xref: /dragonfly/sys/vm/vnode_pager.c (revision 2702099d)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1990 University of Utah.
5  * Copyright (c) 1991 The Regents of the University of California.
6  * All rights reserved.
7  * Copyright (c) 1993, 1994 John S. Dyson
8  * Copyright (c) 1995, David Greenman
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vnode_pager.c	7.5 (Berkeley) 4/20/91
39  * $FreeBSD: src/sys/vm/vnode_pager.c,v 1.116.2.7 2002/12/31 09:34:51 dillon Exp $
40  */
41 
42 /*
43  * Page to/from files (vnodes).
44  */
45 
46 /*
47  * TODO:
48  *	Implement VOP_GETPAGES/PUTPAGES interface for filesystems. Will
49  *	greatly re-simplify the vnode_pager.
50  */
51 
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/kernel.h>
55 #include <sys/proc.h>
56 #include <sys/vnode.h>
57 #include <sys/mount.h>
58 #include <sys/buf.h>
59 #include <sys/vmmeter.h>
60 #include <sys/conf.h>
61 
62 #include <cpu/lwbuf.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_object.h>
66 #include <vm/vm_page.h>
67 #include <vm/vm_pager.h>
68 #include <vm/vm_map.h>
69 #include <vm/vnode_pager.h>
70 #include <vm/swap_pager.h>
71 #include <vm/vm_extern.h>
72 
73 #include <sys/thread2.h>
74 #include <vm/vm_page2.h>
75 
76 static void vnode_pager_dealloc (vm_object_t);
77 static int vnode_pager_getpage (vm_object_t, vm_page_t *, int);
78 static void vnode_pager_putpages (vm_object_t, vm_page_t *, int, boolean_t, int *);
79 static boolean_t vnode_pager_haspage (vm_object_t, vm_pindex_t);
80 
81 struct pagerops vnodepagerops = {
82 	vnode_pager_dealloc,
83 	vnode_pager_getpage,
84 	vnode_pager_putpages,
85 	vnode_pager_haspage
86 };
87 
88 static struct krate vbadrate = { 1 };
89 static struct krate vresrate = { 1 };
90 
91 long vnode_pbuf_freecnt = -1;	/* start out unlimited */
92 
93 /*
94  * Allocate a VM object for a vnode, typically a regular file vnode.
95  *
96  * Some additional information is required to generate a properly sized
97  * object which covers the entire buffer cache buffer straddling the file
98  * EOF.  Userland does not see the extra pages as the VM fault code tests
99  * against v_filesize.
100  */
101 vm_object_t
102 vnode_pager_alloc(void *handle, off_t length, vm_prot_t prot, off_t offset,
103 		  int blksize, int boff)
104 {
105 	vm_object_t object;
106 	struct vnode *vp;
107 	off_t loffset;
108 	vm_pindex_t lsize;
109 
110 	/*
111 	 * Pageout to vnode, no can do yet.
112 	 */
113 	if (handle == NULL)
114 		return (NULL);
115 
116 	/*
117 	 * XXX hack - This initialization should be put somewhere else.
118 	 */
119 	if (vnode_pbuf_freecnt < 0) {
120 	    vnode_pbuf_freecnt = nswbuf / 2 + 1;
121 	}
122 
123 	/*
124 	 * Serialize potential vnode/object teardowns and interlocks
125 	 */
126 	vp = (struct vnode *)handle;
127 	lwkt_gettoken(&vp->v_token);
128 
129 	/*
130 	 * Prevent race condition when allocating the object. This
131 	 * can happen with NFS vnodes since the nfsnode isn't locked.
132 	 */
133 	while (vp->v_flag & VOLOCK) {
134 		vsetflags(vp, VOWANT);
135 		tsleep(vp, 0, "vnpobj", 0);
136 	}
137 	vsetflags(vp, VOLOCK);
138 	lwkt_reltoken(&vp->v_token);
139 
140 	/*
141 	 * If the object is being terminated, wait for it to
142 	 * go away.
