xref: /dragonfly/sys/vm/vm_swapcache.c (revision eb67213a)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/spinlock2.h>
79 #include <vm/vm_page2.h>
80 
81 /* the kernel process "vm_pageout"*/
82 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
83 static int vm_swapcache_test(vm_page_t m);
84 static int vm_swapcache_writing_heuristic(void);
85 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
86 static void vm_swapcache_cleaning(vm_object_t marker,
87 			struct vm_object_hash **swindexp);
88 static void vm_swapcache_movemarker(vm_object_t marker,
89 			struct vm_object_hash *swindex, vm_object_t object);
90 struct thread *swapcached_thread;
91 
92 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
93 
94 int vm_swapcache_read_enable;
95 static long vm_swapcache_wtrigger;
96 static int vm_swapcache_sleep;
97 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
98 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
99 static int vm_swapcache_data_enable = 0;
100 static int vm_swapcache_meta_enable = 0;
101 static int vm_swapcache_maxswappct = 75;
102 static int vm_swapcache_hysteresis;
103 static int vm_swapcache_min_hysteresis;
104 int vm_swapcache_use_chflags = 0;	/* require chflags cache */
105 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
106 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
107 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
108 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
109 static int64_t vm_swapcache_write_count;
110 static int64_t vm_swapcache_maxfilesize;
111 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
112 
113 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
114 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
115 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
116 	CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
117 
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
119 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
121 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
122 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
123 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
124 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
125 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
126 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
127 	CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
128 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
129 	CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
130 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
131 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
132 
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
134 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
135 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
136 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
137 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
138 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
139 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
140 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
141 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
142 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
143 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
144 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
145 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
146 	CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
147 
148 #define SWAPMAX(adj)	\
149 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
150 
151 /*
152  * When shutting down the machine we want to stop swapcache operation
153  * immediately so swap is not accessed after devices have been shuttered.
154  */
155 static void
156 shutdown_swapcache(void *arg __unused)
157 {
158 	vm_swapcache_read_enable = 0;
159 	vm_swapcache_data_enable = 0;
160 	vm_swapcache_meta_enable = 0;
161 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
162 }
163 
164 /*
165  * vm_swapcached is the high level pageout daemon.
166  *
167  * No requirements.
168  */
169 static void
170 vm_swapcached_thread(void)
171 {
172 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
173 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
174 	static struct vm_page page_marker[PQ_L2_SIZE];
175 	static struct vm_object swmarker;
176 	static struct vm_object_hash *swindex;
177 	int q;
178 
179 	/*
180 	 * Thread setup
181 	 */
182 	curthread->td_flags |= TDF_SYSTHREAD;
183 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
184 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
185 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
186 			      NULL, SHUTDOWN_PRI_SECOND);
187 
188 	/*
189 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
190 	 */
191 	bzero(&page_marker, sizeof(page_marker));
192 	for (q = 0; q < PQ_L2_SIZE; ++q) {
193 		page_marker[q].flags = PG_FICTITIOUS | PG_MARKER;
194 		page_marker[q].busy_count = PBUSY_LOCKED;
195 		page_marker[q].queue = PQ_INACTIVE + q;
196 		page_marker[q].pc = q;
197 		page_marker[q].wire_count = 1;
198 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
199 		TAILQ_INSERT_HEAD(
200 			&vm_page_queues[PQ_INACTIVE + q].pl,
201 			&page_marker[q], pageq);
202 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
203 	}
204 
205 	vm_swapcache_min_hysteresis = 1024;
206 	vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
207 	vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
208 
209 	/*
210 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
211 	 */
212 	bzero(&swmarker, sizeof(swmarker));
213 	swmarker.type = OBJT_MARKER;
214 	swindex = &vm_object_hash[0];
215 	lwkt_gettoken(&swindex->token);
216 	TAILQ_INSERT_HEAD(&swindex->list, &swmarker, object_list);
217 	lwkt_reltoken(&swindex->token);
218 
219 	for (;;) {
220 		int reached_end;
221 		int scount;
222 		int count;
223 
224 		/*
225 		 * Handle shutdown
226 		 */
227 		kproc_suspend_loop();
228 
229 		/*
230 		 * Check every 5 seconds when not enabled or if no swap
231 		 * is present.
