xref: /dragonfly/tools/tools/ath/athstats/athstats.c (revision c8860c9a)
1 /*-
2  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer,
10  *    without modification.
11  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12  *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13  *    redistribution must be conditioned upon including a substantially
14  *    similar Disclaimer requirement for further binary redistribution.
15  *
16  * NO WARRANTY
17  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19  * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY
20  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22  * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25  * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  * THE POSSIBILITY OF SUCH DAMAGES.
28  *
29  * $FreeBSD: src/tools/tools/ath/athstats/athstats.c,v 1.15 2009/02/13 05:45:23 sam Exp $
30  */
31 
32 /*
33  * ath statistics class.
34  */
35 #include <sys/types.h>
36 #include <sys/file.h>
37 #include <sys/sockio.h>
38 #include <sys/socket.h>
39 #include <net/if.h>
40 #include <net/if_media.h>
41 #include <net/if_var.h>
42 
43 #include <stdio.h>
44 #include <stdlib.h>
45 #include <signal.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <err.h>
49 
50 #include "ah.h"
51 #include "ah_desc.h"
52 #include "ieee80211_ioctl.h"
53 #include "ieee80211_radiotap.h"
54 #include "if_athioctl.h"
55 
56 #include "athstats.h"
57 
58 #ifdef ATH_SUPPORT_ANI
59 #define HAL_EP_RND(x,mul) \
60 	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
61 #define HAL_RSSI(x)     HAL_EP_RND(x, HAL_RSSI_EP_MULTIPLIER)
62 #endif
63 
64 #define	NOTPRESENT	{ 0, "", "" }
65 
66 #define	AFTER(prev)	((prev)+1)
67 
68 static const struct fmt athstats[] = {
69 #define	S_INPUT		0
70 	{ 8,	"input",	"input",	"data frames received" },
71 #define	S_OUTPUT	AFTER(S_INPUT)
72 	{ 8,	"output",	"output",	"data frames transmit" },
73 #define	S_TX_ALTRATE	AFTER(S_OUTPUT)
74 	{ 7,	"altrate",	"altrate",	"tx frames with an alternate rate" },
75 #define	S_TX_SHORTRETRY	AFTER(S_TX_ALTRATE)
76 	{ 7,	"short",	"short",	"short on-chip tx retries" },
77 #define	S_TX_LONGRETRY	AFTER(S_TX_SHORTRETRY)
78 	{ 7,	"long",		"long",		"long on-chip tx retries" },
79 #define	S_TX_XRETRIES	AFTER(S_TX_LONGRETRY)
80 	{ 6,	"xretry",	"xretry",	"tx failed 'cuz too many retries" },
81 #define	S_MIB		AFTER(S_TX_XRETRIES)
82 	{ 5,	"mib",		"mib",		"mib overflow interrupts" },
83 #ifndef __linux__
84 #define	S_TX_LINEAR	AFTER(S_MIB)
85 	{ 5,	"txlinear",	"txlinear",	"tx linearized to cluster" },
86 #define	S_BSTUCK	AFTER(S_TX_LINEAR)
87 	{ 5,	"bstuck",	"bstuck",	"stuck beacon conditions" },
88 #define	S_INTRCOAL	AFTER(S_BSTUCK)
89 	{ 5,	"intrcoal",	"intrcoal",	"interrupts coalesced" },
90 #define	S_RATE		AFTER(S_INTRCOAL)
91 #else
92 #define	S_RATE		AFTER(S_MIB)
93 #endif
94 	{ 5,	"rate",		"rate",		"current transmit rate" },
95 #define	S_WATCHDOG	AFTER(S_RATE)
96 	{ 5,	"wdog",		"wdog",		"watchdog timeouts" },
97 #define	S_FATAL		AFTER(S_WATCHDOG)
98 	{ 5,	"fatal",	"fatal",	"hardware error interrupts" },
99 #define	S_BMISS		AFTER(S_FATAL)
100 	{ 5,	"bmiss",	"bmiss",	"beacon miss interrupts" },
101 #define	S_RXORN		AFTER(S_BMISS)
102 	{ 5,	"rxorn",	"rxorn",	"recv overrun interrupts" },
103 #define	S_RXEOL		AFTER(S_RXORN)
104 	{ 5,	"rxeol",	"rxeol",	"recv eol interrupts" },
105 #define	S_TXURN		AFTER(S_RXEOL)
106 	{ 5,	"txurn",	"txurn",	"txmit underrun interrupts" },
107 #define	S_TX_MGMT	AFTER(S_TXURN)
108 	{ 5,	"txmgt",	"txmgt",	"tx management frames" },
109 #define	S_TX_DISCARD	AFTER(S_TX_MGMT)
110 	{ 5,	"txdisc",	"txdisc",	"tx frames discarded prior to association" },
111 #define	S_TX_INVALID	AFTER(S_TX_DISCARD)
112 	{ 5,	"txinv",	"txinv",	"tx invalid (19)" },
113 #define	S_TX_QSTOP	AFTER(S_TX_INVALID)
114 	{ 5,	"qstop",	"qstop",	"tx stopped 'cuz no xmit buffer" },
115 #define	S_TX_ENCAP	AFTER(S_TX_QSTOP)
116 	{ 5,	"txencode",	"txencode",	"tx encapsulation failed" },
117 #define	S_TX_NONODE	AFTER(S_TX_ENCAP)
118 	{ 5,	"txnonode",	"txnonode",	"tx failed 'cuz no node" },
119 #define	S_TX_NOBUF	AFTER(S_TX_NONODE)
120 	{ 5,	"txnobuf",	"txnobuf",	"tx failed 'cuz dma buffer allocation failed" },
121 #define	S_TX_NOFRAG	AFTER(S_TX_NOBUF)
122 	{ 5,	"txnofrag",	"txnofrag",	"tx failed 'cuz frag buffer allocation(s) failed" },
123 #define	S_TX_NOMBUF	AFTER(S_TX_NOFRAG)
124 	{ 5,	"txnombuf",	"txnombuf",	"tx failed 'cuz mbuf allocation failed" },
125 #ifndef __linux__
126 #define	S_TX_NOMCL	AFTER(S_TX_NOMBUF)
127 	{ 5,	"txnomcl",	"txnomcl",	"tx failed 'cuz cluster allocation failed" },
128 #define	S_TX_FIFOERR	AFTER(S_TX_NOMCL)
129 #else
130 #define	S_TX_FIFOERR	AFTER(S_TX_NOMBUF)
131 #endif
132 	{ 5,	"efifo",	"efifo",	"tx failed 'cuz FIFO underrun" },
133 #define	S_TX_FILTERED	AFTER(S_TX_FIFOERR)
134 	{ 5,	"efilt",	"efilt",	"tx failed 'cuz destination filtered" },
135 #define	S_TX_BADRATE	AFTER(S_TX_FILTERED)
136 	{ 5,	"txbadrate",	"txbadrate",	"tx failed 'cuz bogus xmit rate" },
137 #define	S_TX_NOACK	AFTER(S_TX_BADRATE)