143 	 */
144 	while ((object = vp->v_object) != NULL) {
145 		vm_object_hold(object);
146 		if ((object->flags & OBJ_DEAD) == 0)
147 			break;
148 		vm_object_dead_sleep(object, "vadead");
149 		vm_object_drop(object);
150 	}
151 
152 	if (vp->v_sysref.refcnt <= 0)
153 		panic("vnode_pager_alloc: no vnode reference");
154 
155 	/*
156 	 * Round up to the *next* block, then destroy the buffers in question.
157 	 * Since we are only removing some of the buffers we must rely on the
158 	 * scan count to determine whether a loop is necessary.
159 	 *
160 	 * Destroy any pages beyond the last buffer.
161 	 */
162 	if (boff < 0)
163 		boff = (int)(length % blksize);
164 	if (boff)
165 		loffset = length + (blksize - boff);
166 	else
167 		loffset = length;
168 	lsize = OFF_TO_IDX(round_page64(loffset));
169 
170 	if (object == NULL) {
171 		/*
172 		 * And an object of the appropriate size
173 		 */
174 		object = vm_object_allocate_hold(OBJT_VNODE, lsize);
175 		object->handle = handle;
176 		vp->v_object = object;
177 		vp->v_filesize = length;
178 		if (vp->v_mount && (vp->v_mount->mnt_kern_flag & MNTK_NOMSYNC))
179 			vm_object_set_flag(object, OBJ_NOMSYNC);
180 	} else {
181 		object->ref_count++;
182 		if (object->size != lsize) {
183 			kprintf("vnode_pager_alloc: Warning, objsize "
184 				"mismatch %jd/%jd vp=%p obj=%p\n",
185 				(intmax_t)object->size,
186 				(intmax_t)lsize,
187 				vp, object);
188 		}
189 		if (vp->v_filesize != length) {
190 			kprintf("vnode_pager_alloc: Warning, filesize "
191 				"mismatch %jd/%jd vp=%p obj=%p\n",
192 				(intmax_t)vp->v_filesize,
193 				(intmax_t)length,
194 				vp, object);
195 		}
196 	}
197 
198 	vref(vp);
199 	lwkt_gettoken(&vp->v_token);
200 	vclrflags(vp, VOLOCK);
201 	if (vp->v_flag & VOWANT) {
202 		vclrflags(vp, VOWANT);
203 		wakeup(vp);
204 	}
205 	lwkt_reltoken(&vp->v_token);
206 
207 	vm_object_drop(object);
208 
209 	return (object);
210 }
211 
212 /*
213  * Add a ref to a vnode's existing VM object, return the object or
214  * NULL if the vnode did not have one.  This does not create the
215  * object (we can't since we don't know what the proper blocksize/boff
216  * is to match the VFS's use of the buffer cache).
217  */
218 vm_object_t
219 vnode_pager_reference(struct vnode *vp)
220 {
221 	vm_object_t object;
222 
223 	/*
224 	 * Prevent race condition when allocating the object. This
225 	 * can happen with NFS vnodes since the nfsnode isn't locked.
226 	 *
227 	 * Serialize potential vnode/object teardowns and interlocks
228 	 */
229 	lwkt_gettoken(&vp->v_token);
230 	while (vp->v_flag & VOLOCK) {
231 		vsetflags(vp, VOWANT);
232 		tsleep(vp, 0, "vnpobj", 0);
233 	}
234 	vsetflags(vp, VOLOCK);
235 	lwkt_reltoken(&vp->v_token);
236 
237 	/*
238 	 * Prevent race conditions against deallocation of the VM
239 	 * object.
240 	 */
241 	while ((object = vp->v_object) != NULL) {
242 		vm_object_hold(object);
243 		if ((object->flags & OBJ_DEAD) == 0)
244 			break;
245 		vm_object_dead_sleep(object, "vadead");
246 		vm_object_drop(object);
247 	}
248 
249 	/*
250 	 * The object is expected to exist, the caller will handle
251 	 * NULL returns if it does not.
