1 /*-
2  * Copyright (c) 2008-2013 David Schultz <das@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/tools/regression/lib/msun/test-invctrig.c,v 1.1 2013/05/31 00:27:55 svnexp Exp $
27  */
28 
29 /*
30  * Tests for casin[h](), cacos[h](), and catan[h]().
31  */
32 
33 #include <assert.h>
34 #include <complex.h>
35 #include <fenv.h>
36 #include <float.h>
37 #include <math.h>
38 #include <stdio.h>
39 
40 #define	ALL_STD_EXCEPT	(FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
41 			 FE_OVERFLOW | FE_UNDERFLOW)
42 #define	OPT_INVALID	(ALL_STD_EXCEPT & ~FE_INVALID)
43 #define	OPT_INEXACT	(ALL_STD_EXCEPT & ~FE_INEXACT)
44 #define	FLT_ULP()	ldexpl(1.0, 1 - FLT_MANT_DIG)
45 #define	DBL_ULP()	ldexpl(1.0, 1 - DBL_MANT_DIG)
46 #define	LDBL_ULP()	ldexpl(1.0, 1 - LDBL_MANT_DIG)
47 
48 #pragma	STDC FENV_ACCESS	ON
49 #pragma	STDC CX_LIMITED_RANGE	OFF
50 
51 /* Flags that determine whether to check the signs of the result. */
52 #define	CS_REAL	1
53 #define	CS_IMAG	2
54 #define	CS_BOTH	(CS_REAL | CS_IMAG)
55 
56 #ifdef	DEBUG
57 #define	debug(...)	printf(__VA_ARGS__)
58 #else
59 #define	debug(...)	(void)0
60 #endif
61 
62 /*
63  * Test that a function returns the correct value and sets the
64  * exception flags correctly. The exceptmask specifies which
65  * exceptions we should check. We need to be lenient for several
66  * reasons, but mainly because on some architectures it's impossible
67  * to raise FE_OVERFLOW without raising FE_INEXACT.
68  *
69  * These are macros instead of functions so that assert provides more
70  * meaningful error messages.
71  *
72  * XXX The volatile here is to avoid gcc's bogus constant folding and work
73  *     around the lack of support for the FENV_ACCESS pragma.
74  */
75 #define	test_p(func, z, result, exceptmask, excepts, checksign)	do {	\
76 	volatile long double complex _d = z;				\
77 	debug("  testing %s(%Lg + %Lg I) == %Lg + %Lg I\n", #func,	\
78 	    creall(_d), cimagl(_d), creall(result), cimagl(result));	\
79 	assert(feclearexcept(FE_ALL_EXCEPT) == 0);			\
80 	assert(cfpequal((func)(_d), (result), (checksign)));		\
81 	assert(((func), fetestexcept(exceptmask) == (excepts)));	\
82 } while (0)
83 
84 /*
85  * Test within a given tolerance.  The tolerance indicates relative error
86  * in ulps.
87  */
88 #define	test_p_tol(func, z, result, tol)			do {	\
89 	volatile long double complex _d = z;				\
90 	debug("  testing %s(%Lg + %Lg I) ~= %Lg + %Lg I\n", #func,	\
91 	    creall(_d), cimagl(_d), creall(result), cimagl(result));	\
92 	assert(cfpequal_tol((func)(_d), (result), (tol)));		\
93 } while (0)
94 
95 /* These wrappers apply the identities f(conj(z)) = conj(f(z)). */
96 #define	test(func, z, result, exceptmask, excepts, checksign)	do {	\
97 	test_p(func, z, result, exceptmask, excepts, checksign);	\
98 	test_p(func, conjl(z), conjl(result), exceptmask, excepts, checksign); \
99 } while (0)
100 #define	test_tol(func, z, result, tol)				do {	\
101 	test_p_tol(func, z, result, tol);				\
102 	test_p_tol(func, conjl(z), conjl(result), tol);			\
103 } while (0)
104 
105 /* Test the given function in all precisions. */
106 #define	testall(func, x, result, exceptmask, excepts, checksign) do {	\
107 	test(func, x, result, exceptmask, excepts, checksign);		\
108 	test(func##f, x, result, exceptmask, excepts, checksign);	\
109 } while (0)
110 #define	testall_odd(func, x, result, exceptmask, excepts, checksign) do { \
111 	testall(func, x, result, exceptmask, excepts, checksign);	\
112 	testall(func, -(x), -result, exceptmask, excepts, checksign);	\
113 } while (0)
114 #define	testall_even(func, x, result, exceptmask, excepts, checksign) do { \
115 	testall(func, x, result, exceptmask, excepts, checksign);	\
116 	testall(func, -(x), result, exceptmask, excepts, checksign);	\
117 } while (0)
118 
119 /*
120  * Test the given function in all precisions, within a given tolerance.
