnode-backed pages.
383 	 */
384 	vm_page_queues_spin_lock(marker->queue);
385 	while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
386 	       count > 0 && scount-- > 0) {
387 		KKASSERT(m->queue == marker->queue);
388 
389 		if (vm_swapcache_curburst < 0)
390 			break;
391 		TAILQ_REMOVE(
392 			&vm_page_queues[marker->queue].pl, marker, pageq);
393 		TAILQ_INSERT_AFTER(
394 			&vm_page_queues[marker->queue].pl, m, marker, pageq);
395 
396 		/*
397 		 * Ignore markers and ignore pages that already have a swap
398 		 * assignment.
399 		 */
400 		if (m->flags & (PG_MARKER | PG_SWAPPED))
401 			continue;
402 		if (vm_page_busy_try(m, TRUE))
403 			continue;
404 		vm_page_queues_spin_unlock(marker->queue);
405 
406 		if ((object = m->object) == NULL) {
407 			vm_page_wakeup(m);
408 			vm_page_queues_spin_lock(marker->queue);
409 			continue;
410 		}
411 		vm_object_hold(object);
412 		if (m->object != object) {
413 			vm_object_drop(object);
414 			vm_page_wakeup(m);
415 			vm_page_queues_spin_lock(marker->queue);
416 			continue;
417 		}
418 		if (vm_swapcache_test(m)) {
419 			vm_object_drop(object);
420 			vm_page_wakeup(m);
421 			vm_page_queues_spin_lock(marker->queue);
422 			continue;
423 		}
424 
425 		vp = object->handle;
426 		if (vp == NULL) {
427 			vm_object_drop(object);
428 			vm_page_wakeup(m);
429 			vm_page_queues_spin_lock(marker->queue);
430 			continue;
431 		}
432 
433 		switch(vp->v_type) {
434 		case VREG:
435 			/*
436 			 * PG_NOTMETA generically means 'don't swapcache this',
437 			 * and HAMMER will set this for regular data buffers
438 			 * (and leave it unset for meta-data buffers) as
439 			 * appropriate when double buffering is enabled.
440 			 */
441 			if (m->flags & PG_NOTMETA) {
442 				vm_object_drop(object);
443 				vm_page_wakeup(m);
444 				vm_page_queues_spin_lock(marker->queue);
445 				continue;
446 			}
447 
448 			/*
449 			 * If data_enable is 0 do not try to swapcache data.
450 			 * If use_chflags is set then only swapcache data for
451 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
452 			 */
453 			if (vm_swapcache_data_enable == 0 ||
454 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
455 			     vm_swapcache_use_chflags)) {
456 				vm_object_drop(object);
457 				vm_page_wakeup(m);
458 				vm_page_queues_spin_lock(marker->queue);
459 				continue;
460 			}
461 			if (vm_swapcache_maxfilesize &&
462 			    object->size >
463 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
464 				vm_object_drop(object);
465 				vm_page_wakeup(m);
466 				vm_page_queues_spin_lock(marker->queue);
467 				continue;
468 			}
469 			isblkdev = 0;
470 			break;
471 		case VCHR:
472 			/*
473 			 * PG_NOTMETA generically means 'don't swapcache this',
474 			 * and HAMMER will set this for regular data buffers
475 			 * (and leave it unset for meta-data buffers) as
476 			 * appropriate when double buffering is enabled.
477 			 */
478 			if (m->flags & PG_NOTMETA) {
479 				vm_object_drop(object);
480 				vm_page_wakeup(m);
481 				vm_page_queues_spin_lock(marker->queue);
482 				continue;
483 			}
484 			if (vm_swapcache_meta_enable == 0) {
485 				vm_object_drop(object);
486 				vm_page_wakeup(m);
487 				vm_page_queues_spin_lock(marker->queue);
488 				continue;
489 			}
490 			isblkdev = 1;
491 			break;
492 		default:
493 			vm_object_drop(object);
494 			vm_page_wakeup(m);
495 			vm_page_queues_spin_lock(marker->queue);
496 			continue;
497 		}
498 
499 
500 		/*
501 		 * Assign swap and initiate I/O.
502 		 *
503 		 * (adjust for the --count which also occurs in the loop)
504 		 */
505 		count -= vm_swapcached_flush(m, isblkdev);
506 
507 		/*
508 		 * Setup for next loop using marker.
509 		 */
510 		vm_object_drop(object);
511 		vm_page_queues_spin_lock(marker->queue);
512 	}
513 
514 	/*
515 	 * The marker could wind up at the end, which is ok.  If we hit the
516 	 * end of the list adjust the heuristic.
517 	 *
518 	 * Earlier inactive pages that were dirty and become clean
519 	 * are typically moved to the end of PQ_INACTIVE by virtue
520 	 * of vfs_vmio_release() when they become unwired from the
521 	 * buffer cache.