232 		 */
233 		if ((vm_swapcache_data_enable == 0 &&
234 		     vm_swapcache_meta_enable == 0 &&
235 		     vm_swap_cache_use <= SWAPMAX(0)) ||
236 		    vm_swap_max == 0) {
237 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
238 			continue;
239 		}
240 
241 		/*
242 		 * Polling rate when enabled is approximately 10 hz.
243 		 */
244 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
245 
246 		/*
247 		 * State hysteresis.  Generate write activity up to 75% of
248 		 * swap, then clean out swap assignments down to 70%, then
249 		 * repeat.
250 		 */
251 		if (state == SWAPC_WRITING) {
252 			if (vm_swap_cache_use > SWAPMAX(0))
253 				state = SWAPC_CLEANING;
254 		} else {
255 			if (vm_swap_cache_use < SWAPMAX(-10))
256 				state = SWAPC_WRITING;
257 		}
258 
259 		/*
260 		 * We are allowed to continue accumulating burst value
261 		 * in either state.  Allow the user to set curburst > maxburst
262 		 * for the initial load-in.
263 		 */
264 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
265 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
266 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
267 				vm_swapcache_curburst = vm_swapcache_maxburst;
268 		}
269 
270 		/*
271 		 * We don't want to nickle-and-dime the scan as that will
272 		 * create unnecessary fragmentation.  The minimum burst
273 		 * is one-seconds worth of accumulation.
274 		 */
275 		if (state != SWAPC_WRITING) {
276 			vm_swapcache_cleaning(&swmarker, &swindex);
277 			continue;
278 		}
279 		if (vm_swapcache_curburst < vm_swapcache_accrate)
280 			continue;
281 
282 		reached_end = 0;
283 		count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
284 		scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
285 
286 		if (burst == SWAPB_BURSTING) {
287 			if (vm_swapcache_writing_heuristic()) {
288 				for (q = 0; q < PQ_L2_SIZE; ++q) {
289 					reached_end +=
290 						vm_swapcache_writing(
291 							&page_marker[q],
292 							count,
293 							scount);
294 				}
295 			}
296 			if (vm_swapcache_curburst <= 0)
297 				burst = SWAPB_RECOVERING;
298 		} else if (vm_swapcache_curburst > vm_swapcache_minburst) {
299 			if (vm_swapcache_writing_heuristic()) {
300 				for (q = 0; q < PQ_L2_SIZE; ++q) {
301 					reached_end +=
302 						vm_swapcache_writing(
303 							&page_marker[q],
304 							count,
305 							scount);
306 				}
307 			}
308 			burst = SWAPB_BURSTING;
309 		}
310 		if (reached_end == PQ_L2_SIZE) {
311 			vm_swapcache_wtrigger = -vm_swapcache_hysteresis;
312 		}
313 	}
314 
315 	/*
316 	 * Cleanup (NOT REACHED)
317 	 */
318 	for (q = 0; q < PQ_L2_SIZE; ++q) {
319 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
320 		TAILQ_REMOVE(
321 			&vm_page_queues[PQ_INACTIVE + q].pl,
322 			&page_marker[q], pageq);
323 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
324 	}
325 
326 	lwkt_gettoken(&swindex->token);
327 	TAILQ_REMOVE(&swindex->list, &swmarker, object_list);
328 	lwkt_reltoken(&swindex->token);
329 }
330 
331 static struct kproc_desc swpc_kp = {
332 	"swapcached",
333 	vm_swapcached_thread,
334 	&swapcached_thread
335 };
336 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp);
337 
338 /*
339  * Deal with an overflow of the heuristic counter or if the user
340  * manually changes the hysteresis.
341  *
342  * Try to avoid small incremental pageouts by waiting for enough
343  * pages to buildup in the inactive queue to hopefully get a good
344  * burst in.  This heuristic is bumped by the VM system and reset
345  * when our scan hits the end of the queue.
346  *
347  * Return TRUE if we need to take a writing pass.