121  * The tolerance is specified in ulps.
122  */
123 #define	testall_tol(func, x, result, tol)	       		   do { \
124 	test_tol(func, x, result, (tol) * DBL_ULP());			\
125 	test_tol(func##f, x, result, (tol) * FLT_ULP());		\
126 } while (0)
127 #define	testall_odd_tol(func, x, result, tol)	       		   do { \
128 	testall_tol(func, x, result, tol);				\
129 	testall_tol(func, -(x), -result, tol);				\
130 } while (0)
131 #define	testall_even_tol(func, x, result, tol)	       		   do { \
132 	testall_tol(func, x, result, tol);				\
133 	testall_tol(func, -(x), result, tol);				\
134 } while (0)
135 
136 /* XXX static const long double */
137 #define pi 3.14159265358979323846264338327950280L
138 #define c3pi  9.42477796076937971538793014983850839L
139 
140 /*
141  * Determine whether x and y are equal, with two special rules:
142  *	+0.0 != -0.0
143  *	 NaN == NaN
144  * If checksign is 0, we compare the absolute values instead.
145  */
146 static int
147 fpequal(long double x, long double y, int checksign)
148 {
149 	if (isnan(x) && isnan(y))
150 		return (1);
151 	if (checksign)
152 		return (x == y && !signbit(x) == !signbit(y));
153 	else
154 		return (fabsl(x) == fabsl(y));
155 }
156 
157 static int
158 fpequal_tol(long double x, long double y, long double tol)
159 {
160 	fenv_t env;
161 	int ret;
162 
163 	if (isnan(x) && isnan(y))
164 		return (1);
165 	if (!signbit(x) != !signbit(y))
166 		return (0);
167 	if (x == y)
168 		return (1);
169 	if (tol == 0 || y == 0.0)
170 		return (0);
171 
172 	/* Hard case: need to check the tolerance. */
173 	feholdexcept(&env);
174 	ret = fabsl(x - y) <= fabsl(y * tol);
175 	fesetenv(&env);
176 	return (ret);
177 }
178 
179 static int
180 cfpequal(long double complex x, long double complex y, int checksign)
181 {
182 	return (fpequal(creal(x), creal(y), checksign & CS_REAL)
183 		&& fpequal(cimag(x), cimag(y), checksign & CS_IMAG));
184 }
185 
186 static int
187 cfpequal_tol(long double complex x, long double complex y, long double tol)
188 {
189 	return (fpequal_tol(creal(x), creal(y), tol)
190 		&& fpequal_tol(cimag(x), cimag(y), tol));
191 }
192 
193 
194 /* Tests for 0 */
195 void
196 test_zero(void)
197 {
198 	long double complex zero = CMPLXL(0.0, 0.0);
199 
200 	testall_tol(cacosh, zero, CMPLXL(0.0, pi / 2), 1);
201 	testall_tol(cacosh, -zero, CMPLXL(0.0, -pi / 2), 1);
202 	testall_tol(cacos, zero, CMPLXL(pi / 2, -0.0), 1);
203 	testall_tol(cacos, -zero, CMPLXL(pi / 2, 0.0), 1);
204 
205 	testall_odd(casinh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
206 	testall_odd(casin, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
207 
208 	testall_odd(catanh, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
209 	testall_odd(catan, zero, zero, ALL_STD_EXCEPT, 0, CS_BOTH);
210 }
211 
212 /*
213  * Tests for NaN inputs.
