xref: /dragonfly/usr.bin/ktrdump/ktrdump.c (revision 279dd846)
1 /*-
2  * Copyright (c) 2002 Jake Burkholder
3  * Copyright (c) 2004 Robert Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  *
27  * $FreeBSD: src/usr.bin/ktrdump/ktrdump.c,v 1.10 2005/05/21 09:55:06 ru Exp $
28  */
29 
30 #include <sys/types.h>
31 #include <sys/ktr.h>
32 #include <sys/mman.h>
33 #include <sys/stat.h>
34 #include <sys/queue.h>
35 
36 #include <ctype.h>
37 #include <devinfo.h>
38 #include <err.h>
39 #include <fcntl.h>
40 #include <kvm.h>
41 #include <limits.h>
42 #include <nlist.h>
43 #include <stdint.h>
44 #include <stdio.h>
45 #include <stdlib.h>
46 #include <string.h>
47 #include <unistd.h>
48 #include <evtr.h>
49 #include <stdarg.h>
50 
51 struct ktr_buffer {
52 	struct ktr_entry *ents;
53 	int modified;
54 	int reset;
55 	int beg_idx;		/* Beginning index */
56 	int end_idx;		/* Ending index */
57 };
58 
59 static struct nlist nl1[] = {
60 	{ .n_name = "_ktr_version" },
61 	{ .n_name = "_ktr_entries" },
62 	{ .n_name = "_ncpus" },
63 	{ .n_name = NULL }
64 };
65 
66 static struct nlist nl2[] = {
67 	{ .n_name = "_tsc_frequency" },
68 	{ .n_name = NULL }
69 };
70 
71 static struct nlist nl_version_ktr_idx[] = {
72 	{ .n_name = "_ktr_idx" },
73 	{ .n_name = "_ktr_buf" },
74 	{ .n_name = NULL }
75 };
76 
77 static struct nlist nl_version_ktr_cpu[] = {
78 	{ .n_name = "_ktr_cpu" },
79 	{ .n_name = NULL }
80 };
81 
82 struct save_ctx {
83 	char save_buf[512];
84 	const void *save_kptr;
85 };
86 
87 typedef void (*ktr_iter_cb_t)(void *, int, int, struct ktr_entry *, uint64_t *);
88 
89 #ifdef __x86_64__
90 /* defined according to the x86_64 ABI spec */
91 struct my_va_list {
92 	uint32_t gp_offset;	/* offset to next available gpr in reg_save_area */
93 	uint32_t fp_offset;	/* offset to next available fpr in reg_save_area */
94 	void *overflow_arg_area;	/* args that are passed on the stack */
95 	struct reg_save_area *reg_save_area;		/* register args */
96 	/*
97 	 * NOT part of the ABI. ->overflow_arg_area gets advanced when code
98 	 * iterates over the arguments with va_arg(). That means we need to
99 	 * keep a copy in order to free the allocated memory (if any)
100 	 */
101 	void *overflow_arg_area_save;
102 } __attribute__((packed));
103 
104 typedef struct my_va_list *machine_va_list;
105 
106 struct reg_save_area {
107 	uint64_t rdi, rsi, rdx, rcx, r8, r9;
108 	/* XMM registers follow, but we don't use them */
109 };
110 #endif
111 
112 static int cflag;
113 static int dflag;
114 static int fflag;
115 static int iflag;
116 static int lflag;
117 static int nflag;
118 static int qflag;
119 static int rflag;
120 static int sflag;
121 static int tflag;
122 static int xflag;
123 static int pflag;
124 static int Mflag;
125 static int Nflag;
126 static double tsc_frequency;
127 static double correction_factor = 0.0;
128 
129 static char corefile[PATH_MAX];
130 static char execfile[PATH_MAX];
131 
132 static char errbuf[_POSIX2_LINE_MAX];
133 static int ncpus;
134 static kvm_t *kd;
135 static int entries_per_buf;
136 static int fifo_mask;
137 static int ktr_version;
138 
139 static void usage(void);
140 static int earliest_ts(struct ktr_buffer *);
141 static void dump_machine_info(evtr_t);
142 static void dump_device_info(evtr_t);
143 static void print_header(FILE *, int);
144 static void print_entry(FILE *, int, int, struct ktr_entry *, u_int64_t *);
145 static void print_callback(void *, int, int, struct ktr_entry *, uint64_t *);
146 static void dump_callback(void *, int, int, struct ktr_entry *, uint64_t *);
