xref: /dragonfly/sys/vm/vm_swapcache.c (revision fb151170)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 #include <sys/eventhandler.h>
66 
67 #include <vm/vm.h>
68 #include <vm/vm_param.h>
69 #include <sys/lock.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_map.h>
73 #include <vm/vm_pageout.h>
74 #include <vm/vm_pager.h>
75 #include <vm/swap_pager.h>
76 #include <vm/vm_extern.h>
77 
78 #include <sys/thread2.h>
79 #include <sys/spinlock2.h>
80 #include <vm/vm_page2.h>
81 
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static int vm_swapcache_writing_heuristic(void);
86 static int vm_swapcache_writing(vm_page_t marker, int count, int scount);
87 static void vm_swapcache_cleaning(vm_object_t marker);
88 static void vm_swapcache_movemarker(vm_object_t marker, vm_object_t object);
89 struct thread *swapcached_thread;
90 
91 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
92 
93 int vm_swapcache_read_enable;
94 int vm_swapcache_inactive_heuristic;
95 static int vm_swapcache_sleep;
96 static int vm_swapcache_maxscan = PQ_L2_SIZE * 8;
97 static int vm_swapcache_maxlaunder = PQ_L2_SIZE * 4;
98 static int vm_swapcache_data_enable = 0;
99 static int vm_swapcache_meta_enable = 0;
100 static int vm_swapcache_maxswappct = 75;
101 static int vm_swapcache_hysteresis;
102 static int vm_swapcache_min_hysteresis;
103 int vm_swapcache_use_chflags = 1;	/* require chflags cache */
104 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
105 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
106 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
107 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
108 static int64_t vm_swapcache_write_count;
109 static int64_t vm_swapcache_maxfilesize;
110 static int64_t vm_swapcache_cleanperobj = 16*1024*1024;
111 
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
113 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxscan,
115 	CTLFLAG_RW, &vm_swapcache_maxscan, 0, "");
116 
117 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
118 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
119 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
120 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
121 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
122 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
123 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
124 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
125 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
126 	CTLFLAG_RD, &vm_swapcache_hysteresis, 0, "");
127 SYSCTL_INT(_vm_swapcache, OID_AUTO, min_hysteresis,
128 	CTLFLAG_RW, &vm_swapcache_min_hysteresis, 0, "");
129 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
130 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
131 
132 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
133 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
134 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
135 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
136 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
137 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
138 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
139 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
140 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
141 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
142 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
143 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
144 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, cleanperobj,
145 	CTLFLAG_RW, &vm_swapcache_cleanperobj, 0, "");
146 
147 #define SWAPMAX(adj)	\
148 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
149 
150 /*
151  * When shutting down the machine we want to stop swapcache operation
152  * immediately so swap is not accessed after devices have been shuttered.
153  */
154 static void
155 shutdown_swapcache(void *arg __unused)
156 {
157 	vm_swapcache_read_enable = 0;
158 	vm_swapcache_data_enable = 0;
159 	vm_swapcache_meta_enable = 0;
160 	wakeup(&vm_swapcache_sleep);	/* shortcut 5-second wait */
161 }
162 
163 /*
164  * vm_swapcached is the high level pageout daemon.
165  *
166  * No requirements.
167  */
168 static void
169 vm_swapcached_thread(void)
170 {
171 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
172 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
173 	static struct vm_page page_marker[PQ_L2_SIZE];
174 	static struct vm_object object_marker;
175 	int q;
176 
177 	/*
178 	 * Thread setup
179 	 */
180 	curthread->td_flags |= TDF_SYSTHREAD;
181 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc,
182 			      swapcached_thread, SHUTDOWN_PRI_FIRST);
183 	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_swapcache,
184 			      NULL, SHUTDOWN_PRI_SECOND);
185 
186 	/*
187 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
188 	 */
189 	bzero(&page_marker, sizeof(page_marker));
190 	for (q = 0; q < PQ_L2_SIZE; ++q) {
191 		page_marker[q].flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
192 		page_marker[q].queue = PQ_INACTIVE + q;
193 		page_marker[q].pc = q;
194 		page_marker[q].wire_count = 1;
195 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
196 		TAILQ_INSERT_HEAD(
197 			&vm_page_queues[PQ_INACTIVE + q].pl,
198 			&page_marker[q], pageq);
199 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
200 	}
201 
202 	vm_swapcache_min_hysteresis = 1024;
203 	vm_swapcache_hysteresis = vm_swapcache_min_hysteresis;
204 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
205 
206 	/*
207 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
208 	 */
209 	bzero(&object_marker, sizeof(object_marker));
210 	object_marker.type = OBJT_MARKER;
211 	lwkt_gettoken(&vmobj_token);
212 	TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
213 	lwkt_reltoken(&vmobj_token);
214 
215 	for (;;) {
216 		int reached_end;
217 		int scount;
218 		int count;
219 
220 		/*
221 		 * Handle shutdown
222 		 */
223 		kproc_suspend_loop();
224 
225 		/*
226 		 * Check every 5 seconds when not enabled or if no swap
227 		 * is present.