252 	 */
253 	if (object) {
254 		object->ref_count++;
255 		vref(vp);
256 	}
257 
258 	lwkt_gettoken(&vp->v_token);
259 	vclrflags(vp, VOLOCK);
260 	if (vp->v_flag & VOWANT) {
261 		vclrflags(vp, VOWANT);
262 		wakeup(vp);
263 	}
264 	lwkt_reltoken(&vp->v_token);
265 	if (object)
266 		vm_object_drop(object);
267 
268 	return (object);
269 }
270 
271 static void
272 vnode_pager_dealloc(vm_object_t object)
273 {
274 	struct vnode *vp = object->handle;
275 
276 	if (vp == NULL)
277 		panic("vnode_pager_dealloc: pager already dealloced");
278 
279 	vm_object_pip_wait(object, "vnpdea");
280 
281 	object->handle = NULL;
282 	object->type = OBJT_DEAD;
283 	vp->v_object = NULL;
284 	vp->v_filesize = NOOFFSET;
285 	vclrflags(vp, VTEXT | VOBJBUF);
286 	swap_pager_freespace_all(object);
287 }
288 
289 /*
290  * Return whether the vnode pager has the requested page.  Return the
291  * number of disk-contiguous pages before and after the requested page,
292  * not including the requested page.
293  */
294 static boolean_t
295 vnode_pager_haspage(vm_object_t object, vm_pindex_t pindex)
296 {
297 	struct vnode *vp = object->handle;
298 	off_t loffset;
299 	off_t doffset;
300 	int voff;
301 	int bsize;
302 	int error;
303 
304 	/*
305 	 * If no vp or vp is doomed or marked transparent to VM, we do not
306 	 * have the page.
307 	 */
308 	if ((vp == NULL) || (vp->v_flag & VRECLAIMED))
309 		return FALSE;
310 
311 	/*
312 	 * If filesystem no longer mounted or offset beyond end of file we do
313 	 * not have the page.
314 	 */
315 	loffset = IDX_TO_OFF(pindex);
316 
317 	if (vp->v_mount == NULL || loffset >= vp->v_filesize)
318 		return FALSE;
319 
320 	bsize = vp->v_mount->mnt_stat.f_iosize;
321 	voff = loffset % bsize;
322 
323 	/*
324 	 * XXX
325 	 *
326 	 * BMAP returns byte counts before and after, where after
327 	 * is inclusive of the base page.  haspage must return page
328 	 * counts before and after where after does not include the
329 	 * base page.
330 	 *
331 	 * BMAP is allowed to return a *after of 0 for backwards
332 	 * compatibility.  The base page is still considered valid if
333 	 * no error is returned.
334 	 */
335 	error = VOP_BMAP(vp, loffset - voff, &doffset, NULL, NULL, 0);
336 	if (error)
337 		return TRUE;
338 	if (doffset == NOOFFSET)
339 		return FALSE;
340 	return TRUE;
341 }
342 
343 /*
344  * Lets the VM system know about a change in size for a file.
345  * We adjust our own internal size and flush any cached pages in
346  * the associated object that are affected by the size change.
347  *
348  * NOTE: This routine may be invoked as a result of a pager put
349  * operation (possibly at object termination time), so we must be careful.
350  *
351  * NOTE: vp->v_filesize is initialized to NOOFFSET (-1), be sure that
352  * we do not blow up on the case.  nsize will always be >= 0, however.
353  */
354 void
355 vnode_pager_setsize(struct vnode *vp, vm_ooffset_t nsize)
356 {
357 	vm_pindex_t nobjsize;
358 	vm_pindex_t oobjsize;
359 	vm_object_t object;
360 
361 	while ((object = vp->v_object) != NULL) {
362 		vm_object_hold(object);
363 		if (vp->v_object == object)
364 			break;
365 		vm_object_drop(object);
366 	}
367 	if (object == NULL)
368 		return;
369 
370 	/*
371 	 * Hasn't changed size
372 	 */
373 	if (nsize == vp->v_filesize) {
374 		vm_object_drop(object);
375 		return;
376 	}
377 
378 	/*
379 	 * Has changed size.  Adjust the VM object's size and v_filesize
380 	 * before we start scanning pages to prevent new pages from being
381 	 * allocated during the scan.