147 static struct ktr_info *kvm_ktrinfo(void *, struct save_ctx *);
148 static const char *kvm_string(const char *, struct save_ctx *);
149 static const char *trunc_path(const char *, int);
150 static void read_symbols(const char *);
151 static const char *address_to_symbol(void *, struct save_ctx *);
152 static struct ktr_buffer *ktr_bufs_init(void);
153 static void get_indices(struct ktr_entry **, int *);
154 static void load_bufs(struct ktr_buffer *, struct ktr_entry **, int *);
155 static void iterate_buf(FILE *, struct ktr_buffer *, int, u_int64_t *, ktr_iter_cb_t);
156 static void iterate_bufs_timesorted(FILE *, struct ktr_buffer *, u_int64_t *, ktr_iter_cb_t);
157 static void kvmfprintf(FILE *fp, const char *ctl, va_list va);
158 static int va_list_from_blob(machine_va_list *valist, const char *fmt, char *blob, size_t blobsize);
159 static void va_list_cleanup(machine_va_list *valist);
160 /*
161  * Reads the ktr trace buffer from kernel memory and prints the trace entries.
162  */
163 int
164 main(int ac, char **av)
165 {
166 	struct ktr_buffer *ktr_bufs;
167 	struct ktr_entry **ktr_kbuf;
168 	ktr_iter_cb_t callback = &print_callback;
169 	int *ktr_idx;
170 	FILE *fo;
171 	void *ctx;
172 	int64_t tts;
173 	int *ktr_start_index;
174 	int c;
175 	int n;
176 
177 	/*
178 	 * Parse commandline arguments.
179 	 */
180 	fo = stdout;
181 	while ((c = getopt(ac, av, "acfinqrtxpslA:N:M:o:d")) != -1) {
182 		switch (c) {
183 		case 'a':
184 			cflag = 1;
185 			iflag = 1;
186 			rflag = 1;
187 			xflag = 1;
188 			pflag = 1;
189 			sflag = 1;
190 			break;
191 		case 'c':
192 			cflag = 1;
193 			break;
194 		case 'd':
195 			dflag = 1;
196 			sflag = 1;
197 			callback = &dump_callback;
198 			break;
199 		case 'N':
200 			if (strlcpy(execfile, optarg, sizeof(execfile))
201 			    >= sizeof(execfile))
202 				errx(1, "%s: File name too long", optarg);
203 			Nflag = 1;
204 			break;
205 		case 'f':
206 			fflag = 1;
207 			break;
208 		case 'l':
209 			lflag = 1;
210 			break;
211 		case 'i':
212 			iflag = 1;
213 			break;
214 		case 'A':
215 			correction_factor = strtod(optarg, NULL);
216 			break;
217 		case 'M':
218 			if (strlcpy(corefile, optarg, sizeof(corefile))
219 			    >= sizeof(corefile))
220 				errx(1, "%s: File name too long", optarg);
221 			Mflag = 1;
222 			break;
223 		case 'n':
224 			nflag = 1;
225 			break;
226 		case 'o':
227 			if ((fo = fopen(optarg, "w")) == NULL)
228 				err(1, "%s", optarg);
229 			break;
230 		case 'p':
231 			pflag++;
232 			break;
233 		case 'q':
234 			qflag++;
235 			break;
236 		case 'r':
237 			rflag = 1;
238 			break;
239 		case 's':
240 			sflag = 1;	/* sort across the cpus */
241 			break;
242 		case 't':
243 			tflag = 1;
244 			break;
245 		case 'x':
246 			xflag = 1;
247 			break;
248 		case '?':
249 		default:
250 			usage();
251 		}
252 	}
253 	ctx = fo;
254 	if (dflag) {
255 		ctx = evtr_open_write(fo);
256 		if (!ctx) {
257 			err(1, "Can't create event stream");
258 		}
259 	}
260 	if (cflag + iflag + tflag + xflag + fflag + pflag == 0) {
261 		cflag = 1;
262 		iflag = 1;
263 		tflag = 1;
264 		pflag = 1;
265 	}
266 	if (correction_factor != 0.0 && (rflag == 0 || nflag)) {
267 		fprintf(stderr, "Correction factor can only be applied with -r and without -n\n");
268 		exit(1);
269 	}
270 	ac -= optind;
271 	av += optind;
272 	if (ac != 0)
273 		usage();
274 
275 	/*
276 	 * Open our execfile and corefile, resolve needed symbols and read in
277 	 * the trace buffer.