522 	 */
523 	vm_page_queues_spin_unlock(marker->queue);
524 
525 	/*
526 	 * m invalid but can be used to test for NULL
527 	 */
528 	return (m == NULL);
529 }
530 
531 /*
532  * Flush the specified page using the swap_pager.  The page
533  * must be busied by the caller and its disposition will become
534  * the responsibility of this function.
535  *
536  * Try to collect surrounding pages, including pages which may
537  * have already been assigned swap.  Try to cluster within a
538  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
539  * to match what swap_pager_putpages() can do.
540  *
541  * We also want to try to match against the buffer cache blocksize
542  * but we don't really know what it is here.  Since the buffer cache
543  * wires and unwires pages in groups the fact that we skip wired pages
544  * should be sufficient.
545  *
546  * Returns a count of pages we might have flushed (minimum 1)
547  */
548 static
549 int
550 vm_swapcached_flush(vm_page_t m, int isblkdev)
551 {
552 	vm_object_t object;
553 	vm_page_t marray[SWAP_META_PAGES];
554 	vm_pindex_t basei;
555 	int rtvals[SWAP_META_PAGES];
556 	int x;
557 	int i;
558 	int j;
559 	int count;
560 	int error;
561 
562 	vm_page_io_start(m);
563 	vm_page_protect(m, VM_PROT_READ);
564 	object = m->object;
565 	vm_object_hold(object);
566 
567 	/*
568 	 * Try to cluster around (m), keeping in mind that the swap pager
569 	 * can only do SMAP_META_PAGES worth of continguous write.
570 	 */
571 	x = (int)m->pindex & SWAP_META_MASK;
572 	marray[x] = m;
573 	basei = m->pindex;
574 	vm_page_wakeup(m);
575 
576 	for (i = x - 1; i >= 0; --i) {
577 		m = vm_page_lookup_busy_try(object, basei - x + i,
578 					    TRUE, &error);
579 		if (error || m == NULL)
580 			break;
581 		if (vm_swapcache_test(m)) {
582 			vm_page_wakeup(m);
583 			break;
584 		}
585 		if (isblkdev && (m->flags & PG_NOTMETA)) {
586 			vm_page_wakeup(m);
587 			break;
588 		}
589 		vm_page_io_start(m);
590 		vm_page_protect(m, VM_PROT_READ);
591 		if (m->queue - m->pc == PQ_CACHE) {
592 			vm_page_unqueue_nowakeup(m);
593 			vm_page_deactivate(m);
594 		}
595 		marray[i] = m;
596 		vm_page_wakeup(m);
597 	}
598 	++i;
599 
600 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
601 		m = vm_page_lookup_busy_try(object, basei - x + j,
602 					    TRUE, &error);
603 		if (error || m == NULL)
604 			break;
605 		if (vm_swapcache_test(m)) {
606 			vm_page_wakeup(m);
607 			break;
608 		}
609 		if (isblkdev && (m->flags & PG_NOTMETA)) {
610 			vm_page_wakeup(m);
611 			break;
612 		}
613 		vm_page_io_start(m);
614 		vm_page_protect(m, VM_PROT_READ);
615 		if (m->queue - m->pc == PQ_CACHE) {
616 			vm_page_unqueue_nowakeup(m);
617 			vm_page_deactivate(m);
618 		}
619 		marray[j] = m;
620 		vm_page_wakeup(m);
621 	}
622 
623 	count = j - i;
624 	vm_object_pip_add(object, count);
625 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
626 	vm_swapcache_write_count += count * PAGE_SIZE;
627 	vm_swapcache_curburst -= count * PAGE_SIZE;
628 
629 	while (i < j) {
630 		if (rtvals[i] != VM_PAGER_PEND) {
631 			vm_page_busy_wait(marray[i], FALSE, "swppgfd");
632 			vm_page_io_finish(marray[i]);
633 			vm_page_wakeup(marray[i]);
634 			vm_object_pip_wakeup(object);
635 		}
636 		++i;
637 	}
638 	vm_object_drop(object);
639 	return(count);
640 }
641 
642 /*
643  * Test whether a VM page is suitable for writing to the swapcache.
644  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
645  *
646  * Returns 0 on success, 1 on failure
647  */
648 static int
649 vm_swapcache_test(vm_page_t m)
650 {
651 	vm_object_t object;
652 
653 	if (m->flags & PG_UNMANAGED)
654 		return(1);
655 	if (m->hold_count || m->wire_count)
656 		return(1);
657 	if (m->valid != VM_PAGE_BITS_ALL)
658 		return(1);
659 	if (m->dirty & m->valid)
660 		return(1);
661 	if ((object = m->object) == NULL)
662 		return(1);
663 	if (object->type != OBJT_VNODE ||
664 	    (object->flags & OBJ_DEAD)) {
665 		return(1);
666 	}
667 	vm_page_test_dirty(m);
668 	if (m->dirty & m->valid)
669 		return(1);
670 	return(0);
671 }
672 
673 /*
674  * Cleaning pass.