138 	{ 5,	"noack",	"noack",	"tx frames with no ack marked" },
139 #define	S_TX_RTS	AFTER(S_TX_NOACK)
140 	{ 5,	"rts",		"rts",		"tx frames with rts enabled" },
141 #define	S_TX_CTS	AFTER(S_TX_RTS)
142 	{ 5,	"cts",		"cts",		"tx frames with cts enabled" },
143 #define	S_TX_SHORTPRE	AFTER(S_TX_CTS)
144 	{ 5,	"shpre",	"shpre",	"tx frames with short preamble" },
145 #define	S_TX_PROTECT	AFTER(S_TX_SHORTPRE)
146 	{ 5,	"protect",	"protect",	"tx frames with 11g protection" },
147 #define	S_RX_ORN	AFTER(S_TX_PROTECT)
148 	{ 5,	"rxorn",	"rxorn",	"rx failed 'cuz of desc overrun" },
149 #define	S_RX_CRC_ERR	AFTER(S_RX_ORN)
150 	{ 6,	"crcerr",	"crcerr",	"rx failed 'cuz of bad CRC" },
151 #define	S_RX_FIFO_ERR	AFTER(S_RX_CRC_ERR)
152 	{ 5,	"rxfifo",	"rxfifo",	"rx failed 'cuz of FIFO overrun" },
153 #define	S_RX_CRYPTO_ERR	AFTER(S_RX_FIFO_ERR)
154 	{ 5,	"crypt",	"crypt",	"rx failed 'cuz decryption" },
155 #define	S_RX_MIC_ERR	AFTER(S_RX_CRYPTO_ERR)
156 	{ 4,	"mic",		"mic",		"rx failed 'cuz MIC failure" },
157 #define	S_RX_TOOSHORT	AFTER(S_RX_MIC_ERR)
158 	{ 5,	"rxshort",	"rxshort",	"rx failed 'cuz frame too short" },
159 #define	S_RX_NOMBUF	AFTER(S_RX_TOOSHORT)
160 	{ 5,	"rxnombuf",	"rxnombuf",	"rx setup failed 'cuz no mbuf" },
161 #define	S_RX_MGT	AFTER(S_RX_NOMBUF)
162 	{ 5,	"rxmgt",	"rxmgt",	"rx management frames" },
163 #define	S_RX_CTL	AFTER(S_RX_MGT)
164 	{ 5,	"rxctl",	"rxctl",	"rx control frames" },
165 #define	S_RX_PHY_ERR	AFTER(S_RX_CTL)
166 	{ 7,	"phyerr",	"phyerr",	"rx failed 'cuz of PHY err" },
167 #define	S_RX_PHY_UNDERRUN		AFTER(S_RX_PHY_ERR)
168 	{ 4,	"phyund",	"TUnd",	"transmit underrun" },
169 #define	S_RX_PHY_TIMING			AFTER(S_RX_PHY_UNDERRUN)
170 	{ 4,	"phytim",	"Tim",	"timing error" },
171 #define	S_RX_PHY_PARITY			AFTER(S_RX_PHY_TIMING)
172 	{ 4,	"phypar",	"IPar",	"illegal parity" },
173 #define	S_RX_PHY_RATE			AFTER(S_RX_PHY_PARITY)
174 	{ 4,	"phyrate",	"IRate",	"illegal rate" },
175 #define	S_RX_PHY_LENGTH			AFTER(S_RX_PHY_RATE)
176 	{ 4,	"phylen",	"ILen",		"illegal length" },
177 #define	S_RX_PHY_RADAR			AFTER(S_RX_PHY_LENGTH)
178 	{ 4,	"phyradar",	"Radar",	"radar detect" },
179 #define	S_RX_PHY_SERVICE		AFTER(S_RX_PHY_RADAR)
180 	{ 4,	"physervice",	"Service",	"illegal service" },
181 #define	S_RX_PHY_TOR			AFTER(S_RX_PHY_SERVICE)
182 	{ 4,	"phytor",	"TOR",		"transmit override receive" },
183 #define	S_RX_PHY_OFDM_TIMING		AFTER(S_RX_PHY_TOR)
184 	{ 6,	"ofdmtim",	"ofdmtim",	"OFDM timing" },
185 #define	S_RX_PHY_OFDM_SIGNAL_PARITY	AFTER(S_RX_PHY_OFDM_TIMING)
186 	{ 6,	"ofdmsig",	"ofdmsig",	"OFDM illegal parity" },
187 #define	S_RX_PHY_OFDM_RATE_ILLEGAL	AFTER(S_RX_PHY_OFDM_SIGNAL_PARITY)
188 	{ 6,	"ofdmrate",	"ofdmrate",	"OFDM illegal rate" },
189 #define	S_RX_PHY_OFDM_POWER_DROP	AFTER(S_RX_PHY_OFDM_RATE_ILLEGAL)
190 	{ 6,	"ofdmpow",	"ofdmpow",	"OFDM power drop" },
191 #define	S_RX_PHY_OFDM_SERVICE		AFTER(S_RX_PHY_OFDM_POWER_DROP)
192 	{ 6,	"ofdmservice",	"ofdmservice",	"OFDM illegal service" },
193 #define	S_RX_PHY_OFDM_RESTART		AFTER(S_RX_PHY_OFDM_SERVICE)
194 	{ 6,	"ofdmrestart",	"ofdmrestart",	"OFDM restart" },
195 #define	S_RX_PHY_CCK_TIMING		AFTER(S_RX_PHY_OFDM_RESTART)
196 	{ 6,	"ccktim",	"ccktim",	"CCK timing" },
197 #define	S_RX_PHY_CCK_HEADER_CRC		AFTER(S_RX_PHY_CCK_TIMING)
198 	{ 6,	"cckhead",	"cckhead",	"CCK header crc" },
199 #define	S_RX_PHY_CCK_RATE_ILLEGAL	AFTER(S_RX_PHY_CCK_HEADER_CRC)
200 	{ 6,	"cckrate",	"cckrate",	"CCK illegal rate" },
201 #define	S_RX_PHY_CCK_SERVICE		AFTER(S_RX_PHY_CCK_RATE_ILLEGAL)
202 	{ 6,	"cckservice",	"cckservice",	"CCK illegal service" },
203 #define	S_RX_PHY_CCK_RESTART		AFTER(S_RX_PHY_CCK_SERVICE)
204 	{ 6,	"cckrestar",	"cckrestar",	"CCK restart" },
205 #define	S_BE_NOMBUF	AFTER(S_RX_PHY_CCK_RESTART)
206 	{ 4,	"benombuf",	"benombuf",	"beacon setup failed 'cuz no mbuf" },
207 #define	S_BE_XMIT	AFTER(S_BE_NOMBUF)
208 	{ 7,	"bexmit",	"bexmit",	"beacons transmitted" },
209 #define	S_PER_CAL	AFTER(S_BE_XMIT)
210 	{ 4,	"pcal",		"pcal",		"periodic calibrations" },
211 #define	S_PER_CALFAIL	AFTER(S_PER_CAL)
212 	{ 4,	"pcalf",	"pcalf",	"periodic calibration failures" },
213 #define	S_PER_RFGAIN	AFTER(S_PER_CALFAIL)
214 	{ 4,	"prfga",	"prfga",	"rfgain value change" },
215 #if ATH_SUPPORT_TDMA
216 #define	S_TDMA_UPDATE	AFTER(S_PER_RFGAIN)
217 	{ 5,	"tdmau",	"tdmau",	"TDMA slot timing updates" },
218 #define	S_TDMA_TIMERS	AFTER(S_TDMA_UPDATE)
219 	{ 5,	"tdmab",	"tdmab",	"TDMA slot update set beacon timers" },
220 #define	S_TDMA_TSF	AFTER(S_TDMA_TIMERS)
221 	{ 5,	"tdmat",	"tdmat",	"TDMA slot update set TSF" },
222 #define	S_TDMA_TSFADJ	AFTER(S_TDMA_TSF)
223 	{ 8,	"tdmadj",	"tdmadj",	"TDMA slot adjust (usecs, smoothed)" },
224 #define	S_TDMA_ACK	AFTER(S_TDMA_TSFADJ)
225 	{ 5,	"tdmack",	"tdmack",	"TDMA tx failed 'cuz ACK required" },
226 #define	S_RATE_CALLS	AFTER(S_TDMA_ACK)
227 #else
228 #define	S_RATE_CALLS	AFTER(S_PER_RFGAIN)
229 #endif
230 	{ 5,	"ratec",	"ratec",	"rate control checks" },
231 #define	S_RATE_RAISE	AFTER(S_RATE_CALLS)
232 	{ 5,	"rate+",	"rate+",	"rate control raised xmit rate" },