348  */
349 static int
350 vm_swapcache_writing_heuristic(void)
351 {
352 	int hyst;
353 	int q;
354 	long adds;
355 
356 	hyst = vmstats.v_inactive_count / 4;
357 	if (hyst < vm_swapcache_min_hysteresis)
358 		hyst = vm_swapcache_min_hysteresis;
359 	cpu_ccfence();
360 	vm_swapcache_hysteresis = hyst;
361 
362 	adds = 0;
363 	for (q = PQ_INACTIVE; q < PQ_INACTIVE + PQ_L2_SIZE; ++q) {
364 		adds += atomic_swap_long(&vm_page_queues[q].adds, 0);
365 	}
366 	vm_swapcache_wtrigger += adds;
367 	if (vm_swapcache_wtrigger < -hyst)
368 		vm_swapcache_wtrigger = -hyst;
369 	return (vm_swapcache_wtrigger >= 0);
370 }
371 
372 /*
373  * Take a writing pass on one of the inactive queues, return non-zero if
374  * we hit the end of the queue.
375  */
376 static int
377 vm_swapcache_writing(vm_page_t marker, int count, int scount)
378 {
379 	vm_object_t object;
380 	struct vnode *vp;
381 	vm_page_t m;
382 	int isblkdev;
383 
384 	/*
385 	 * Scan the inactive queue from our marker to locate
386 	 * suitable pages to push to the swap cache.
387 	 *
388 	 * We are looking for clean vnode-backed pages.
389 	 */
390 	vm_page_queues_spin_lock(marker->queue);
391 	while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
392 	       count > 0 && scount-- > 0) {
393 		KKASSERT(m->queue == marker->queue);
394 
395 		/*
396 		 * Stop using swap if paniced, dumping, or dumped.
397 		 * Don't try to write if our curburst has been exhausted.
398 		 */
399 		if (panicstr || dumping)
400 			break;
401 		if (vm_swapcache_curburst < 0)
402 			break;
403 
404 		/*
405 		 * Move marker
406 		 */
407 		TAILQ_REMOVE(
408 			&vm_page_queues[marker->queue].pl, marker, pageq);
409 		TAILQ_INSERT_AFTER(
410 			&vm_page_queues[marker->queue].pl, m, marker, pageq);
411 
412 		/*
413 		 * Ignore markers and ignore pages that already have a swap
414 		 * assignment.
415 		 */
416 		if (m->flags & (PG_MARKER | PG_SWAPPED))
417 			continue;
418 		if (vm_page_busy_try(m, TRUE))
419 			continue;
420 		vm_page_queues_spin_unlock(marker->queue);
421 
422 		if ((object = m->object) == NULL) {
423 			vm_page_wakeup(m);
424 			vm_page_queues_spin_lock(marker->queue);
425 			continue;
426 		}
427 		vm_object_hold(object);
428 		if (m->object != object) {
429 			vm_object_drop(object);
430 			vm_page_wakeup(m);
431 			vm_page_queues_spin_lock(marker->queue);
432 			continue;
433 		}
434 		if (vm_swapcache_test(m)) {
435 			vm_object_drop(object);
436 			vm_page_wakeup(m);
437 			vm_page_queues_spin_lock(marker->queue);
438 			continue;
439 		}
440 
441 		vp = object->handle;
442 		if (vp == NULL) {
443 			vm_object_drop(object);
444 			vm_page_wakeup(m);
445 			vm_page_queues_spin_lock(marker->queue);
446 			continue;
447 		}
448 
449 		switch(vp->v_type) {
450 		case VREG:
451 			/*
452 			 * PG_NOTMETA generically means 'don't swapcache this',
453 			 * and HAMMER will set this for regular data buffers
454 			 * (and leave it unset for meta-data buffers) as
455 			 * appropriate when double buffering is enabled.
456 			 */
457 			if (m->flags & PG_NOTMETA) {
458 				vm_object_drop(object);
459 				vm_page_wakeup(m);
460 				vm_page_queues_spin_lock(marker->queue);
461 				continue;
462 			}
463 
464 			/*
465 			 * If data_enable is 0 do not try to swapcache data.