278 	 */
279 	if ((kd = kvm_openfiles(Nflag ? execfile : NULL,
280 	    Mflag ? corefile : NULL, NULL, O_RDONLY, errbuf)) == NULL)
281 		errx(1, "%s", errbuf);
282 	if (kvm_nlist(kd, nl1) != 0)
283 		errx(1, "%s", kvm_geterr(kd));
284 	if (kvm_read(kd, nl1[0].n_value, &ktr_version, sizeof(ktr_version)) == -1)
285 		errx(1, "%s", kvm_geterr(kd));
286 	if (kvm_read(kd, nl1[2].n_value, &ncpus, sizeof(ncpus)) == -1)
287 		errx(1, "%s", kvm_geterr(kd));
288 	ktr_start_index = malloc(sizeof(*ktr_start_index) * ncpus);
289 	if (ktr_version >= KTR_VERSION_WITH_FREQ && kvm_nlist(kd, nl2) == 0) {
290 		if (kvm_read(kd, nl2[0].n_value, &tts, sizeof(tts)) == -1)
291 			errx(1, "%s", kvm_geterr(kd));
292 		tsc_frequency = (double)tts;
293 	}
294 	if (ktr_version > KTR_VERSION)
295 		errx(1, "ktr version too high for us to handle");
296 	if (kvm_read(kd, nl1[1].n_value, &entries_per_buf,
297 				sizeof(entries_per_buf)) == -1)
298 		errx(1, "%s", kvm_geterr(kd));
299 	fifo_mask = entries_per_buf - 1;
300 
301 	printf("TSC frequency is %6.3f MHz\n", tsc_frequency / 1000000.0);
302 
303 	if (dflag) {
304 		dump_machine_info((evtr_t)ctx);
305 		dump_device_info((evtr_t)ctx);
306 	}
307 	ktr_kbuf = calloc(ncpus, sizeof(*ktr_kbuf));
308 	ktr_idx = calloc(ncpus, sizeof(*ktr_idx));
309 
310 	if (nflag == 0)
311 		read_symbols(Nflag ? execfile : NULL);
312 
313 	if (ktr_version < KTR_VERSION_KTR_CPU) {
314 		if (kvm_nlist(kd, nl_version_ktr_idx))
315 			errx(1, "%s", kvm_geterr(kd));
316 	} else {
317 		if (kvm_nlist(kd, nl_version_ktr_cpu))
318 			errx(1, "%s", kvm_geterr(kd));
319 	}
320 
321 	get_indices(ktr_kbuf, ktr_idx);
322 
323 	ktr_bufs = ktr_bufs_init();
324 
325 	if (sflag) {
326 		u_int64_t last_timestamp = 0;
327 		do {
328 			load_bufs(ktr_bufs, ktr_kbuf, ktr_idx);
329 			iterate_bufs_timesorted(ctx, ktr_bufs, &last_timestamp,
330 						callback);
331 			if (lflag)
332 				usleep(1000000 / 10);
333 		} while (lflag);
334 	} else {
335 		u_int64_t *last_timestamp = calloc(sizeof(u_int64_t), ncpus);
336 		do {
337 			load_bufs(ktr_bufs, ktr_kbuf, ktr_idx);
338 			for (n = 0; n < ncpus; ++n)
339 				iterate_buf(ctx, ktr_bufs, n, &last_timestamp[n],
340 					callback);
341 			if (lflag)
342 				usleep(1000000 / 10);
343 		} while (lflag);
344 	}
345 	if (dflag)
346 		evtr_close(ctx);
347 	return (0);
348 }
349 
350 static
351 int
352 dump_devinfo(struct devinfo_dev *dev, void *arg)
353 {
354 	struct evtr_event ev;
355 	evtr_t evtr = (evtr_t)arg;
356 	const char *fmt = "#devicenames[\"%s\"] = %#lx";
357 	char fmtdatabuf[sizeof(char *) + sizeof(devinfo_handle_t)];
358 	char *fmtdata = fmtdatabuf;
359 
360 	if (!dev->dd_name[0])
361 		return 0;
362 	ev.type = EVTR_TYPE_PROBE;
363 	ev.ts = 0;
364 	ev.line = 0;
365 	ev.file = NULL;
366 	ev.cpu = -1;
367 	ev.func = NULL;
368 	ev.fmt = fmt;
369 	((char **)fmtdata)[0] = &dev->dd_name[0];
370 	fmtdata += sizeof(char *);