233 #define	S_RATE_DROP	AFTER(S_RATE_RAISE)
234 	{ 5,	"rate-",	"rate-",	"rate control dropped xmit rate" },
235 #define	S_TX_RSSI	AFTER(S_RATE_DROP)
236 	{ 4,	"arssi",	"arssi",	"rssi of last ack" },
237 #define	S_RX_RSSI	AFTER(S_TX_RSSI)
238 	{ 4,	"rssi",		"rssi",		"avg recv rssi" },
239 #define	S_RX_NOISE	AFTER(S_RX_RSSI)
240 	{ 5,	"noise",	"noise",	"rx noise floor" },
241 #define	S_BMISS_PHANTOM	AFTER(S_RX_NOISE)
242 	{ 5,	"bmissphantom",	"bmissphantom",	"phantom beacon misses" },
243 #define	S_TX_RAW	AFTER(S_BMISS_PHANTOM)
244 	{ 5,	"txraw",	"txraw",	"tx frames through raw api" },
245 #define	S_TX_RAW_FAIL	AFTER(S_TX_RAW)
246 	{ 5,	"txrawfail",	"txrawfail",	"raw tx failed 'cuz interface/hw down" },
247 #define	S_RX_TOOBIG	AFTER(S_TX_RAW_FAIL)
248 	{ 5,	"rx2big",	"rx2big",	"rx failed 'cuz frame too large"  },
249 #ifndef __linux__
250 #define	S_CABQ_XMIT	AFTER(S_RX_TOOBIG)
251 	{ 5,	"cabxmit",	"cabxmit",	"cabq frames transmitted" },
252 #define	S_CABQ_BUSY	AFTER(S_CABQ_XMIT)
253 	{ 5,	"cabqbusy",	"cabqbusy",	"cabq xmit overflowed beacon interval" },
254 #define	S_TX_NODATA	AFTER(S_CABQ_BUSY)
255 	{ 5,	"txnodata",	"txnodata",	"tx discarded empty frame" },
256 #define	S_TX_BUSDMA	AFTER(S_TX_NODATA)
257 	{ 5,	"txbusdma",	"txbusdma",	"tx failed for dma resrcs" },
258 #define	S_RX_BUSDMA	AFTER(S_TX_BUSDMA)
259 	{ 5,	"rxbusdma",	"rxbusdma",	"rx setup failed for dma resrcs" },
260 #define	S_FF_TXOK	AFTER(S_RX_BUSDMA)
261 #else
262 #define	S_FF_TXOK	AFTER(S_RX_PHY_UNDERRUN)
263 #endif
264 	{ 5,	"fftxok",	"fftxok",	"fast frames xmit successfully" },
265 #define	S_FF_TXERR	AFTER(S_FF_TXOK)
266 	{ 5,	"fftxerr",	"fftxerr",	"fast frames not xmit due to error" },
267 #define	S_FF_RX		AFTER(S_FF_TXERR)
268 	{ 5,	"ffrx",		"ffrx",		"fast frames received" },
269 #define	S_FF_FLUSH	AFTER(S_FF_RX)
270 	{ 5,	"ffflush",	"ffflush",	"fast frames flushed from staging q" },
271 #define	S_TX_QFULL	AFTER(S_FF_FLUSH)
272 	{ 5,	"txqfull",	"txqfull",	"tx discarded 'cuz queue is full" },
273 #define	S_ANT_DEFSWITCH	AFTER(S_TX_QFULL)
274 	{ 5,	"defsw",	"defsw",	"switched default/rx antenna" },
275 #define	S_ANT_TXSWITCH	AFTER(S_ANT_DEFSWITCH)
276 	{ 5,	"txsw",		"txsw",		"tx used alternate antenna" },
277 #ifdef ATH_SUPPORT_ANI
278 #define	S_ANI_NOISE	AFTER(S_ANT_TXSWITCH)
279 	{ 2,	"ni",	"NI",		"noise immunity level" },
280 #define	S_ANI_SPUR	AFTER(S_ANI_NOISE)
281 	{ 2,	"si",	"SI",		"spur immunity level" },
282 #define	S_ANI_STEP	AFTER(S_ANI_SPUR)
283 	{ 2,	"step",	"ST",		"first step level" },
284 #define	S_ANI_OFDM	AFTER(S_ANI_STEP)
285 	{ 4,	"owsd",	"OWSD",		"OFDM weak signal detect" },
286 #define	S_ANI_CCK	AFTER(S_ANI_OFDM)
287 	{ 4,	"cwst",	"CWST",		"CCK weak signal threshold" },
288 #define	S_ANI_MAXSPUR	AFTER(S_ANI_CCK)
289 	{ 3,	"maxsi","MSI",		"max spur immunity level" },
290 #define	S_ANI_LISTEN	AFTER(S_ANI_MAXSPUR)
291 	{ 6,	"listen","LISTEN",	"listen time" },
292 #define	S_ANI_NIUP	AFTER(S_ANI_LISTEN)
293 	{ 4,	"ni+",	"NI-",		"ANI increased noise immunity" },
294 #define	S_ANI_NIDOWN	AFTER(S_ANI_NIUP)
295 	{ 4,	"ni-",	"NI-",		"ANI decrease noise immunity" },
296 #define	S_ANI_SIUP	AFTER(S_ANI_NIDOWN)
297 	{ 4,	"si+",	"SI+",		"ANI increased spur immunity" },
298 #define	S_ANI_SIDOWN	AFTER(S_ANI_SIUP)
299 	{ 4,	"si-",	"SI-",		"ANI decrease spur immunity" },
300 #define	S_ANI_OFDMON	AFTER(S_ANI_SIDOWN)
301 	{ 5,	"ofdm+","OFDM+",	"ANI enabled OFDM weak signal detect" },
302 #define	S_ANI_OFDMOFF	AFTER(S_ANI_OFDMON)
303 	{ 5,	"ofdm-","OFDM-",	"ANI disabled OFDM weak signal detect" },
304 #define	S_ANI_CCKHI	AFTER(S_ANI_OFDMOFF)
305 	{ 5,	"cck+",	"CCK+",		"ANI enabled CCK weak signal threshold" },
306 #define	S_ANI_CCKLO	AFTER(S_ANI_CCKHI)
307 	{ 5,	"cck-",	"CCK-",		"ANI disabled CCK weak signal threshold" },
308 #define	S_ANI_STEPUP	AFTER(S_ANI_CCKLO)
309 	{ 5,	"step+","STEP+",	"ANI increased first step level" },
310 #define	S_ANI_STEPDOWN	AFTER(S_ANI_STEPUP)
311 	{ 5,	"step-","STEP-",	"ANI decreased first step level" },
312 #define	S_ANI_OFDMERRS	AFTER(S_ANI_STEPDOWN)
313 	{ 8,	"ofdm",	"OFDM",		"cumulative OFDM phy error count" },
314 #define	S_ANI_CCKERRS	AFTER(S_ANI_OFDMERRS)
315 	{ 8,	"cck",	"CCK",		"cumulative CCK phy error count" },
316 #define	S_ANI_RESET	AFTER(S_ANI_CCKERRS)
317 	{ 5,	"reset","RESET",	"ANI parameters zero'd for non-STA operation" },
318 #define	S_ANI_LZERO	AFTER(S_ANI_RESET)
319 	{ 5,	"lzero","LZERO",	"ANI forced listen time to zero" },
320 #define	S_ANI_LNEG	AFTER(S_ANI_LZERO)
321 	{ 5,	"lneg",	"LNEG",		"ANI calculated listen time < 0" },
322 #define	S_MIB_ACKBAD	AFTER(S_ANI_LNEG)
323 	{ 5,	"ackbad","ACKBAD",	"missing ACK's" },
324 #define	S_MIB_RTSBAD	AFTER(S_MIB_ACKBAD)
325 	{ 5,	"rtsbad","RTSBAD",	"RTS without CTS" },
326 #define	S_MIB_RTSGOOD	AFTER(S_MIB_RTSBAD)
327 	{ 5,	"rtsgood","RTSGOOD",	"successful RTS" },
328 #define	S_MIB_FCSBAD	AFTER(S_MIB_RTSGOOD)
329 	{ 5,	"fcsbad","FCSBAD",	"bad FCS" },
330 #define	S_MIB_BEACONS	AFTER(S_MIB_FCSBAD)
331 	{ 5,	"beacons","beacons",	"beacons received" },
332 #define	S_NODE_AVGBRSSI	AFTER(S_MIB_BEACONS)