382 	 */
383 	nobjsize = OFF_TO_IDX(nsize + PAGE_MASK);
384 	oobjsize = object->size;
385 	object->size = nobjsize;
386 
387 	/*
388 	 * File has shrunk. Toss any cached pages beyond the new EOF.
389 	 */
390 	if (nsize < vp->v_filesize) {
391 		vp->v_filesize = nsize;
392 		if (nobjsize < oobjsize) {
393 			vm_object_page_remove(object, nobjsize, oobjsize,
394 					      FALSE);
395 		}
396 		/*
397 		 * This gets rid of garbage at the end of a page that is now
398 		 * only partially backed by the vnode.  Since we are setting
399 		 * the entire page valid & clean after we are done we have
400 		 * to be sure that the portion of the page within the file
401 		 * bounds is already valid.  If it isn't then making it
402 		 * valid would create a corrupt block.
403 		 */
404 		if (nsize & PAGE_MASK) {
405 			vm_offset_t kva;
406 			vm_page_t m;
407 
408 			m = vm_page_lookup_busy_wait(object, OFF_TO_IDX(nsize),
409 						     TRUE, "vsetsz");
410 
411 			if (m && m->valid) {
412 				int base = (int)nsize & PAGE_MASK;
413 				int size = PAGE_SIZE - base;
414 				struct lwbuf *lwb;
415 				struct lwbuf lwb_cache;
416 
417 				/*
418 				 * Clear out partial-page garbage in case
419 				 * the page has been mapped.
420 				 *
421 				 * This is byte aligned.
422 				 */
423 				lwb = lwbuf_alloc(m, &lwb_cache);
424 				kva = lwbuf_kva(lwb);
425 				bzero((caddr_t)kva + base, size);
426 				lwbuf_free(lwb);
427 
428 				/*
429 				 * XXX work around SMP data integrity race
430 				 * by unmapping the page from user processes.
431 				 * The garbage we just cleared may be mapped
432 				 * to a user process running on another cpu
433 				 * and this code is not running through normal
434 				 * I/O channels which handle SMP issues for
435 				 * us, so unmap page to synchronize all cpus.
436 				 *
437 				 * XXX should vm_pager_unmap_page() have
438 				 * dealt with this?
439 				 */
440 				vm_page_protect(m, VM_PROT_NONE);
441 
442 				/*
443 				 * Clear out partial-page dirty bits.  This
444 				 * has the side effect of setting the valid
445 				 * bits, but that is ok.  There are a bunch
446 				 * of places in the VM system where we expected
447 				 * m->dirty == VM_PAGE_BITS_ALL.  The file EOF
448 				 * case is one of them.  If the page is still
449 				 * partially dirty, make it fully dirty.
450 				 *
451 				 * NOTE: We do not clear out the valid
452 				 * bits.  This would prevent bogus_page
453 				 * replacement from working properly.
454 				 *
455 				 * NOTE: We do not want to clear the dirty
456 				 * bit for a partial DEV_BSIZE'd truncation!
457 				 * This is DEV_BSIZE aligned!
458 				 */
459 				vm_page_clear_dirty_beg_nonincl(m, base, size);
460 				if (m->dirty != 0)
461 					m->dirty = VM_PAGE_BITS_ALL;
462 				vm_page_wakeup(m);
463 			} else if (m) {
464 				vm_page_wakeup(m);
465 			}
466 		}
467 	} else {
468 		vp->v_filesize = nsize;
469 	}
470 	vm_object_drop(object);
471 }
472 
473 /*
474  * Release a page busied for a getpages operation.  The page may have become
475  * wired (typically due to being used by the buffer cache) or otherwise been
476  * soft-busied and cannot be freed in that case.  A held page can still be
477  * freed.