214  */
215 void
216 test_nan()
217 {
218 	long double complex nan_nan = CMPLXL(NAN, NAN);
219 	long double complex z;
220 
221 	/*
222 	 * IN		CACOSH	    CACOS	CASINH	    CATANH
223 	 * NaN,NaN	NaN,NaN	    NaN,NaN	NaN,NaN	    NaN,NaN
224 	 * finite,NaN	NaN,NaN*    NaN,NaN*	NaN,NaN*    NaN,NaN*
225 	 * NaN,finite   NaN,NaN*    NaN,NaN*	NaN,NaN*    NaN,NaN*
226 	 * NaN,Inf	Inf,NaN     NaN,-Inf	?Inf,NaN    ?0,pi/2
227 	 * +-Inf,NaN	Inf,NaN     NaN,?Inf	+-Inf,NaN   +-0,NaN
228 	 * +-0,NaN	NaN,NaN*    pi/2,NaN	NaN,NaN*    +-0,NaN
229 	 * NaN,0	NaN,NaN*    NaN,NaN*	NaN,0	    NaN,NaN*
230 	 *
231 	 *  * = raise invalid
232 	 */
233 	z = nan_nan;
234 	testall(cacosh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
235 	testall(cacos, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
236 	testall(casinh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
237 	testall(casin, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
238 	testall(catanh, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
239 	testall(catan, z, nan_nan, ALL_STD_EXCEPT, 0, 0);
240 
241 	z = CMPLXL(0.5, NAN);
242 	testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
243 	testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
244 	testall(casinh, z, nan_nan, OPT_INVALID, 0, 0);
245 	testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
246 	testall(catanh, z, nan_nan, OPT_INVALID, 0, 0);
247 	testall(catan, z, nan_nan, OPT_INVALID, 0, 0);
248 
249 	z = CMPLXL(NAN, 0.5);
250 	testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
251 	testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
252 	testall(casinh, z, nan_nan, OPT_INVALID, 0, 0);
253 	testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
254 	testall(catanh, z, nan_nan, OPT_INVALID, 0, 0);
255 	testall(catan, z, nan_nan, OPT_INVALID, 0, 0);
256 
257 	z = CMPLXL(NAN, INFINITY);
258 	testall(cacosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
259 	testall(cacosh, -z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
260 	testall(cacos, z, CMPLXL(NAN, -INFINITY), ALL_STD_EXCEPT, 0, CS_IMAG);
261 	testall(casinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0, 0);
262 	testall(casin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, CS_IMAG);
263 	testall_tol(catanh, z, CMPLXL(0.0, pi / 2), 1);
264 	testall(catan, z, CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, CS_IMAG);
265 
266 	z = CMPLXL(INFINITY, NAN);
267 	testall_even(cacosh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0,
268 		     CS_REAL);
269 	testall_even(cacos, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
270 	testall_odd(casinh, z, CMPLXL(INFINITY, NAN), ALL_STD_EXCEPT, 0,
271 		    CS_REAL);
272 	testall_odd(casin, z, CMPLXL(NAN, INFINITY), ALL_STD_EXCEPT, 0, 0);
273 	testall_odd(catanh, z, CMPLXL(0.0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
274 	testall_odd_tol(catan, z, CMPLXL(pi / 2, 0.0), 1);