333 	{ 3,	"avgbrssi","BSI",	"average rssi (beacons only)" },
334 #define	S_NODE_AVGRSSI	AFTER(S_NODE_AVGBRSSI)
335 	{ 3,	"avgrssi","DSI",	"average rssi (all rx'd frames)" },
336 #define	S_NODE_AVGARSSI	AFTER(S_NODE_AVGRSSI)
337 	{ 3,	"avgtxrssi","TSI",	"average rssi (ACKs only)" },
338 #define	S_ANT_TX0	AFTER(S_NODE_AVGARSSI)
339 #else
340 #define	S_ANT_TX0	AFTER(S_ANT_TXSWITCH)
341 #endif /* ATH_SUPPORT_ANI */
342 	{ 8,	"tx0",	"ant0(tx)",	"frames tx on antenna 0" },
343 #define	S_ANT_TX1	AFTER(S_ANT_TX0)
344 	{ 8,	"tx1",	"ant1(tx)",	"frames tx on antenna 1"  },
345 #define	S_ANT_TX2	AFTER(S_ANT_TX1)
346 	{ 8,	"tx2",	"ant2(tx)",	"frames tx on antenna 2"  },
347 #define	S_ANT_TX3	AFTER(S_ANT_TX2)
348 	{ 8,	"tx3",	"ant3(tx)",	"frames tx on antenna 3"  },
349 #define	S_ANT_TX4	AFTER(S_ANT_TX3)
350 	{ 8,	"tx4",	"ant4(tx)",	"frames tx on antenna 4"  },
351 #define	S_ANT_TX5	AFTER(S_ANT_TX4)
352 	{ 8,	"tx5",	"ant5(tx)",	"frames tx on antenna 5"  },
353 #define	S_ANT_TX6	AFTER(S_ANT_TX5)
354 	{ 8,	"tx6",	"ant6(tx)",	"frames tx on antenna 6"  },
355 #define	S_ANT_TX7	AFTER(S_ANT_TX6)
356 	{ 8,	"tx7",	"ant7(tx)",	"frames tx on antenna 7"  },
357 #define	S_ANT_RX0	AFTER(S_ANT_TX7)
358 	{ 8,	"rx0",	"ant0(rx)",	"frames rx on antenna 0"  },
359 #define	S_ANT_RX1	AFTER(S_ANT_RX0)
360 	{ 8,	"rx1",	"ant1(rx)",	"frames rx on antenna 1"   },
361 #define	S_ANT_RX2	AFTER(S_ANT_RX1)
362 	{ 8,	"rx2",	"ant2(rx)",	"frames rx on antenna 2"   },
363 #define	S_ANT_RX3	AFTER(S_ANT_RX2)
364 	{ 8,	"rx3",	"ant3(rx)",	"frames rx on antenna 3"   },
365 #define	S_ANT_RX4	AFTER(S_ANT_RX3)
366 	{ 8,	"rx4",	"ant4(rx)",	"frames rx on antenna 4"   },
367 #define	S_ANT_RX5	AFTER(S_ANT_RX4)
368 	{ 8,	"rx5",	"ant5(rx)",	"frames rx on antenna 5"   },
369 #define	S_ANT_RX6	AFTER(S_ANT_RX5)
370 	{ 8,	"rx6",	"ant6(rx)",	"frames rx on antenna 6"   },
371 #define	S_ANT_RX7	AFTER(S_ANT_RX6)
372 	{ 8,	"rx7",	"ant7(rx)",	"frames rx on antenna 7"   },
373 #define	S_TX_SIGNAL	AFTER(S_ANT_RX7)
374 	{ 4,	"asignal",	"asig",	"signal of last ack (dBm)" },
375 #define	S_RX_SIGNAL	AFTER(S_TX_SIGNAL)
376 	{ 4,	"signal",	"sig",	"avg recv signal (dBm)" },
377 };
378 #define	S_PHY_MIN	S_RX_PHY_UNDERRUN
379 #define	S_PHY_MAX	S_RX_PHY_CCK_RESTART
380 #define	S_LAST		S_ANT_TX0
381 #define	S_MAX	S_ANT_RX7+1
382 
383 struct _athstats {
384 	struct ath_stats ath;
385 #ifdef ATH_SUPPORT_ANI
386 	struct {
387 		uint32_t ast_ani_niup;		/* increased noise immunity */
388 		uint32_t ast_ani_nidown;	/* decreased noise immunity */
389 		uint32_t ast_ani_spurup;	/* increased spur immunity */
390 		uint32_t ast_ani_spurdown;	/* descreased spur immunity */
391 		uint32_t ast_ani_ofdmon;	/* OFDM weak signal detect on */
392 		uint32_t ast_ani_ofdmoff;	/* OFDM weak signal detect off*/
393 		uint32_t ast_ani_cckhigh;	/* CCK weak signal thr high */
394 		uint32_t ast_ani_ccklow;	/* CCK weak signal thr low */
395 		uint32_t ast_ani_stepup;	/* increased first step level */
396 		uint32_t ast_ani_stepdown;	/* decreased first step level */
397 		uint32_t ast_ani_ofdmerrs;	/* cumulative ofdm phy err cnt*/
398 		uint32_t ast_ani_cckerrs;	/* cumulative cck phy err cnt */
399 		uint32_t ast_ani_reset;	/* params zero'd for non-STA */
400 		uint32_t ast_ani_lzero;	/* listen time forced to zero */
401 		uint32_t ast_ani_lneg;		/* listen time calculated < 0 */
402 		HAL_MIB_STATS ast_mibstats;	/* MIB counter stats */
403 		HAL_NODE_STATS ast_nodestats;	/* latest rssi stats */
404 	} ani_stats;
405 	struct {
406 		uint8_t	noiseImmunityLevel;
407 		uint8_t	spurImmunityLevel;
408 		uint8_t	firstepLevel;
409 		uint8_t	ofdmWeakSigDetectOff;
410 		uint8_t	cckWeakSigThreshold;
411 		uint32_t listenTime;
412 	} ani_state;
413 #endif
414 };
415 
416 struct athstatfoo_p {
417 	struct athstatfoo base;
418 	int s;
419 	int optstats;
420 #define	ATHSTATS_ANI	0x0001
421 	struct ifreq ifr;
422 	struct ath_diag atd;
423 	struct _athstats cur;
424 	struct _athstats total;
425 };
426 
427 static void
428 ath_setifname(struct athstatfoo *wf0, const char *ifname)
429 {
430 	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
431 
432 	strncpy(wf->ifr.ifr_name, ifname, sizeof (wf->ifr.ifr_name));
433 #ifdef ATH_SUPPORT_ANI
434 	strncpy(wf->atd.ad_name, ifname, sizeof (wf->atd.ad_name));
435 	wf->optstats |= ATHSTATS_ANI;
436 #endif
437 }
438 
439 static void
440 ath_zerostats(struct athstatfoo *wf0)
441 {
442 	struct athstatfoo_p *wf = (struct athstatfoo_p *) wf0;
443 
444 	if (ioctl(wf->s, SIOCZATHSTATS, &wf->ifr) < 0)
445 		err(-1, wf->ifr.ifr_name);
446 }
447 
448 static void
449 ath_collect(struct athstatfoo_p *wf, struct _athstats *stats)
450 {
451 	wf->ifr.ifr_data = (caddr_t) &stats->ath;
452 	if (ioctl(wf->s, SIOCGATHSTATS, &wf->ifr) < 0)
453 		err(1, wf->ifr.ifr_name);
454 #ifdef ATH_SUPPORT_ANI
455 	if (wf->optstats & ATHSTATS_ANI) {
456 		wf->atd.ad_id = 5;
457 		wf->atd.ad_out_data = (caddr_t) &stats->ani_state;
458 		wf->atd.ad_out_size = sizeof(stats->ani_state);
459 		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0) {