675  *
676  * We clean whole objects up to 16MB
677  */
678 static
679 void
680 vm_swapcache_cleaning(vm_object_t marker, int *swindexp)
681 {
682 	vm_object_t object;
683 	struct vnode *vp;
684 	int count;
685 	int scount;
686 	int n;
687 
688 	count = vm_swapcache_maxlaunder;
689 	scount = vm_swapcache_maxscan;
690 
691 	/*
692 	 * Look for vnode objects
693 	 */
694 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
695 
696 outerloop:
697 	while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
698 		/*
699 		 * We have to skip markers.  We cannot hold/drop marker
700 		 * objects!
701 		 */
702 		if (object->type == OBJT_MARKER) {
703 			vm_swapcache_movemarker(marker, *swindexp, object);
704 			continue;
705 		}
706 
707 		/*
708 		 * Safety, or in case there are millions of VM objects
709 		 * without swapcache backing.
710 		 */
711 		if (--scount <= 0)
712 			goto breakout;
713 
714 		/*
715 		 * We must hold the object before potentially yielding.
716 		 */
717 		vm_object_hold(object);
718 		lwkt_yield();
719 
720 		/*
721 		 * Only operate on live VNODE objects that are either
722 		 * VREG or VCHR (VCHR for meta-data).
723 		 */
724 		if ((object->type != OBJT_VNODE) ||
725 		    ((object->flags & OBJ_DEAD) ||
726 		     object->swblock_count == 0) ||
727 		    ((vp = object->handle) == NULL) ||
728 		    (vp->v_type != VREG && vp->v_type != VCHR)) {
729 			vm_object_drop(object);
730 			/* object may be invalid now */
731 			vm_swapcache_movemarker(marker, *swindexp, object);
732 			continue;
733 		}
734 
735 		/*
736 		 * Reset the object pindex stored in the marker if the
737 		 * working object has changed.
738 		 */
739 		if (marker->backing_object != object) {
740 			marker->size = 0;
741 			marker->backing_object_offset = 0;
742 			marker->backing_object = object;
743 		}
744 
745 		/*
746 		 * Look for swblocks starting at our iterator.
747 		 *
748 		 * The swap_pager_condfree() function attempts to free
749 		 * swap space starting at the specified index.  The index
750 		 * will be updated on return.  The function will return
751 		 * a scan factor (NOT the number of blocks freed).
752 		 *
753 		 * If it must cut its scan of the object short due to an
754 		 * excessive number of swblocks, or is able to free the
755 		 * requested number of blocks, it will return n >= count
756 		 * and we break and pick it back up on a future attempt.
757 		 *
758 		 * Scan the object linearly and try to batch large sets of
759 		 * blocks that are likely to clean out entire swap radix
760 		 * tree leafs.
761 		 */
762 		lwkt_token_swap();
763 		lwkt_reltoken(&vmobj_tokens[*swindexp]);
764 
765 		n = swap_pager_condfree(object, &marker->size,
766 				    (count + SWAP_META_MASK) & ~SWAP_META_MASK);
767 
768 		vm_object_drop(object);		/* object may be invalid now */
769 		lwkt_gettoken(&vmobj_tokens[*swindexp]);
770 
771 		/*
772 		 * If we have exhausted the object or deleted our per-pass
773 		 * page limit then move us to the next object.  Note that
774 		 * the current object may no longer be on the vm_object_list.
775 		 */
776 		if (n <= 0 ||
777 		    marker->backing_object_offset > vm_swapcache_cleanperobj) {
778 			vm_swapcache_movemarker(marker, *swindexp, object);
779 		}
780 
781 		/*
782 		 * If we have exhausted our max-launder stop for now.
783 		 */
784 		count -= n;
785 		marker->backing_object_offset += n * PAGE_SIZE;
786 		if (count < 0)
787 			goto breakout;
788 	}
789 
790 	/*
791 	 * Iterate vm_object_lists[] hash table
792 	 */
793 	TAILQ_REMOVE(&vm_object_lists[*swindexp], marker, object_list);
794 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
795 	if (++*swindexp >= VMOBJ_HSIZE)
796 		*swindexp = 0;
797 	lwkt_gettoken(&vmobj_tokens[*swindexp]);
798 	TAILQ_INSERT_HEAD(&vm_object_lists[*swindexp], marker, object_list);
799 
800 	if (*swindexp != 0)
801 		goto outerloop;
802 
803 breakout:
804 	lwkt_reltoken(&vmobj_tokens[*swindexp]);
805 }
806 
807 /*
808  * Move the marker past the current object.  Object can be stale, but we
809  * still need it to determine if the marker has to be moved.  If the object
810  * is still the 'current object' (object after the marker), we hop-scotch
811  * the marker past it.
812  */
813 static void
814 vm_swapcache_movemarker(vm_object_t marker, int swindex, vm_object_t object)
815 {
816 	if (TAILQ_NEXT(marker, object_list) == object) {
817 		TAILQ_REMOVE(&vm_object_lists[swindex], marker, object_list);
818 		TAILQ_INSERT_AFTER(&vm_object_lists[swindex], object,
819 				   marker, object_list);
820 	}
821 }
822