466 			 * If use_chflags is set then only swapcache data for
467 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
468 			 */
469 			if (vm_swapcache_data_enable == 0 ||
470 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
471 			     vm_swapcache_use_chflags)) {
472 				vm_object_drop(object);
473 				vm_page_wakeup(m);
474 				vm_page_queues_spin_lock(marker->queue);
475 				continue;
476 			}
477 			if (vm_swapcache_maxfilesize &&
478 			    object->size >
479 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
480 				vm_object_drop(object);
481 				vm_page_wakeup(m);
482 				vm_page_queues_spin_lock(marker->queue);
483 				continue;
484 			}
485 			isblkdev = 0;
486 			break;
487 		case VCHR:
488 			/*
489 			 * PG_NOTMETA generically means 'don't swapcache this',
490 			 * and HAMMER will set this for regular data buffers
491 			 * (and leave it unset for meta-data buffers) as
492 			 * appropriate when double buffering is enabled.
493 			 */
494 			if (m->flags & PG_NOTMETA) {
495 				vm_object_drop(object);
496 				vm_page_wakeup(m);
497 				vm_page_queues_spin_lock(marker->queue);
498 				continue;
499 			}
500 			if (vm_swapcache_meta_enable == 0) {
501 				vm_object_drop(object);
502 				vm_page_wakeup(m);
503 				vm_page_queues_spin_lock(marker->queue);
504 				continue;
505 			}
506 			isblkdev = 1;
507 			break;
508 		default:
509 			vm_object_drop(object);
510 			vm_page_wakeup(m);
511 			vm_page_queues_spin_lock(marker->queue);
512 			continue;
513 		}
514 
515 
516 		/*
517 		 * Assign swap and initiate I/O.
518 		 *
519 		 * (adjust for the --count which also occurs in the loop)
520 		 */
521 		count -= vm_swapcached_flush(m, isblkdev);
522 
523 		/*
524 		 * Setup for next loop using marker.
525 		 */
526 		vm_object_drop(object);
527 		vm_page_queues_spin_lock(marker->queue);
528 	}
529 
530 	/*
531 	 * The marker could wind up at the end, which is ok.  If we hit the
532 	 * end of the list adjust the heuristic.
533 	 *
534 	 * Earlier inactive pages that were dirty and become clean
535 	 * are typically moved to the end of PQ_INACTIVE by virtue
536 	 * of vfs_vmio_release() when they become unwired from the
537 	 * buffer cache.
538 	 */
539 	vm_page_queues_spin_unlock(marker->queue);
540 
541 	/*
542 	 * m invalid but can be used to test for NULL
543 	 */
544 	return (m == NULL);
545 }
546 
547 /*
548  * Flush the specified page using the swap_pager.  The page
549  * must be busied by the caller and its disposition will become
550  * the responsibility of this function.
551  *
552  * Try to collect surrounding pages, including pages which may
553  * have already been assigned swap.  Try to cluster within a
554  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
555  * to match what swap_pager_putpages() can do.
556  *
557  * We also want to try to match against the buffer cache blocksize
558  * but we don't really know what it is here.  Since the buffer cache
559  * wires and unwires pages in groups the fact that we skip wired pages
560  * should be sufficient.
561  *
562  * Returns a count of pages we might have flushed (minimum 1)
563  */
564 static
565 int
566 vm_swapcached_flush(vm_page_t m, int isblkdev)
567 {
568 	vm_object_t object;
569 	vm_page_t marray[SWAP_META_PAGES];
570 	vm_pindex_t basei;
571 	int rtvals[SWAP_META_PAGES];
572 	int x;
573 	int i;
574 	int j;
575 	int count;
576 	int error;
577 
578 	vm_page_io_start(m);
579 	vm_page_protect(m, VM_PROT_READ);
580 	object = m->object;
581 	vm_object_hold(object);
582 
583 	/*
584 	 * Try to cluster around (m), keeping in mind that the swap pager
585 	 * can only do SMAP_META_PAGES worth of continguous write.