371 	((devinfo_handle_t *)fmtdata)[0] = dev->dd_handle;
372 	ev.fmtdata = fmtdatabuf;
373 	ev.fmtdatalen = sizeof(fmtdatabuf);
374 
375 	if (evtr_dump_event(evtr, &ev)) {
376 		err(1, "%s", evtr_errmsg(evtr));
377 	}
378 
379 	return devinfo_foreach_device_child(dev, dump_devinfo, evtr);
380 }
381 
382 static
383 void
384 dump_device_info(evtr_t evtr)
385 {
386 	struct devinfo_dev *root;
387 	if (devinfo_init())
388 		return;
389 	if (!(root = devinfo_handle_to_device(DEVINFO_ROOT_DEVICE))) {
390 		warn("can't find root device");
391 		return;
392 	}
393 	devinfo_foreach_device_child(root, dump_devinfo, evtr);
394 }
395 
396 static
397 void
398 dump_machine_info(evtr_t evtr)
399 {
400 	struct evtr_event ev;
401 	int i;
402 
403 	bzero(&ev, sizeof(ev));
404 	ev.type = EVTR_TYPE_SYSINFO;
405 	ev.ncpus = ncpus;
406 	evtr_dump_event(evtr, &ev);
407 	if (evtr_error(evtr)) {
408 		err(1, "%s", evtr_errmsg(evtr));
409 	}
410 
411 	for (i = 0; i < ncpus; ++i) {
412 		bzero(&ev, sizeof(ev));
413 		ev.type = EVTR_TYPE_CPUINFO;
414 		ev.cpu = i;
415 		ev.cpuinfo.freq = tsc_frequency;
416 		evtr_dump_event(evtr, &ev);
417 		if (evtr_error(evtr)) {
418 			err(1, "%s", evtr_errmsg(evtr));
419 		}
420 	}
421 }
422 
423 static void
424 print_header(FILE *fo, int row)
425 {
426 	if (qflag == 0 && (u_int32_t)row % 20 == 0) {
427 		fprintf(fo, "%-6s ", "index");
428 		if (cflag)
429 			fprintf(fo, "%-3s ", "cpu");
430 		if (tflag || rflag)
431 			fprintf(fo, "%-16s ", "timestamp");
432 		if (xflag) {
433 			if (nflag)
434 			    fprintf(fo, "%-10s %-10s", "caller2", "caller1");
435 			else
436 			    fprintf(fo, "%-20s %-20s", "caller2", "caller1");
437 		}
438 		if (iflag)
439 			fprintf(fo, "%-20s ", "ID");
440 		if (fflag)
441 			fprintf(fo, "%10s%-30s ", "", "file and line");
442 		if (pflag)
443 			fprintf(fo, "%s", "trace");
444 		fprintf(fo, "\n");
445 	}
446 }
447 
448 static void
449 print_entry(FILE *fo, int n, int row, struct ktr_entry *entry,
450 	    u_int64_t *last_timestamp)
451 {
452 	struct ktr_info *info = NULL;
453 	static struct save_ctx nctx, pctx, fmtctx, symctx, infoctx;
454 
455 	fprintf(fo, "%06x ", row & 0x00FFFFFF);
456 	if (cflag)
457 		fprintf(fo, "%-3d ", n);
458 	if (tflag || rflag) {
459 		if (rflag && !nflag && tsc_frequency != 0.0) {
460 			fprintf(fo, "%13.3f uS ",
461 				(double)(entry->ktr_timestamp - *last_timestamp) * 1000000.0 / tsc_frequency - correction_factor);
462 		} else if (rflag) {
463 			fprintf(fo, "%-16ju ",
464 			    (uintmax_t)(entry->ktr_timestamp - *last_timestamp));
465 		} else {
466 			fprintf(fo, "%-16ju ",
467 			    (uintmax_t)entry->ktr_timestamp);
468 		}
469 	}
470 	if (xflag) {
471 		if (nflag) {
472 		    fprintf(fo, "%p %p ",
473 			    entry->ktr_caller2, entry->ktr_caller1);
474 		} else {
475 		    fprintf(fo, "%-25s ",
476 			    address_to_symbol(entry->ktr_caller2, &symctx));