460 			warn(wf->atd.ad_name);
461 			wf->optstats &= ~ATHSTATS_ANI;
462 		}
463 		wf->atd.ad_id = 8;
464 		wf->atd.ad_out_data = (caddr_t) &stats->ani_stats;
465 		wf->atd.ad_out_size = sizeof(stats->ani_stats);
466 		if (ioctl(wf->s, SIOCGATHDIAG, &wf->atd) < 0)
467 			warn(wf->atd.ad_name);
468 	}
469 #endif /* ATH_SUPPORT_ANI */
470 }
471 
472 static void
473 ath_collect_cur(struct statfoo *sf)
474 {
475 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
476 
477 	ath_collect(wf, &wf->cur);
478 }
479 
480 static void
481 ath_collect_tot(struct statfoo *sf)
482 {
483 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
484 
485 	ath_collect(wf, &wf->total);
486 }
487 
488 static void
489 ath_update_tot(struct statfoo *sf)
490 {
491 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
492 
493 	wf->total = wf->cur;
494 }
495 
496 static void
497 snprintrate(char b[], size_t bs, int rate)
498 {
499 	if (rate & IEEE80211_RATE_MCS)
500 		snprintf(b, bs, "MCS%u", rate &~ IEEE80211_RATE_MCS);
501 	else if (rate & 1)
502 		snprintf(b, bs, "%u.5M", rate / 2);
503 	else
504 		snprintf(b, bs, "%uM", rate / 2);
505 }
506 
507 static int
508 ath_get_curstat(struct statfoo *sf, int s, char b[], size_t bs)
509 {
510 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
511 #define	STAT(x) \
512 	snprintf(b, bs, "%u", wf->cur.ath.ast_##x - wf->total.ath.ast_##x); return 1
513 #define	PHY(x) \
514 	snprintf(b, bs, "%u", wf->cur.ath.ast_rx_phy[x] - wf->total.ath.ast_rx_phy[x]); return 1
515 #define	ANI(x) \
516 	snprintf(b, bs, "%u", wf->cur.ani_state.x); return 1
517 #define	ANISTAT(x) \
518 	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_ani_##x - wf->total.ani_stats.ast_ani_##x); return 1
519 #define	MIBSTAT(x) \
520 	snprintf(b, bs, "%u", wf->cur.ani_stats.ast_mibstats.x - wf->total.ani_stats.ast_mibstats.x); return 1
521 #define	TXANT(x) \
522 	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_tx[x] - wf->total.ath.ast_ant_tx[x]); return 1
523 #define	RXANT(x) \
524 	snprintf(b, bs, "%u", wf->cur.ath.ast_ant_rx[x] - wf->total.ath.ast_ant_rx[x]); return 1
525 
526 	switch (s) {
527 	case S_INPUT:
528 		snprintf(b, bs, "%lu",
529 		    (wf->cur.ath.ast_rx_packets - wf->total.ath.ast_rx_packets) -
530 		    (wf->cur.ath.ast_rx_mgt - wf->total.ath.ast_rx_mgt));
531 		return 1;
532 	case S_OUTPUT:
533 		snprintf(b, bs, "%lu",
534 		    wf->cur.ath.ast_tx_packets - wf->total.ath.ast_tx_packets);
535 		return 1;
536 	case S_RATE:
537 		snprintrate(b, bs, wf->cur.ath.ast_tx_rate);
538 		return 1;
539 	case S_WATCHDOG:	STAT(watchdog);
540 	case S_FATAL:		STAT(hardware);
541 	case S_BMISS:		STAT(bmiss);
542 	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
543 #ifdef S_BSTUCK
544 	case S_BSTUCK:		STAT(bstuck);
545 #endif
546 	case S_RXORN:		STAT(rxorn);
547 	case S_RXEOL:		STAT(rxeol);
548 	case S_TXURN:		STAT(txurn);
549 	case S_MIB:		STAT(mib);
550 #ifdef S_INTRCOAL
551 	case S_INTRCOAL:	STAT(intrcoal);
552 #endif
553 	case S_TX_MGMT:		STAT(tx_mgmt);
554 	case S_TX_DISCARD:	STAT(tx_discard);
555 	case S_TX_QSTOP:	STAT(tx_qstop);
556 	case S_TX_ENCAP:	STAT(tx_encap);
557 	case S_TX_NONODE:	STAT(tx_nonode);
558 	case S_TX_NOBUF:	STAT(tx_nobuf);
559 	case S_TX_NOFRAG:	STAT(tx_nofrag);
560 	case S_TX_NOMBUF:	STAT(tx_nombuf);
561 #ifdef S_TX_NOMCL
562 	case S_TX_NOMCL:	STAT(tx_nomcl);
563 	case S_TX_LINEAR:	STAT(tx_linear);
564 	case S_TX_NODATA:	STAT(tx_nodata);
565 	case S_TX_BUSDMA:	STAT(tx_busdma);
566 #endif
567 	case S_TX_XRETRIES:	STAT(tx_xretries);
568 	case S_TX_FIFOERR:	STAT(tx_fifoerr);
569 	case S_TX_FILTERED:	STAT(tx_filtered);
570 	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
571 	case S_TX_LONGRETRY:	STAT(tx_longretry);
572 	case S_TX_BADRATE:	STAT(tx_badrate);
573 	case S_TX_NOACK:	STAT(tx_noack);
574 	case S_TX_RTS:		STAT(tx_rts);
575 	case S_TX_CTS:		STAT(tx_cts);
576 	case S_TX_SHORTPRE:	STAT(tx_shortpre);
577 	case S_TX_ALTRATE:	STAT(tx_altrate);
578 	case S_TX_PROTECT:	STAT(tx_protect);
579 	case S_TX_RAW:		STAT(tx_raw);
580 	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
581 	case S_RX_NOMBUF:	STAT(rx_nombuf);
582 #ifdef S_RX_BUSDMA
583 	case S_RX_BUSDMA:	STAT(rx_busdma);
584 #endif
585 	case S_RX_ORN:		STAT(rx_orn);
586 	case S_RX_CRC_ERR:	STAT(rx_crcerr);
587 	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
588 	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
589 	case S_RX_MIC_ERR:	STAT(rx_badmic);
590 	case S_RX_PHY_ERR:	STAT(rx_phyerr);
591 	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
592 	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
593 	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
594 	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
595 	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
596 	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
597 	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
598 	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
599 	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
600 	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