586 	 */
587 	x = (int)m->pindex & SWAP_META_MASK;
588 	marray[x] = m;
589 	basei = m->pindex;
590 	vm_page_wakeup(m);
591 
592 	for (i = x - 1; i >= 0; --i) {
593 		m = vm_page_lookup_busy_try(object, basei - x + i,
594 					    TRUE, &error);
595 		if (error || m == NULL)
596 			break;
597 		if (vm_swapcache_test(m)) {
598 			vm_page_wakeup(m);
599 			break;
600 		}
601 		if (isblkdev && (m->flags & PG_NOTMETA)) {
602 			vm_page_wakeup(m);
603 			break;
604 		}
605 		vm_page_io_start(m);
606 		vm_page_protect(m, VM_PROT_READ);
607 		if (m->queue - m->pc == PQ_CACHE) {
608 			vm_page_unqueue_nowakeup(m);
609 			vm_page_deactivate(m);
610 		}
611 		marray[i] = m;
612 		vm_page_wakeup(m);
613 	}
614 	++i;
615 
616 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
617 		m = vm_page_lookup_busy_try(object, basei - x + j,
618 					    TRUE, &error);
619 		if (error || m == NULL)
620 			break;
621 		if (vm_swapcache_test(m)) {
622 			vm_page_wakeup(m);
623 			break;
624 		}
625 		if (isblkdev && (m->flags & PG_NOTMETA)) {
626 			vm_page_wakeup(m);
627 			break;
628 		}
629 		vm_page_io_start(m);
630 		vm_page_protect(m, VM_PROT_READ);
631 		if (m->queue - m->pc == PQ_CACHE) {
632 			vm_page_unqueue_nowakeup(m);
633 			vm_page_deactivate(m);
634 		}
635 		marray[j] = m;
636 		vm_page_wakeup(m);
637 	}
638 
639 	count = j - i;
640 	vm_object_pip_add(object, count);
641 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
642 	vm_swapcache_write_count += count * PAGE_SIZE;
643 	vm_swapcache_curburst -= count * PAGE_SIZE;
644 
645 	while (i < j) {
646 		if (rtvals[i] != VM_PAGER_PEND) {
647 			vm_page_busy_wait(marray[i], FALSE, "swppgfd");
648 			vm_page_io_finish(marray[i]);
649 			vm_page_wakeup(marray[i]);
650 			vm_object_pip_wakeup(object);
651 		}
652 		++i;
653 	}
654 	vm_object_drop(object);
655 	return(count);
656 }
657 
658 /*
659  * Test whether a VM page is suitable for writing to the swapcache.
660  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
661  *
662  * Returns 0 on success, 1 on failure
663  */
664 static int
665 vm_swapcache_test(vm_page_t m)
666 {
667 	vm_object_t object;
668 
669 	if (m->flags & PG_UNMANAGED)
670 		return(1);
671 	if (m->hold_count || m->wire_count)
672 		return(1);
673 	if (m->valid != VM_PAGE_BITS_ALL)
674 		return(1);
675 	if (m->dirty & m->valid)
676 		return(1);
677 	if ((object = m->object) == NULL)
678 		return(1);
679 	if (object->type != OBJT_VNODE ||
680 	    (object->flags & OBJ_DEAD)) {
681 		return(1);
682 	}
683 	vm_page_test_dirty(m);
684 	if (m->dirty & m->valid)
685 		return(1);
686 	return(0);
687 }
688 
689 /*
690  * Cleaning pass.
691  *
692  * We clean whole objects up to 16MB
693  */
694 static
695 void
696 vm_swapcache_cleaning(vm_object_t marker, struct vm_object_hash **swindexp)
697 {
698 	vm_object_t object;
699 	struct vnode *vp;
700 	int count;
701 	int scount;
702 	int n;
703 	int didmove;
704 
705 	count = vm_swapcache_maxlaunder;
706 	scount = vm_swapcache_maxscan;
707 
708 	/*
709 	 * Look for vnode objects
710 	 */
711 	lwkt_gettoken(&(*swindexp)->token);
712 
713 	didmove = 0;
714 outerloop:
715 	while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
716 		/*
717 		 * We have to skip markers.  We cannot hold/drop marker
718 		 * objects!
719 		 */
720 		if (object->type == OBJT_MARKER) {
721 			vm_swapcache_movemarker(marker, *swindexp, object);
722 			didmove = 1;
723 			continue;
724 		}
725 
726 		/*
727 		 * Safety, or in case there are millions of VM objects
728 		 * without swapcache backing.
729 		 */
730 		if (--scount <= 0)
731 			goto breakout;
732 
733 		/*
734 		 * We must hold the object before potentially yielding.