228 		 */
229 		if ((vm_swapcache_data_enable == 0 &&
230 		     vm_swapcache_meta_enable == 0) ||
231 		    vm_swap_max == 0) {
232 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
233 			continue;
234 		}
235 
236 		/*
237 		 * Polling rate when enabled is approximately 10 hz.
238 		 */
239 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
240 
241 		/*
242 		 * State hysteresis.  Generate write activity up to 75% of
243 		 * swap, then clean out swap assignments down to 70%, then
244 		 * repeat.
245 		 */
246 		if (state == SWAPC_WRITING) {
247 			if (vm_swap_cache_use > SWAPMAX(0))
248 				state = SWAPC_CLEANING;
249 		} else {
250 			if (vm_swap_cache_use < SWAPMAX(-10))
251 				state = SWAPC_WRITING;
252 		}
253 
254 		/*
255 		 * We are allowed to continue accumulating burst value
256 		 * in either state.  Allow the user to set curburst > maxburst
257 		 * for the initial load-in.
258 		 */
259 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
260 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
261 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
262 				vm_swapcache_curburst = vm_swapcache_maxburst;
263 		}
264 
265 		/*
266 		 * We don't want to nickle-and-dime the scan as that will
267 		 * create unnecessary fragmentation.  The minimum burst
268 		 * is one-seconds worth of accumulation.
269 		 */
270 		if (state != SWAPC_WRITING) {
271 			vm_swapcache_cleaning(&object_marker);
272 			continue;
273 		}
274 		if (vm_swapcache_curburst < vm_swapcache_accrate)
275 			continue;
276 
277 		reached_end = 0;
278 		count = vm_swapcache_maxlaunder / PQ_L2_SIZE + 2;
279 		scount = vm_swapcache_maxscan / PQ_L2_SIZE + 2;
280 
281 		if (burst == SWAPB_BURSTING) {
282 			if (vm_swapcache_writing_heuristic()) {
283 				for (q = 0; q < PQ_L2_SIZE; ++q) {
284 					reached_end +=
285 						vm_swapcache_writing(
286 							&page_marker[q],
287 							count,
288 							scount);
289 				}
290 			}
291 			if (vm_swapcache_curburst <= 0)
292 				burst = SWAPB_RECOVERING;
293 		} else if (vm_swapcache_curburst > vm_swapcache_minburst) {
294 			if (vm_swapcache_writing_heuristic()) {
295 				for (q = 0; q < PQ_L2_SIZE; ++q) {
296 					reached_end +=
297 						vm_swapcache_writing(
298 							&page_marker[q],
299 							count,
300 							scount);
301 				}
302 			}
303 			burst = SWAPB_BURSTING;
304 		}
305 		if (reached_end == PQ_L2_SIZE) {
306 			vm_swapcache_inactive_heuristic =
307 				-vm_swapcache_hysteresis;
308 		}
309 	}
310 
311 	/*
312 	 * Cleanup (NOT REACHED)
313 	 */
314 	for (q = 0; q < PQ_L2_SIZE; ++q) {
315 		vm_page_queues_spin_lock(PQ_INACTIVE + q);
316 		TAILQ_REMOVE(
317 			&vm_page_queues[PQ_INACTIVE + q].pl,
318 			&page_marker[q], pageq);
319 		vm_page_queues_spin_unlock(PQ_INACTIVE + q);
320 	}
321 
322 	lwkt_gettoken(&vmobj_token);
323 	TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
324 	lwkt_reltoken(&vmobj_token);
325 }
326 
327 static struct kproc_desc swpc_kp = {
328 	"swapcached",
329 	vm_swapcached_thread,
330 	&swapcached_thread
331 };
332 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
333 
334 /*
335  * Deal with an overflow of the heuristic counter or if the user
336  * manually changes the hysteresis.