478  */
479 void
480 vnode_pager_freepage(vm_page_t m)
481 {
482 	if (m->busy || m->wire_count || (m->flags & PG_NEED_COMMIT)) {
483 		vm_page_activate(m);
484 		vm_page_wakeup(m);
485 	} else {
486 		vm_page_free(m);
487 	}
488 }
489 
490 /*
491  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
492  * implement their own VOP_GETPAGES, their VOP_GETPAGES should call to
493  * vnode_pager_generic_getpages() to implement the previous behaviour.
494  *
495  * All other FS's should use the bypass to get to the local media
496  * backing vp's VOP_GETPAGES.
497  */
498 static int
499 vnode_pager_getpage(vm_object_t object, vm_page_t *mpp, int seqaccess)
500 {
501 	int rtval;
502 	struct vnode *vp;
503 
504 	vp = object->handle;
505 	rtval = VOP_GETPAGES(vp, mpp, PAGE_SIZE, 0, 0, seqaccess);
506 	if (rtval == EOPNOTSUPP)
507 		panic("vnode_pager: vfs's must implement vop_getpages");
508 	return rtval;
509 }
510 
511 /*
512  * This is now called from local media FS's to operate against their
513  * own vnodes if they fail to implement VOP_GETPAGES.
514  *
515  * With all the caching local media devices do these days there is really
516  * very little point to attempting to restrict the I/O size to contiguous
517  * blocks on-disk, especially if our caller thinks we need all the specified
518  * pages.  Just construct and issue a READ.
519  */
520 int
521 vnode_pager_generic_getpages(struct vnode *vp, vm_page_t *mpp, int bytecount,
522 			     int reqpage, int seqaccess)
523 {
524 	struct iovec aiov;
525 	struct uio auio;
526 	off_t foff;
527 	int error;
528 	int count;
529 	int i;
530 	int ioflags;
531 
532 	/*
533 	 * Do not do anything if the vnode is bad.
534 	 */
535 	if (vp->v_mount == NULL)
536 		return VM_PAGER_BAD;
537 
538 	/*
539 	 * Calculate the number of pages.  Since we are paging in whole
540 	 * pages, adjust bytecount to be an integral multiple of the page
541 	 * size.  It will be clipped to the file EOF later on.
542 	 */
543 	bytecount = round_page(bytecount);
544 	count = bytecount / PAGE_SIZE;
545 
546 	/*
547 	 * We could check m[reqpage]->valid here and shortcut the operation,
548 	 * but doing so breaks read-ahead.  Instead assume that the VM
549 	 * system has already done at least the check, don't worry about
550 	 * any races, and issue the VOP_READ to allow read-ahead to function.
551 	 *
552 	 * This keeps the pipeline full for I/O bound sequentially scanned
553 	 * mmap()'s
554 	 */
555 	/* don't shortcut */
556 
557 	/*
558 	 * Discard pages past the file EOF.  If the requested page is past
559 	 * the file EOF we just leave its valid bits set to 0, the caller
560 	 * expects to maintain ownership of the requested page.  If the
561 	 * entire range is past file EOF discard everything and generate
562 	 * a pagein error.
563 	 */
564 	foff = IDX_TO_OFF(mpp[0]->pindex);
565 	if (foff >= vp->v_filesize) {
566 		for (i = 0; i < count; i++) {
567 			if (i != reqpage)
568 				vnode_pager_freepage(mpp[i]);
569 		}
570 		return VM_PAGER_ERROR;
571 	}
572 
573 	if (foff + bytecount > vp->v_filesize) {
574 		bytecount = vp->v_filesize - foff;
575 		i = round_page(bytecount) / PAGE_SIZE;
576 		while (count > i) {
577 			--count;
578 			if (count != reqpage)
579 				vnode_pager_freepage(mpp[count]);
580 		}
581 	}
582 
583 	/*
584 	 * The size of the transfer is bytecount.  bytecount will be an
585 	 * integral multiple of the page size unless it has been clipped
586 	 * to the file EOF.  The transfer cannot exceed the file EOF.
587 	 *
588 	 * When dealing with real devices we must round-up to the device
589 	 * sector size.