275 
276 	z = CMPLXL(0.0, NAN);
277         /* XXX We allow a spurious inexact exception here. */
278 	testall_even(cacosh, z, nan_nan, OPT_INVALID & ~FE_INEXACT, 0, 0);
279 	testall_even_tol(cacos, z, CMPLXL(pi / 2, NAN), 1);
280 	testall_odd(casinh, z, nan_nan, OPT_INVALID, 0, 0);
281 	testall_odd(casin, z, CMPLXL(0.0, NAN), ALL_STD_EXCEPT, 0, CS_REAL);
282 	testall_odd(catanh, z, CMPLXL(0.0, NAN), OPT_INVALID, 0, CS_REAL);
283 	testall_odd(catan, z, nan_nan, OPT_INVALID, 0, 0);
284 
285 	z = CMPLXL(NAN, 0.0);
286 	testall(cacosh, z, nan_nan, OPT_INVALID, 0, 0);
287 	testall(cacos, z, nan_nan, OPT_INVALID, 0, 0);
288 	testall(casinh, z, CMPLXL(NAN, 0), ALL_STD_EXCEPT, 0, CS_IMAG);
289 	testall(casin, z, nan_nan, OPT_INVALID, 0, 0);
290 	testall(catanh, z, nan_nan, OPT_INVALID, 0, CS_IMAG);
291 	testall(catan, z, CMPLXL(NAN, 0.0), ALL_STD_EXCEPT, 0, 0);
292 }
293 
294 void
295 test_inf(void)
296 {
297 	long double complex z;
298 
299 	/*
300 	 * IN		CACOSH	    CACOS	CASINH	    CATANH
301 	 * Inf,Inf	Inf,pi/4    pi/4,-Inf	Inf,pi/4    0,pi/2
302 	 * -Inf,Inf	Inf,3pi/4   3pi/4,-Inf	---	    ---
303 	 * Inf,finite	Inf,0	    0,-Inf	Inf,0	    0,pi/2
304 	 * -Inf,finite	Inf,pi      pi,-Inf	---	    ---
305 	 * finite,Inf	Inf,pi/2    pi/2,-Inf	Inf,pi/2    0,pi/2
306 	 */
307 	z = CMPLXL(INFINITY, INFINITY);
308 	testall_tol(cacosh, z, CMPLXL(INFINITY, pi / 4), 1);
309 	testall_tol(cacosh, -z, CMPLXL(INFINITY, -c3pi / 4), 1);
310 	testall_tol(cacos, z, CMPLXL(pi / 4, -INFINITY), 1);
311 	testall_tol(cacos, -z, CMPLXL(c3pi / 4, INFINITY), 1);
312 	testall_odd_tol(casinh, z, CMPLXL(INFINITY, pi / 4), 1);
313 	testall_odd_tol(casin, z, CMPLXL(pi / 4, INFINITY), 1);
314 	testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
315 	testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
316 
317 	z = CMPLXL(INFINITY, 0.5);
318 	/* XXX We allow a spurious inexact exception here. */
319 	testall(cacosh, z, CMPLXL(INFINITY, 0), OPT_INEXACT, 0, CS_BOTH);
320 	testall_tol(cacosh, -z, CMPLXL(INFINITY, -pi), 1);
321 	testall(cacos, z, CMPLXL(0, -INFINITY), OPT_INEXACT, 0, CS_BOTH);
322 	testall_tol(cacos, -z, CMPLXL(pi, INFINITY), 1);
323 	testall_odd(casinh, z, CMPLXL(INFINITY, 0), OPT_INEXACT, 0, CS_BOTH);
324 	testall_odd_tol(casin, z, CMPLXL(pi / 2, INFINITY), 1);
325 	testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
326 	testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
327 
328 	z = CMPLXL(0.5, INFINITY);
329 	testall_tol(cacosh, z, CMPLXL(INFINITY, pi / 2), 1);
330 	testall_tol(cacosh, -z, CMPLXL(INFINITY, -pi / 2), 1);
331 	testall_tol(cacos, z, CMPLXL(pi / 2, -INFINITY), 1);
332 	testall_tol(cacos, -z, CMPLXL(pi / 2, INFINITY), 1);
333 	testall_odd_tol(casinh, z, CMPLXL(INFINITY, pi / 2), 1);
334 	/* XXX We allow a spurious inexact exception here. */
335 	testall_odd(casin, z, CMPLXL(0.0, INFINITY), OPT_INEXACT, 0, CS_BOTH);