735 		 */
736 		vm_object_hold(object);
737 		lwkt_yield();
738 
739 		/*
740 		 * Only operate on live VNODE objects that are either
741 		 * VREG or VCHR (VCHR for meta-data).
742 		 */
743 		if ((object->type != OBJT_VNODE) ||
744 		    ((object->flags & OBJ_DEAD) ||
745 		     object->swblock_count == 0) ||
746 		    ((vp = object->handle) == NULL) ||
747 		    (vp->v_type != VREG && vp->v_type != VCHR)) {
748 			vm_object_drop(object);
749 			/* object may be invalid now */
750 			vm_swapcache_movemarker(marker, *swindexp, object);
751 			didmove = 1;
752 			continue;
753 		}
754 
755 		/*
756 		 * Reset the object pindex stored in the marker if the
757 		 * working object has changed.
758 		 */
759 		if (marker->backing_object != object || didmove) {
760 			marker->size = 0;
761 			marker->backing_object_offset = 0;
762 			marker->backing_object = object;
763 			didmove = 0;
764 		}
765 
766 		/*
767 		 * Look for swblocks starting at our iterator.
768 		 *
769 		 * The swap_pager_condfree() function attempts to free
770 		 * swap space starting at the specified index.  The index
771 		 * will be updated on return.  The function will return
772 		 * a scan factor (NOT the number of blocks freed).
773 		 *
774 		 * If it must cut its scan of the object short due to an
775 		 * excessive number of swblocks, or is able to free the
776 		 * requested number of blocks, it will return n >= count
777 		 * and we break and pick it back up on a future attempt.
778 		 *
779 		 * Scan the object linearly and try to batch large sets of
780 		 * blocks that are likely to clean out entire swap radix
781 		 * tree leafs.
782 		 */
783 		lwkt_token_swap();
784 		lwkt_reltoken(&(*swindexp)->token);
785 
786 		n = swap_pager_condfree(object, &marker->size,
787 				    (count + SWAP_META_MASK) & ~SWAP_META_MASK);
788 
789 		vm_object_drop(object);		/* object may be invalid now */
790 		lwkt_gettoken(&(*swindexp)->token);
791 
792 		/*
793 		 * If we have exhausted the object or deleted our per-pass
794 		 * page limit then move us to the next object.  Note that
795 		 * the current object may no longer be on the vm_object_list.
796 		 */
797 		if (n <= 0 ||
798 		    marker->backing_object_offset > vm_swapcache_cleanperobj) {
799 			vm_swapcache_movemarker(marker, *swindexp, object);
800 			didmove = 1;
801 		}
802 
803 		/*
804 		 * If we have exhausted our max-launder stop for now.
805 		 */
806 		count -= n;
807 		marker->backing_object_offset += n * PAGE_SIZE;
808 		if (count < 0)
809 			goto breakout;
810 	}
811 
812 	/*
813 	 * Iterate vm_object_lists[] hash table
814 	 */
815 	TAILQ_REMOVE(&(*swindexp)->list, marker, object_list);
816 	lwkt_reltoken(&(*swindexp)->token);
817 	if (++*swindexp >= &vm_object_hash[VMOBJ_HSIZE])
818 		*swindexp = &vm_object_hash[0];
819 	lwkt_gettoken(&(*swindexp)->token);
820 	TAILQ_INSERT_HEAD(&(*swindexp)->list, marker, object_list);
821 
822 	if (*swindexp != &vm_object_hash[0])
823 		goto outerloop;
824 
825 breakout:
826 	lwkt_reltoken(&(*swindexp)->token);
827 }
828 
829 /*
830  * Move the marker past the current object.  Object can be stale, but we
831  * still need it to determine if the marker has to be moved.  If the object
832  * is still the 'current object' (object after the marker), we hop-scotch
833  * the marker past it.
834  */
835 static void
836 vm_swapcache_movemarker(vm_object_t marker, struct vm_object_hash *swindex,
837 			vm_object_t object)
838 {
839 	if (TAILQ_NEXT(marker, object_list) == object) {
840 		TAILQ_REMOVE(&swindex->list, marker, object_list);
841 		TAILQ_INSERT_AFTER(&swindex->list, object, marker, object_list);
842 	}
843 }
844