601 	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
602 	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
603 	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
604 	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
605 	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
606 	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
607 	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
608 	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
609 	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
610 	case S_RX_TOOSHORT:	STAT(rx_tooshort);
611 	case S_RX_TOOBIG:	STAT(rx_toobig);
612 	case S_RX_MGT:		STAT(rx_mgt);
613 	case S_RX_CTL:		STAT(rx_ctl);
614 	case S_TX_RSSI:
615 		snprintf(b, bs, "%d", wf->cur.ath.ast_tx_rssi);
616 		return 1;
617 	case S_RX_RSSI:
618 		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_rssi);
619 		return 1;
620 	case S_BE_XMIT:		STAT(be_xmit);
621 	case S_BE_NOMBUF:	STAT(be_nombuf);
622 	case S_PER_CAL:		STAT(per_cal);
623 	case S_PER_CALFAIL:	STAT(per_calfail);
624 	case S_PER_RFGAIN:	STAT(per_rfgain);
625 #ifdef S_TDMA_UPDATE
626 	case S_TDMA_UPDATE:	STAT(tdma_update);
627 	case S_TDMA_TIMERS:	STAT(tdma_timers);
628 	case S_TDMA_TSF:	STAT(tdma_tsf);
629 	case S_TDMA_TSFADJ:
630 		snprintf(b, bs, "-%d/+%d",
631 		    wf->cur.ath.ast_tdma_tsfadjm, wf->cur.ath.ast_tdma_tsfadjp);
632 		return 1;
633 	case S_TDMA_ACK:	STAT(tdma_ack);
634 #endif
635 	case S_RATE_CALLS:	STAT(rate_calls);
636 	case S_RATE_RAISE:	STAT(rate_raise);
637 	case S_RATE_DROP:	STAT(rate_drop);
638 	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
639 	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
640 #ifdef S_ANI_NOISE
641 	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
642 	case S_ANI_SPUR:	ANI(spurImmunityLevel);
643 	case S_ANI_STEP:	ANI(firstepLevel);
644 	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
645 	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
646 	case S_ANI_LISTEN:	ANI(listenTime);
647 	case S_ANI_NIUP:	ANISTAT(niup);
648 	case S_ANI_NIDOWN:	ANISTAT(nidown);
649 	case S_ANI_SIUP:	ANISTAT(spurup);
650 	case S_ANI_SIDOWN:	ANISTAT(spurdown);
651 	case S_ANI_OFDMON:	ANISTAT(ofdmon);
652 	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
653 	case S_ANI_CCKHI:	ANISTAT(cckhigh);
654 	case S_ANI_CCKLO:	ANISTAT(ccklow);
655 	case S_ANI_STEPUP:	ANISTAT(stepup);
656 	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
657 	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
658 	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
659 	case S_ANI_RESET:	ANISTAT(reset);
660 	case S_ANI_LZERO:	ANISTAT(lzero);
661 	case S_ANI_LNEG:	ANISTAT(lneg);
662 	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
663 	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
664 	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
665 	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
666 	case S_MIB_BEACONS:	MIBSTAT(beacons);
667 	case S_NODE_AVGBRSSI:
668 		snprintf(b, bs, "%u",
669 		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgbrssi));
670 		return 1;
671 	case S_NODE_AVGRSSI:
672 		snprintf(b, bs, "%u",
673 		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgrssi));
674 		return 1;
675 	case S_NODE_AVGARSSI:
676 		snprintf(b, bs, "%u",
677 		    HAL_RSSI(wf->cur.ani_stats.ast_nodestats.ns_avgtxrssi));
678 		return 1;
679 #endif
680 	case S_ANT_TX0:		TXANT(0);
681 	case S_ANT_TX1:		TXANT(1);
682 	case S_ANT_TX2:		TXANT(2);
683 	case S_ANT_TX3:		TXANT(3);
684 	case S_ANT_TX4:		TXANT(4);
685 	case S_ANT_TX5:		TXANT(5);
686 	case S_ANT_TX6:		TXANT(6);
687 	case S_ANT_TX7:		TXANT(7);
688 	case S_ANT_RX0:		RXANT(0);
689 	case S_ANT_RX1:		RXANT(1);
690 	case S_ANT_RX2:		RXANT(2);
691 	case S_ANT_RX3:		RXANT(3);
692 	case S_ANT_RX4:		RXANT(4);
693 	case S_ANT_RX5:		RXANT(5);
694 	case S_ANT_RX6:		RXANT(6);
695 	case S_ANT_RX7:		RXANT(7);
696 #ifdef S_CABQ_XMIT
697 	case S_CABQ_XMIT:	STAT(cabq_xmit);
698 	case S_CABQ_BUSY:	STAT(cabq_busy);
699 #endif
700 	case S_FF_TXOK:		STAT(ff_txok);
701 	case S_FF_TXERR:	STAT(ff_txerr);
702 	case S_FF_RX:		STAT(ff_rx);
703 	case S_FF_FLUSH:	STAT(ff_flush);
704 	case S_TX_QFULL:	STAT(tx_qfull);
705 	case S_RX_NOISE:
706 		snprintf(b, bs, "%d", wf->cur.ath.ast_rx_noise);
707 		return 1;
708 	case S_TX_SIGNAL:
709 		snprintf(b, bs, "%d",
710 			wf->cur.ath.ast_tx_rssi + wf->cur.ath.ast_rx_noise);
711 		return 1;
712 	case S_RX_SIGNAL:
713 		snprintf(b, bs, "%d",
714 			wf->cur.ath.ast_rx_rssi + wf->cur.ath.ast_rx_noise);
715 		return 1;
716 	}
717 	b[0] = '\0';
718 	return 0;
719 #undef RXANT
720 #undef TXANT
721 #undef ANI
722 #undef ANISTAT
723 #undef MIBSTAT
724 #undef PHY
725 #undef STAT
726 }
727 
728 static int
729 ath_get_totstat(struct statfoo *sf, int s, char b[], size_t bs)
730 {
731 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
732 #define	STAT(x) \
733 	snprintf(b, bs, "%u", wf->total.ath.ast_##x); return 1
734 #define	PHY(x) \
735 	snprintf(b, bs, "%u", wf->total.ath.ast_rx_phy[x]); return 1