337  *
338  * Try to avoid small incremental pageouts by waiting for enough
339  * pages to buildup in the inactive queue to hopefully get a good
340  * burst in.  This heuristic is bumped by the VM system and reset
341  * when our scan hits the end of the queue.
342  *
343  * Return TRUE if we need to take a writing pass.
344  */
345 static int
346 vm_swapcache_writing_heuristic(void)
347 {
348 	int hyst;
349 
350 	hyst = vmstats.v_inactive_count / 4;
351 	if (hyst < vm_swapcache_min_hysteresis)
352 		hyst = vm_swapcache_min_hysteresis;
353 	cpu_ccfence();
354 	vm_swapcache_hysteresis = hyst;
355 
356 	if (vm_swapcache_inactive_heuristic < -hyst)
357 		vm_swapcache_inactive_heuristic = -hyst;
358 
359 	return (vm_swapcache_inactive_heuristic >= 0);
360 }
361 
362 /*
363  * Take a writing pass on one of the inactive queues, return non-zero if
364  * we hit the end of the queue.
365  */
366 static int
367 vm_swapcache_writing(vm_page_t marker, int count, int scount)
368 {
369 	vm_object_t object;
370 	struct vnode *vp;
371 	vm_page_t m;
372 	int isblkdev;
373 
374 	/*
375 	 * Scan the inactive queue from our marker to locate
376 	 * suitable pages to push to the swap cache.
377 	 *
378 	 * We are looking for clean vnode-backed pages.
379 	 */
380 	vm_page_queues_spin_lock(marker->queue);
381 	while ((m = TAILQ_NEXT(marker, pageq)) != NULL &&
382 	       count > 0 && scount-- > 0) {
383 		KKASSERT(m->queue == marker->queue);
384 
385 		if (vm_swapcache_curburst < 0)
386 			break;
387 		TAILQ_REMOVE(
388 			&vm_page_queues[marker->queue].pl, marker, pageq);
389 		TAILQ_INSERT_AFTER(
390 			&vm_page_queues[marker->queue].pl, m, marker, pageq);
391 
392 		/*
393 		 * Ignore markers and ignore pages that already have a swap
394 		 * assignment.
395 		 */
396 		if (m->flags & (PG_MARKER | PG_SWAPPED))
397 			continue;
398 		if (vm_page_busy_try(m, TRUE))
399 			continue;
400 		vm_page_queues_spin_unlock(marker->queue);
401 
402 		if ((object = m->object) == NULL) {
403 			vm_page_wakeup(m);
404 			vm_page_queues_spin_lock(marker->queue);
405 			continue;
406 		}
407 		vm_object_hold(object);
408 		if (m->object != object) {
409 			vm_object_drop(object);
410 			vm_page_wakeup(m);
411 			vm_page_queues_spin_lock(marker->queue);
412 			continue;
413 		}
414 		if (vm_swapcache_test(m)) {
415 			vm_object_drop(object);
416 			vm_page_wakeup(m);
417 			vm_page_queues_spin_lock(marker->queue);
418 			continue;
419 		}
420 
421 		vp = object->handle;
422 		if (vp == NULL) {
423 			vm_object_drop(object);
424 			vm_page_wakeup(m);
425 			vm_page_queues_spin_lock(marker->queue);
426 			continue;
427 		}
428 
429 		switch(vp->v_type) {
430 		case VREG:
431 			/*
432 			 * PG_NOTMETA generically means 'don't swapcache this',
433 			 * and HAMMER will set this for regular data buffers
434 			 * (and leave it unset for meta-data buffers) as
435 			 * appropriate when double buffering is enabled.