336 	testall_odd_tol(catanh, z, CMPLXL(0, pi / 2), 1);
337 	testall_odd_tol(catan, z, CMPLXL(pi / 2, 0), 1);
338 }
339 
340 /* Tests along the real and imaginary axes. */
341 void
342 test_axes(void)
343 {
344 	static const long double nums[] = {
345 		-2, -1, -0.5, 0.5, 1, 2
346 	};
347 	long double complex z;
348 	int i;
349 
350 	for (i = 0; i < sizeof(nums) / sizeof(nums[0]); i++) {
351 		/* Real axis */
352 		z = CMPLXL(nums[i], 0.0);
353 		if (fabs(nums[i]) <= 1) {
354 			testall_tol(cacosh, z, CMPLXL(0.0, acos(nums[i])), 1);
355 			testall_tol(cacos, z, CMPLXL(acosl(nums[i]), -0.0), 1);
356 			testall_tol(casin, z, CMPLXL(asinl(nums[i]), 0.0), 1);
357 			testall_tol(catanh, z, CMPLXL(atanh(nums[i]), 0.0), 1);
358 		} else {
359 			testall_tol(cacosh, z,
360 				    CMPLXL(acosh(fabs(nums[i])),
361 					   (nums[i] < 0) ? pi : 0), 1);
362 			testall_tol(cacos, z,
363 				    CMPLXL((nums[i] < 0) ? pi : 0,
364 					   -acosh(fabs(nums[i]))), 1);
365 			testall_tol(casin, z,
366 				    CMPLXL(copysign(pi / 2, nums[i]),
367 					   acosh(fabs(nums[i]))), 1);
368 			testall_tol(catanh, z,
369 				    CMPLXL(atanh(1 / nums[i]), pi / 2), 1);
370 		}
371 		testall_tol(casinh, z, CMPLXL(asinh(nums[i]), 0.0), 1);
372 		testall_tol(catan, z, CMPLXL(atan(nums[i]), 0), 1);
373 
374 		/* TODO: Test the imaginary axis. */
375 	}
376 }
377 
378 void
379 test_small(void)
380 {
381 	/*
382 	 * z =  0.75 + i 0.25
383 	 *     acos(z) = Pi/4 - i ln(2)/2
384 	 *     asin(z) = Pi/4 + i ln(2)/2
385 	 *     atan(z) = atan(4)/2 + i ln(17/9)/4
386 	 */
387 	static const struct {
388 		complex long double z;
389 		complex long double acos_z;
390 		complex long double asin_z;
391 		complex long double atan_z;
392 	} tests[] = {
393 		{ CMPLXL(0.75L, 0.25L),
394 		  CMPLXL(pi / 4, -0.34657359027997265470861606072908828L),
395 		  CMPLXL(pi / 4, 0.34657359027997265470861606072908828L),
396 		  CMPLXL(0.66290883183401623252961960521423782L,
397 			 0.15899719167999917436476103600701878L) },
398 	};
399 	int i;
400 
401 	for (i = 0; i < sizeof(tests) / sizeof(tests[0]); i++) {
402 		testall_tol(cacos, tests[i].z, tests[i].acos_z, 2);
403 		testall_odd_tol(casin, tests[i].z, tests[i].asin_z, 2);
404 		testall_odd_tol(catan, tests[i].z, tests[i].atan_z, 2);
405         }
406 }
407 
408 /* Test inputs that might cause overflow in a sloppy implementation. */
409 void
410 test_large(void)
411 {
412 
413 	/* TODO: Write these tests */
414 }
415 
416 int
417 main(int argc, char *argv[])
418 {
419 
420 	printf("1..6\n");
421 
422 	test_zero();
423 	printf("ok 1 - invctrig zero\n");
424 
425 	test_nan();
426 	printf("ok 2 - invctrig nan\n");
427 
428 	test_inf();
429 	printf("ok 3 - invctrig inf\n");
430 
431 	test_axes();
432 	printf("ok 4 - invctrig axes\n");
433 
434 	test_small();
435 	printf("ok 5 - invctrig small\n");
436 
437 	test_large();
438 	printf("ok 6 - invctrig large\n");
439 
440 	return (0);
441 }
442