736 #define	ANI(x) \
737 	snprintf(b, bs, "%u", wf->total.ani_state.x); return 1
738 #define	ANISTAT(x) \
739 	snprintf(b, bs, "%u", wf->total.ani_stats.ast_ani_##x); return 1
740 #define	MIBSTAT(x) \
741 	snprintf(b, bs, "%u", wf->total.ani_stats.ast_mibstats.x); return 1
742 #define	TXANT(x) \
743 	snprintf(b, bs, "%u", wf->total.ath.ast_ant_tx[x]); return 1
744 #define	RXANT(x) \
745 	snprintf(b, bs, "%u", wf->total.ath.ast_ant_rx[x]); return 1
746 
747 	switch (s) {
748 	case S_INPUT:
749 		snprintf(b, bs, "%lu",
750 		    wf->total.ath.ast_rx_packets - wf->total.ath.ast_rx_mgt);
751 		return 1;
752 	case S_OUTPUT:
753 		snprintf(b, bs, "%lu", wf->total.ath.ast_tx_packets);
754 		return 1;
755 	case S_RATE:
756 		snprintrate(b, bs, wf->total.ath.ast_tx_rate);
757 		return 1;
758 	case S_WATCHDOG:	STAT(watchdog);
759 	case S_FATAL:		STAT(hardware);
760 	case S_BMISS:		STAT(bmiss);
761 	case S_BMISS_PHANTOM:	STAT(bmiss_phantom);
762 #ifdef S_BSTUCK
763 	case S_BSTUCK:		STAT(bstuck);
764 #endif
765 	case S_RXORN:		STAT(rxorn);
766 	case S_RXEOL:		STAT(rxeol);
767 	case S_TXURN:		STAT(txurn);
768 	case S_MIB:		STAT(mib);
769 #ifdef S_INTRCOAL
770 	case S_INTRCOAL:	STAT(intrcoal);
771 #endif
772 	case S_TX_MGMT:		STAT(tx_mgmt);
773 	case S_TX_DISCARD:	STAT(tx_discard);
774 	case S_TX_QSTOP:	STAT(tx_qstop);
775 	case S_TX_ENCAP:	STAT(tx_encap);
776 	case S_TX_NONODE:	STAT(tx_nonode);
777 	case S_TX_NOBUF:	STAT(tx_nobuf);
778 	case S_TX_NOFRAG:	STAT(tx_nofrag);
779 	case S_TX_NOMBUF:	STAT(tx_nombuf);
780 #ifdef S_TX_NOMCL
781 	case S_TX_NOMCL:	STAT(tx_nomcl);
782 	case S_TX_LINEAR:	STAT(tx_linear);
783 	case S_TX_NODATA:	STAT(tx_nodata);
784 	case S_TX_BUSDMA:	STAT(tx_busdma);
785 #endif
786 	case S_TX_XRETRIES:	STAT(tx_xretries);
787 	case S_TX_FIFOERR:	STAT(tx_fifoerr);
788 	case S_TX_FILTERED:	STAT(tx_filtered);
789 	case S_TX_SHORTRETRY:	STAT(tx_shortretry);
790 	case S_TX_LONGRETRY:	STAT(tx_longretry);
791 	case S_TX_BADRATE:	STAT(tx_badrate);
792 	case S_TX_NOACK:	STAT(tx_noack);
793 	case S_TX_RTS:		STAT(tx_rts);
794 	case S_TX_CTS:		STAT(tx_cts);
795 	case S_TX_SHORTPRE:	STAT(tx_shortpre);
796 	case S_TX_ALTRATE:	STAT(tx_altrate);
797 	case S_TX_PROTECT:	STAT(tx_protect);
798 	case S_TX_RAW:		STAT(tx_raw);
799 	case S_TX_RAW_FAIL:	STAT(tx_raw_fail);
800 	case S_RX_NOMBUF:	STAT(rx_nombuf);
801 #ifdef S_RX_BUSDMA
802 	case S_RX_BUSDMA:	STAT(rx_busdma);
803 #endif
804 	case S_RX_ORN:		STAT(rx_orn);
805 	case S_RX_CRC_ERR:	STAT(rx_crcerr);
806 	case S_RX_FIFO_ERR: 	STAT(rx_fifoerr);
807 	case S_RX_CRYPTO_ERR: 	STAT(rx_badcrypt);
808 	case S_RX_MIC_ERR:	STAT(rx_badmic);
809 	case S_RX_PHY_ERR:	STAT(rx_phyerr);
810 	case S_RX_PHY_UNDERRUN:	PHY(HAL_PHYERR_UNDERRUN);
811 	case S_RX_PHY_TIMING:	PHY(HAL_PHYERR_TIMING);
812 	case S_RX_PHY_PARITY:	PHY(HAL_PHYERR_PARITY);
813 	case S_RX_PHY_RATE:	PHY(HAL_PHYERR_RATE);
814 	case S_RX_PHY_LENGTH:	PHY(HAL_PHYERR_LENGTH);
815 	case S_RX_PHY_RADAR:	PHY(HAL_PHYERR_RADAR);
816 	case S_RX_PHY_SERVICE:	PHY(HAL_PHYERR_SERVICE);
817 	case S_RX_PHY_TOR:	PHY(HAL_PHYERR_TOR);
818 	case S_RX_PHY_OFDM_TIMING:	  PHY(HAL_PHYERR_OFDM_TIMING);
819 	case S_RX_PHY_OFDM_SIGNAL_PARITY: PHY(HAL_PHYERR_OFDM_SIGNAL_PARITY);
820 	case S_RX_PHY_OFDM_RATE_ILLEGAL:  PHY(HAL_PHYERR_OFDM_RATE_ILLEGAL);
821 	case S_RX_PHY_OFDM_POWER_DROP:	  PHY(HAL_PHYERR_OFDM_POWER_DROP);
822 	case S_RX_PHY_OFDM_SERVICE:	  PHY(HAL_PHYERR_OFDM_SERVICE);
823 	case S_RX_PHY_OFDM_RESTART:	  PHY(HAL_PHYERR_OFDM_RESTART);
824 	case S_RX_PHY_CCK_TIMING:	  PHY(HAL_PHYERR_CCK_TIMING);
825 	case S_RX_PHY_CCK_HEADER_CRC:	  PHY(HAL_PHYERR_CCK_HEADER_CRC);
826 	case S_RX_PHY_CCK_RATE_ILLEGAL:	  PHY(HAL_PHYERR_CCK_RATE_ILLEGAL);
827 	case S_RX_PHY_CCK_SERVICE:	  PHY(HAL_PHYERR_CCK_SERVICE);
828 	case S_RX_PHY_CCK_RESTART:	  PHY(HAL_PHYERR_CCK_RESTART);
829 	case S_RX_TOOSHORT:	STAT(rx_tooshort);
830 	case S_RX_TOOBIG:	STAT(rx_toobig);
831 	case S_RX_MGT:		STAT(rx_mgt);
832 	case S_RX_CTL:		STAT(rx_ctl);
833 	case S_TX_RSSI:
834 		snprintf(b, bs, "%d", wf->total.ath.ast_tx_rssi);
835 		return 1;
836 	case S_RX_RSSI:
837 		snprintf(b, bs, "%d", wf->total.ath.ast_rx_rssi);
838 		return 1;
839 	case S_BE_XMIT:		STAT(be_xmit);
840 	case S_BE_NOMBUF:	STAT(be_nombuf);
841 	case S_PER_CAL:		STAT(per_cal);
842 	case S_PER_CALFAIL:	STAT(per_calfail);
843 	case S_PER_RFGAIN:	STAT(per_rfgain);
844 #ifdef S_TDMA_UPDATE
845 	case S_TDMA_UPDATE:	STAT(tdma_update);
846 	case S_TDMA_TIMERS:	STAT(tdma_timers);
847 	case S_TDMA_TSF:	STAT(tdma_tsf);
848 	case S_TDMA_TSFADJ:
849 		snprintf(b, bs, "-%d/+%d",
850 		    wf->total.ath.ast_tdma_tsfadjm,
851 		    wf->total.ath.ast_tdma_tsfadjp);
852 		return 1;
853 	case S_TDMA_ACK:	STAT(tdma_ack);
854 #endif
855 	case S_RATE_CALLS:	STAT(rate_calls);
856 	case S_RATE_RAISE:	STAT(rate_raise);
857 	case S_RATE_DROP:	STAT(rate_drop);
858 	case S_ANT_DEFSWITCH:	STAT(ant_defswitch);
859 	case S_ANT_TXSWITCH:	STAT(ant_txswitch);
860 #ifdef S_ANI_NOISE
861 	case S_ANI_NOISE:	ANI(noiseImmunityLevel);
862 	case S_ANI_SPUR:	ANI(spurImmunityLevel);