436 			 */
437 			if (m->flags & PG_NOTMETA) {
438 				vm_object_drop(object);
439 				vm_page_wakeup(m);
440 				vm_page_queues_spin_lock(marker->queue);
441 				continue;
442 			}
443 
444 			/*
445 			 * If data_enable is 0 do not try to swapcache data.
446 			 * If use_chflags is set then only swapcache data for
447 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
448 			 */
449 			if (vm_swapcache_data_enable == 0 ||
450 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
451 			     vm_swapcache_use_chflags)) {
452 				vm_object_drop(object);
453 				vm_page_wakeup(m);
454 				vm_page_queues_spin_lock(marker->queue);
455 				continue;
456 			}
457 			if (vm_swapcache_maxfilesize &&
458 			    object->size >
459 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
460 				vm_object_drop(object);
461 				vm_page_wakeup(m);
462 				vm_page_queues_spin_lock(marker->queue);
463 				continue;
464 			}
465 			isblkdev = 0;
466 			break;
467 		case VCHR:
468 			/*
469 			 * PG_NOTMETA generically means 'don't swapcache this',
470 			 * and HAMMER will set this for regular data buffers
471 			 * (and leave it unset for meta-data buffers) as
472 			 * appropriate when double buffering is enabled.
473 			 */
474 			if (m->flags & PG_NOTMETA) {
475 				vm_object_drop(object);
476 				vm_page_wakeup(m);
477 				vm_page_queues_spin_lock(marker->queue);
478 				continue;
479 			}
480 			if (vm_swapcache_meta_enable == 0) {
481 				vm_object_drop(object);
482 				vm_page_wakeup(m);
483 				vm_page_queues_spin_lock(marker->queue);
484 				continue;
485 			}
486 			isblkdev = 1;
487 			break;
488 		default:
489 			vm_object_drop(object);
490 			vm_page_wakeup(m);
491 			vm_page_queues_spin_lock(marker->queue);
492 			continue;
493 		}
494 
495 
496 		/*
497 		 * Assign swap and initiate I/O.
498 		 *
499 		 * (adjust for the --count which also occurs in the loop)
500 		 */
501 		count -= vm_swapcached_flush(m, isblkdev);
502 
503 		/*
504 		 * Setup for next loop using marker.
505 		 */
506 		vm_object_drop(object);
507 		vm_page_queues_spin_lock(marker->queue);
508 	}
509 
510 	/*
511 	 * The marker could wind up at the end, which is ok.  If we hit the
512 	 * end of the list adjust the heuristic.
513 	 *
514 	 * Earlier inactive pages that were dirty and become clean
515 	 * are typically moved to the end of PQ_INACTIVE by virtue
516 	 * of vfs_vmio_release() when they become unwired from the
517 	 * buffer cache.
518 	 */
519 	vm_page_queues_spin_unlock(marker->queue);
520 
521 	/*
522 	 * m invalid but can be used to test for NULL
523 	 */
524 	return (m == NULL);
525 }
526 
527 /*
528  * Flush the specified page using the swap_pager.  The page
529  * must be busied by the caller and its disposition will become
530  * the responsibility of this function.
531  *
532  * Try to collect surrounding pages, including pages which may
533  * have already been assigned swap.  Try to cluster within a
534  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
535  * to match what swap_pager_putpages() can do.
536  *
537  * We also want to try to match against the buffer cache blocksize
538  * but we don't really know what it is here.  Since the buffer cache
539  * wires and unwires pages in groups the fact that we skip wired pages
540  * should be sufficient.
541  *
542  * Returns a count of pages we might have flushed (minimum 1)
543  */
544 static
545 int
546 vm_swapcached_flush(vm_page_t m, int isblkdev)
547 {
548 	vm_object_t object;
549 	vm_page_t marray[SWAP_META_PAGES];
550 	vm_pindex_t basei;
551 	int rtvals[SWAP_META_PAGES];
552 	int x;
553 	int i;
554 	int j;
555 	int count;
556 	int error;
557 
558 	vm_page_io_start(m);
559 	vm_page_protect(m, VM_PROT_READ);
560 	object = m->object;
561 	vm_object_hold(object);
562 
563 	/*
564 	 * Try to cluster around (m), keeping in mind that the swap pager
565 	 * can only do SMAP_META_PAGES worth of continguous write.