590 	 */
591 	if (vp->v_type == VBLK || vp->v_type == VCHR) {
592 		int secmask = vp->v_rdev->si_bsize_phys - 1;
593 		KASSERT(secmask < PAGE_SIZE, ("vnode_pager_generic_getpages: sector size %d too large", secmask + 1));
594 		bytecount = (bytecount + secmask) & ~secmask;
595 	}
596 
597 	/*
598 	 * Severe hack to avoid deadlocks with the buffer cache
599 	 */
600 	for (i = 0; i < count; ++i) {
601 		vm_page_t mt = mpp[i];
602 
603 		vm_page_io_start(mt);
604 		vm_page_wakeup(mt);
605 	}
606 
607 	/*
608 	 * Issue the I/O with some read-ahead if bytecount > PAGE_SIZE
609 	 */
610 	ioflags = IO_VMIO;
611 	if (seqaccess)
612 		ioflags |= IO_SEQMAX << IO_SEQSHIFT;
613 
614 	aiov.iov_base = NULL;
615 	aiov.iov_len = bytecount;
616 	auio.uio_iov = &aiov;
617 	auio.uio_iovcnt = 1;
618 	auio.uio_offset = foff;
619 	auio.uio_segflg = UIO_NOCOPY;
620 	auio.uio_rw = UIO_READ;
621 	auio.uio_resid = bytecount;
622 	auio.uio_td = NULL;
623 	mycpu->gd_cnt.v_vnodein++;
624 	mycpu->gd_cnt.v_vnodepgsin += count;
625 
626 	error = VOP_READ(vp, &auio, ioflags, proc0.p_ucred);
627 
628 	/*
629 	 * Severe hack to avoid deadlocks with the buffer cache
630 	 */
631 	for (i = 0; i < count; ++i) {
632 		vm_page_busy_wait(mpp[i], FALSE, "getpgs");
633 		vm_page_io_finish(mpp[i]);
634 	}
635 
636 	/*
637 	 * Calculate the actual number of bytes read and clean up the
638 	 * page list.
639 	 */
640 	bytecount -= auio.uio_resid;
641 
642 	for (i = 0; i < count; ++i) {
643 		vm_page_t mt = mpp[i];
644 
645 		if (i != reqpage) {
646 			if (error == 0 && mt->valid) {
647 				if (mt->flags & PG_REFERENCED)
648 					vm_page_activate(mt);
649 				else
650 					vm_page_deactivate(mt);
651 				vm_page_wakeup(mt);
652 			} else {
653 				vnode_pager_freepage(mt);
654 			}
655 		} else if (mt->valid == 0) {
656 			if (error == 0) {
657 				kprintf("page failed but no I/O error page "
658 					"%p object %p pindex %d\n",
659 					mt, mt->object, (int) mt->pindex);
660 				/* whoops, something happened */
661 				error = EINVAL;
662 			}
663 		} else if (mt->valid != VM_PAGE_BITS_ALL) {
664 			/*
665 			 * Zero-extend the requested page if necessary (if
666 			 * the filesystem is using a small block size).
667 			 */
668 			vm_page_zero_invalid(mt, TRUE);
669 		}
670 	}
671 	if (error) {
672 		kprintf("vnode_pager_getpage: I/O read error\n");
673 	}
674 	return (error ? VM_PAGER_ERROR : VM_PAGER_OK);
675 }
676 
677 /*
678  * EOPNOTSUPP is no longer legal.  For local media VFS's that do not
679  * implement their own VOP_PUTPAGES, their VOP_PUTPAGES should call to
680  * vnode_pager_generic_putpages() to implement the previous behaviour.
681  *
682  * Caller has already cleared the pmap modified bits, if any.
683  *
684  * All other FS's should use the bypass to get to the local media
685  * backing vp's VOP_PUTPAGES.