863 	case S_ANI_STEP:	ANI(firstepLevel);
864 	case S_ANI_OFDM:	ANI(ofdmWeakSigDetectOff);
865 	case S_ANI_CCK:		ANI(cckWeakSigThreshold);
866 	case S_ANI_LISTEN:	ANI(listenTime);
867 	case S_ANI_NIUP:	ANISTAT(niup);
868 	case S_ANI_NIDOWN:	ANISTAT(nidown);
869 	case S_ANI_SIUP:	ANISTAT(spurup);
870 	case S_ANI_SIDOWN:	ANISTAT(spurdown);
871 	case S_ANI_OFDMON:	ANISTAT(ofdmon);
872 	case S_ANI_OFDMOFF:	ANISTAT(ofdmoff);
873 	case S_ANI_CCKHI:	ANISTAT(cckhigh);
874 	case S_ANI_CCKLO:	ANISTAT(ccklow);
875 	case S_ANI_STEPUP:	ANISTAT(stepup);
876 	case S_ANI_STEPDOWN:	ANISTAT(stepdown);
877 	case S_ANI_OFDMERRS:	ANISTAT(ofdmerrs);
878 	case S_ANI_CCKERRS:	ANISTAT(cckerrs);
879 	case S_ANI_RESET:	ANISTAT(reset);
880 	case S_ANI_LZERO:	ANISTAT(lzero);
881 	case S_ANI_LNEG:	ANISTAT(lneg);
882 	case S_MIB_ACKBAD:	MIBSTAT(ackrcv_bad);
883 	case S_MIB_RTSBAD:	MIBSTAT(rts_bad);
884 	case S_MIB_RTSGOOD:	MIBSTAT(rts_good);
885 	case S_MIB_FCSBAD:	MIBSTAT(fcs_bad);
886 	case S_MIB_BEACONS:	MIBSTAT(beacons);
887 	case S_NODE_AVGBRSSI:
888 		snprintf(b, bs, "%u",
889 		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgbrssi));
890 		return 1;
891 	case S_NODE_AVGRSSI:
892 		snprintf(b, bs, "%u",
893 		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgrssi));
894 		return 1;
895 	case S_NODE_AVGARSSI:
896 		snprintf(b, bs, "%u",
897 		    HAL_RSSI(wf->total.ani_stats.ast_nodestats.ns_avgtxrssi));
898 		return 1;
899 #endif
900 	case S_ANT_TX0:		TXANT(0);
901 	case S_ANT_TX1:		TXANT(1);
902 	case S_ANT_TX2:		TXANT(2);
903 	case S_ANT_TX3:		TXANT(3);
904 	case S_ANT_TX4:		TXANT(4);
905 	case S_ANT_TX5:		TXANT(5);
906 	case S_ANT_TX6:		TXANT(6);
907 	case S_ANT_TX7:		TXANT(7);
908 	case S_ANT_RX0:		RXANT(0);
909 	case S_ANT_RX1:		RXANT(1);
910 	case S_ANT_RX2:		RXANT(2);
911 	case S_ANT_RX3:		RXANT(3);
912 	case S_ANT_RX4:		RXANT(4);
913 	case S_ANT_RX5:		RXANT(5);
914 	case S_ANT_RX6:		RXANT(6);
915 	case S_ANT_RX7:		RXANT(7);
916 #ifdef S_CABQ_XMIT
917 	case S_CABQ_XMIT:	STAT(cabq_xmit);
918 	case S_CABQ_BUSY:	STAT(cabq_busy);
919 #endif
920 	case S_FF_TXOK:		STAT(ff_txok);
921 	case S_FF_TXERR:	STAT(ff_txerr);
922 	case S_FF_RX:		STAT(ff_rx);
923 	case S_FF_FLUSH:	STAT(ff_flush);
924 	case S_TX_QFULL:	STAT(tx_qfull);
925 	case S_RX_NOISE:
926 		snprintf(b, bs, "%d", wf->total.ath.ast_rx_noise);
927 		return 1;
928 	case S_TX_SIGNAL:
929 		snprintf(b, bs, "%d",
930 			wf->total.ath.ast_tx_rssi + wf->total.ath.ast_rx_noise);
931 		return 1;
932 	case S_RX_SIGNAL:
933 		snprintf(b, bs, "%d",
934 			wf->total.ath.ast_rx_rssi + wf->total.ath.ast_rx_noise);
935 		return 1;
936 	}
937 	b[0] = '\0';
938 	return 0;
939 #undef RXANT
940 #undef TXANT
941 #undef ANI
942 #undef ANISTAT
943 #undef MIBSTAT
944 #undef PHY
945 #undef STAT
946 }
947 
948 static void
949 ath_print_verbose(struct statfoo *sf, FILE *fd)
950 {
951 	struct athstatfoo_p *wf = (struct athstatfoo_p *) sf;
952 #define	isphyerr(i)	(S_PHY_MIN <= i && i <= S_PHY_MAX)
953 	const struct fmt *f;
954 	char s[32];
955 	const char *indent;
956 	int i, width;
957 
958 	width = 0;
959 	for (i = 0; i < S_LAST; i++) {
960 		f = &sf->stats[i];
961 		if (!isphyerr(i) && f->width > width)
962 			width = f->width;
963 	}
964 	for (i = 0; i < S_LAST; i++) {
965 		if (ath_get_totstat(sf, i, s, sizeof(s)) && strcmp(s, "0")) {
966 			if (isphyerr(i))
967 				indent = "    ";
968 			else
969 				indent = "";
970 			fprintf(fd, "%s%-*s %s\n", indent, width, s, athstats[i].desc);
971 		}
972 	}
973 	fprintf(fd, "Antenna profile:\n");
974 	for (i = 0; i < 8; i++)
975 		if (wf->total.ath.ast_ant_rx[i] || wf->total.ath.ast_ant_tx[i])
976 			fprintf(fd, "[%u] tx %8u rx %8u\n", i,
977 				wf->total.ath.ast_ant_tx[i],
978 				wf->total.ath.ast_ant_rx[i]);
979 #undef isphyerr
980 }
981 
982 STATFOO_DEFINE_BOUNCE(athstatfoo)
983 
984 struct athstatfoo *
985 athstats_new(const char *ifname, const char *fmtstring)
986 {
987 #define	N(a)	(sizeof(a) / sizeof(a[0]))
988 	struct athstatfoo_p *wf;
989 
990 	wf = calloc(1, sizeof(struct athstatfoo_p));
991 	if (wf != NULL) {
992 		statfoo_init(&wf->base.base, "athstats", athstats, N(athstats));
993 		/* override base methods */
994 		wf->base.base.collect_cur = ath_collect_cur;
995 		wf->base.base.collect_tot = ath_collect_tot;
996 		wf->base.base.get_curstat = ath_get_curstat;
997 		wf->base.base.get_totstat = ath_get_totstat;
998 		wf->base.base.update_tot = ath_update_tot;
999 		wf->base.base.print_verbose = ath_print_verbose;
1000 
1001 		/* setup bounce functions for public methods */
1002 		STATFOO_BOUNCE(wf, athstatfoo);
1003 
1004 		/* setup our public methods */
1005 		wf->base.setifname = ath_setifname;
1006 #if 0
1007 		wf->base.setstamac = wlan_setstamac;
1008 #endif
1009 		wf->base.zerostats = ath_zerostats;
1010 		wf->s = socket(AF_INET, SOCK_DGRAM, 0);
1011 		if (wf->s < 0)
1012 			err(1, "socket");
1013 
1014 		ath_setifname(&wf->base, ifname);
1015 		wf->base.setfmt(&wf->base, fmtstring);
1016 	}
1017 	return &wf->base;
1018 #undef N
1019 }
1020