566 	 */
567 	x = (int)m->pindex & SWAP_META_MASK;
568 	marray[x] = m;
569 	basei = m->pindex;
570 	vm_page_wakeup(m);
571 
572 	for (i = x - 1; i >= 0; --i) {
573 		m = vm_page_lookup_busy_try(object, basei - x + i,
574 					    TRUE, &error);
575 		if (error || m == NULL)
576 			break;
577 		if (vm_swapcache_test(m)) {
578 			vm_page_wakeup(m);
579 			break;
580 		}
581 		if (isblkdev && (m->flags & PG_NOTMETA)) {
582 			vm_page_wakeup(m);
583 			break;
584 		}
585 		vm_page_io_start(m);
586 		vm_page_protect(m, VM_PROT_READ);
587 		if (m->queue - m->pc == PQ_CACHE) {
588 			vm_page_unqueue_nowakeup(m);
589 			vm_page_deactivate(m);
590 		}
591 		marray[i] = m;
592 		vm_page_wakeup(m);
593 	}
594 	++i;
595 
596 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
597 		m = vm_page_lookup_busy_try(object, basei - x + j,
598 					    TRUE, &error);
599 		if (error || m == NULL)
600 			break;
601 		if (vm_swapcache_test(m)) {
602 			vm_page_wakeup(m);
603 			break;
604 		}
605 		if (isblkdev && (m->flags & PG_NOTMETA)) {
606 			vm_page_wakeup(m);
607 			break;
608 		}
609 		vm_page_io_start(m);
610 		vm_page_protect(m, VM_PROT_READ);
611 		if (m->queue - m->pc == PQ_CACHE) {
612 			vm_page_unqueue_nowakeup(m);
613 			vm_page_deactivate(m);
614 		}
615 		marray[j] = m;
616 		vm_page_wakeup(m);
617 	}
618 
619 	count = j - i;
620 	vm_object_pip_add(object, count);
621 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
622 	vm_swapcache_write_count += count * PAGE_SIZE;
623 	vm_swapcache_curburst -= count * PAGE_SIZE;
624 
625 	while (i < j) {
626 		if (rtvals[i] != VM_PAGER_PEND) {
627 			vm_page_busy_wait(marray[i], FALSE, "swppgfd");
628 			vm_page_io_finish(marray[i]);
629 			vm_page_wakeup(marray[i]);
630 			vm_object_pip_wakeup(object);
631 		}
632 		++i;
633 	}
634 	vm_object_drop(object);
635 	return(count);
636 }
637 
638 /*
639  * Test whether a VM page is suitable for writing to the swapcache.
640  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
641  *
642  * Returns 0 on success, 1 on failure
643  */
644 static int
645 vm_swapcache_test(vm_page_t m)
646 {
647 	vm_object_t object;
648 
649 	if (m->flags & PG_UNMANAGED)
650 		return(1);
651 	if (m->hold_count || m->wire_count)
652 		return(1);
653 	if (m->valid != VM_PAGE_BITS_ALL)
654 		return(1);
655 	if (m->dirty & m->valid)
656 		return(1);
657 	if ((object = m->object) == NULL)
658 		return(1);
659 	if (object->type != OBJT_VNODE ||
660 	    (object->flags & OBJ_DEAD)) {
661 		return(1);
662 	}
663 	vm_page_test_dirty(m);
664 	if (m->dirty & m->valid)
665 		return(1);
666 	return(0);
667 }
668 
669 /*
670  * Cleaning pass.
671  *
672  * We clean whole objects up to 16MB
673  */
674 static
675 void
676 vm_swapcache_cleaning(vm_object_t marker)
677 {
678 	vm_object_t object;
679 	struct vnode *vp;
680 	int count;
681 	int scount;
682 	int n;
683 
684 	count = vm_swapcache_maxlaunder;
685 	scount = vm_swapcache_maxscan;
686 
687 	/*
688 	 * Look for vnode objects
689 	 */
690 	lwkt_gettoken(&vmobj_token);
691 
692 	while ((object = TAILQ_NEXT(marker, object_list)) != NULL) {
693 		/*
694 		 * We have to skip markers.  We cannot hold/drop marker
695 		 * objects!