686  */
687 static void
688 vnode_pager_putpages(vm_object_t object, vm_page_t *m, int count,
689 		     boolean_t sync, int *rtvals)
690 {
691 	int rtval;
692 	struct vnode *vp;
693 	int bytes = count * PAGE_SIZE;
694 
695 	/*
696 	 * Force synchronous operation if we are extremely low on memory
697 	 * to prevent a low-memory deadlock.  VOP operations often need to
698 	 * allocate more memory to initiate the I/O ( i.e. do a BMAP
699 	 * operation ).  The swapper handles the case by limiting the amount
700 	 * of asynchronous I/O, but that sort of solution doesn't scale well
701 	 * for the vnode pager without a lot of work.
702 	 *
703 	 * Also, the backing vnode's iodone routine may not wake the pageout
704 	 * daemon up.  This should be probably be addressed XXX.
705 	 */
706 
707 	if ((vmstats.v_free_count + vmstats.v_cache_count) <
708 	    vmstats.v_pageout_free_min) {
709 		sync |= OBJPC_SYNC;
710 	}
711 
712 	/*
713 	 * Call device-specific putpages function
714 	 */
715 	vp = object->handle;
716 	rtval = VOP_PUTPAGES(vp, m, bytes, sync, rtvals, 0);
717 	if (rtval == EOPNOTSUPP) {
718 	    kprintf("vnode_pager: *** WARNING *** stale FS putpages\n");
719 	    rtval = vnode_pager_generic_putpages( vp, m, bytes, sync, rtvals);
720 	}
721 }
722 
723 
724 /*
725  * This is now called from local media FS's to operate against their
726  * own vnodes if they fail to implement VOP_PUTPAGES.
727  *
728  * This is typically called indirectly via the pageout daemon and
729  * clustering has already typically occured, so in general we ask the
730  * underlying filesystem to write the data out asynchronously rather
731  * then delayed.
732  */
733 int
734 vnode_pager_generic_putpages(struct vnode *vp, vm_page_t *m, int bytecount,
735 			     int flags, int *rtvals)
736 {
737 	int i;
738 	int maxsize, ncount, count;
739 	vm_ooffset_t poffset;
740 	struct uio auio;
741 	struct iovec aiov;
742 	int error;
743 	int ioflags;
744 
745 	count = bytecount / PAGE_SIZE;
746 
747 	for (i = 0; i < count; i++)
748 		rtvals[i] = VM_PAGER_AGAIN;
749 
750 	if ((int) m[0]->pindex < 0) {
751 		kprintf("vnode_pager_putpages: attempt to write meta-data!!! -- 0x%lx(%x)\n",
752 			(long)m[0]->pindex, m[0]->dirty);
753 		rtvals[0] = VM_PAGER_BAD;
754 		return VM_PAGER_BAD;
755 	}
756 
757 	maxsize = count * PAGE_SIZE;
758 	ncount = count;
759 
760 	poffset = IDX_TO_OFF(m[0]->pindex);
761 
762 	/*
763 	 * If the page-aligned write is larger then the actual file we
764 	 * have to invalidate pages occuring beyond the file EOF.
765 	 *
766 	 * If the file EOF resides in the middle of a page we still clear
767 	 * all of that page's dirty bits later on.  If we didn't it would
768 	 * endlessly re-write.
769 	 *
770 	 * We do not under any circumstances truncate the valid bits, as
771 	 * this will screw up bogus page replacement.
772 	 *
773 	 * The caller has already read-protected the pages.  The VFS must
774 	 * use the buffer cache to wrap the pages.  The pages might not
775 	 * be immediately flushed by the buffer cache but once under its
776 	 * control the pages themselves can wind up being marked clean
777 	 * and their covering buffer cache buffer can be marked dirty.
778 	 */
779 	if (poffset + maxsize > vp->v_filesize) {
780 		if (poffset < vp->v_filesize) {
781 			maxsize = vp->v_filesize - poffset;
782 			ncount = btoc(maxsize);
783 		} else {
784 			maxsize = 0;
785 			ncount = 0;
786 		}
787 		if (ncount < count) {
788 			for (i = ncount; i < count; i++) {
789 				rtvals[i] = VM_PAGER_BAD;
790 			}
791 		}
792 	}
793 
794 	/*
795 	 * pageouts are already clustered, use IO_ASYNC to force a bawrite()
796 	 * rather then a bdwrite() to prevent paging I/O from saturating
797 	 * the buffer cache.  Dummy-up the sequential heuristic to cause
798 	 * large ranges to cluster.  If neither IO_SYNC or IO_ASYNC is set,
799 	 * the system decides how to cluster.
800 	 */
801 	ioflags = IO_VMIO;
802 	if (flags & (VM_PAGER_PUT_SYNC | VM_PAGER_PUT_INVAL))
803 		ioflags |= IO_SYNC;
804 	else if ((flags & VM_PAGER_CLUSTER_OK) == 0)
805 		ioflags |= IO_ASYNC;
806 	ioflags |= (flags & VM_PAGER_PUT_INVAL) ? IO_INVAL: 0;
807 	ioflags |= IO_SEQMAX << IO_SEQSHIFT;
808 
809 	aiov.iov_base = (caddr_t) 0;
810 	aiov.iov_len = maxsize;
811 	auio.uio_iov = &aiov;
812 	auio.uio_iovcnt = 1;
813 	auio.uio_offset = poffset;
814 	auio.uio_segflg = UIO_NOCOPY;
815 	auio.uio_rw = UIO_WRITE;
816 	auio.uio_resid = maxsize;
817 	auio.uio_td = NULL;
818 	error = VOP_WRITE(vp, &auio, ioflags, proc0.p_ucred);
819 	mycpu->gd_cnt.v_vnodeout++;
820 	mycpu->gd_cnt.v_vnodepgsout += ncount;
821 
822 	if (error) {
823 		krateprintf(&vbadrate,
824 			    "vnode_pager_putpages: I/O error %d\n", error);
825 	}
826 	if (auio.uio_resid) {
827 		krateprintf(&vresrate,
828 			    "vnode_pager_putpages: residual I/O %zd at %lu\n",
829 			    auio.uio_resid, (u_long)m[0]->pindex);
830 	}
831 	if (error == 0) {
832 		for (i = 0; i < ncount; i++) {
833 			rtvals[i] = VM_PAGER_OK;
834 			vm_page_undirty(m[i]);
835 		}
836 	}
837 	return rtvals[0];
838 }
839 
840 /*
841  * Run the chain and if the bottom-most object is a vnode-type lock the
842  * underlying vnode.  A locked vnode or NULL is returned.
843  */
844 struct vnode *
845 vnode_pager_lock(vm_object_t object)
846 {
847 	struct vnode *vp = NULL;
848 	vm_object_t lobject;
849 	vm_object_t tobject;
850 	int error;
851 
852 	if (object == NULL)
853 		return(NULL);
854 
855 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
856 	lobject = object;
857 
858 	while (lobject->type != OBJT_VNODE) {
859 		if (lobject->flags & OBJ_DEAD)
860 			break;
861 		tobject = lobject->backing_object;
862 		if (tobject == NULL)
863 			break;
864 		vm_object_hold_shared(tobject);
865 		if (tobject == lobject->backing_object) {
866 			if (lobject != object) {
867 				vm_object_lock_swap();
868 				vm_object_drop(lobject);
869 			}
870 			lobject = tobject;
871 		} else {
872 			vm_object_drop(tobject);
873 		}
874 	}
875 	while (lobject->type == OBJT_VNODE &&
876 	       (lobject->flags & OBJ_DEAD) == 0) {
877 		/*
878 		 * Extract the vp
879 		 */
880 		vp = lobject->handle;
881 		error = vget(vp, LK_SHARED | LK_RETRY | LK_CANRECURSE);
882 		if (error == 0) {
883 			if (lobject->handle == vp)
884 				break;
885 			vput(vp);
886 		} else {
887 			kprintf("vnode_pager_lock: vp %p error %d "
888 				"lockstatus %d, retrying\n",
889 				vp, error,
890 				lockstatus(&vp->v_lock, curthread));
891 			tsleep(object->handle, 0, "vnpgrl", hz);
892 		}
893 		vp = NULL;
894 	}
895 	if (lobject != object)
896 		vm_object_drop(lobject);
897 	return (vp);
898 }
899