696 		 */
697 		if (object->type == OBJT_MARKER) {
698 			vm_swapcache_movemarker(marker, object);
699 			continue;
700 		}
701 
702 		/*
703 		 * Safety, or in case there are millions of VM objects
704 		 * without swapcache backing.
705 		 */
706 		if (--scount <= 0)
707 			break;
708 
709 		/*
710 		 * We must hold the object before potentially yielding.
711 		 */
712 		vm_object_hold(object);
713 		lwkt_yield();
714 
715 		/*
716 		 * Only operate on live VNODE objects that are either
717 		 * VREG or VCHR (VCHR for meta-data).
718 		 */
719 		if ((object->type != OBJT_VNODE) ||
720 		    ((object->flags & OBJ_DEAD) ||
721 		     object->swblock_count == 0) ||
722 		    ((vp = object->handle) == NULL) ||
723 		    (vp->v_type != VREG && vp->v_type != VCHR)) {
724 			vm_object_drop(object);
725 			/* object may be invalid now */
726 			vm_swapcache_movemarker(marker, object);
727 			continue;
728 		}
729 
730 		/*
731 		 * Reset the object pindex stored in the marker if the
732 		 * working object has changed.
733 		 */
734 		if (marker->backing_object != object) {
735 			marker->size = 0;
736 			marker->backing_object_offset = 0;
737 			marker->backing_object = object;
738 		}
739 
740 		/*
741 		 * Look for swblocks starting at our iterator.
742 		 *
743 		 * The swap_pager_condfree() function attempts to free
744 		 * swap space starting at the specified index.  The index
745 		 * will be updated on return.  The function will return
746 		 * a scan factor (NOT the number of blocks freed).
747 		 *
748 		 * If it must cut its scan of the object short due to an
749 		 * excessive number of swblocks, or is able to free the
750 		 * requested number of blocks, it will return n >= count
751 		 * and we break and pick it back up on a future attempt.
752 		 *
753 		 * Scan the object linearly and try to batch large sets of
754 		 * blocks that are likely to clean out entire swap radix
755 		 * tree leafs.
756 		 */
757 		lwkt_token_swap();
758 		lwkt_reltoken(&vmobj_token);
759 
760 		n = swap_pager_condfree(object, &marker->size,
761 				    (count + SWAP_META_MASK) & ~SWAP_META_MASK);
762 
763 		vm_object_drop(object);		/* object may be invalid now */
764 		lwkt_gettoken(&vmobj_token);
765 
766 		/*
767 		 * If we have exhausted the object or deleted our per-pass
768 		 * page limit then move us to the next object.  Note that
769 		 * the current object may no longer be on the vm_object_list.
770 		 */
771 		if (n <= 0 ||
772 		    marker->backing_object_offset > vm_swapcache_cleanperobj) {
773 			vm_swapcache_movemarker(marker, object);
774 		}
775 
776 		/*
777 		 * If we have exhausted our max-launder stop for now.
778 		 */
779 		count -= n;
780 		marker->backing_object_offset += n * PAGE_SIZE;
781 		if (count < 0)
782 			break;
783 	}
784 
785 	/*
786 	 * If we wound up at the end of the list this will move the
787 	 * marker back to the beginning.
788 	 */
789 	if (object == NULL)
790 		vm_swapcache_movemarker(marker, NULL);
791 
792 	lwkt_reltoken(&vmobj_token);
793 }
794 
795 /*
796  * Move the marker past the current object.  Object can be stale, but we
797  * still need it to determine if the marker has to be moved.  If the object
798  * is still the 'current object' (object after the marker), we hop-scotch
799  * the marker past it.
800  */
801 static void
802 vm_swapcache_movemarker(vm_object_t marker, vm_object_t object)
803 {
804 	if (TAILQ_NEXT(marker, object_list) == object) {
805 		TAILQ_REMOVE(&vm_object_list, marker, object_list);
806 		if (object) {
807 			TAILQ_INSERT_AFTER(&vm_object_list, object,
808 					   marker, object_list);
809 		} else {
810 			TAILQ_INSERT_HEAD(&vm_object_list,
811 					  marker, object_list);
812 		}
813 	}
814 }
815