477 		    fprintf(fo, "%-25s ",
478 			    address_to_symbol(entry->ktr_caller1, &symctx));
479 		}
480 	}
481 	if (iflag) {
482 		info = kvm_ktrinfo(entry->ktr_info, &infoctx);
483 		if (info)
484 			fprintf(fo, "%-20s ", kvm_string(info->kf_name, &nctx));
485 		else
486 			fprintf(fo, "%-20s ", "<empty>");
487 	}
488 	if (fflag)
489 		fprintf(fo, "%34s:%-4d ",
490 			trunc_path(kvm_string(entry->ktr_file, &pctx), 34),
491 			entry->ktr_line);
492 	if (pflag) {
493 		if (info == NULL)
494 			info = kvm_ktrinfo(entry->ktr_info, &infoctx);
495 		if (info) {
496 			machine_va_list ap;
497 			const char *fmt;
498 			fmt = kvm_string(info->kf_format, &fmtctx);
499 			if (va_list_from_blob(&ap, fmt,
500 					      (char *)&entry->ktr_data,
501 					      info->kf_data_size))
502 				err(2, "Can't generate va_list from %s", fmt);
503 			kvmfprintf(fo, kvm_string(info->kf_format, &fmtctx),
504 				   (void *)ap);
505 			va_list_cleanup(&ap);
506 		}
507 	}
508 	fprintf(fo, "\n");
509 	*last_timestamp = entry->ktr_timestamp;
510 }
511 
512 static
513 void
514 print_callback(void *ctx, int n, int row, struct ktr_entry *entry, uint64_t *last_ts)
515 {
516 	FILE *fo = (FILE *)ctx;
517 	print_header(fo, row);
518 	print_entry(fo, n, row, entry, last_ts);
519 }
520 
521 /*
522  * If free == 0, replace all (kvm) string pointers in fmtdata with pointers
523  * to user-allocated copies of the strings.
524  * If free != 0, free those pointers.
525  */
526 static
527 int
528 mangle_string_ptrs(const char *fmt, uint8_t *fmtdata, int dofree)
529 {
530 	const char *f, *p;
531 	size_t skipsize, intsz;
532 	static struct save_ctx strctx;
533 	int ret = 0;
534 
535 	for (f = fmt; f[0] != '\0'; ++f) {
536 		if (f[0] != '%')
537 			continue;
538 		++f;
539 		skipsize = 0;
540 		for (p = f; p[0]; ++p) {
541 			int again = 0;
542 			/*
543 			 * Eat flags. Notice this will accept duplicate
544 			 * flags.
545 			 */
546 			switch (p[0]) {
547 			case '#':
548 			case '0':
549 			case '-':
550 			case ' ':
551 			case '+':
552 			case '\'':
553 				again = !0;
554 				break;
555 			}
556 			if (!again)
557 				break;
558 		}
559 		/* Eat minimum field width, if any */
560 		for (; isdigit(p[0]); ++p)
561 			;
562 		if (p[0] == '.')
563 			++p;
564 		/* Eat precision, if any */
565 		for (; isdigit(p[0]); ++p)
566 			;
567 		intsz = 0;
568 		switch (p[0]) {
569 		case 'l':
570 			if (p[1] == 'l') {
571 				++p;
572 				intsz = sizeof(long long);
573 			} else {
574 				intsz = sizeof(long);
575 			}
576 			break;
577 		case 'j':
578 			intsz = sizeof(intmax_t);
579 			break;
580 		case 't':
581 			intsz = sizeof(ptrdiff_t);
582 			break;
583 		case 'z':
584 			intsz = sizeof(size_t);
585 			break;
586 		default:
587 			break;
588 		}
589 		if (intsz != 0)
590 			++p;
591 		else
592 			intsz = sizeof(int);
593 
594 		switch (p[0]) {
595 		case 'd':
596 		case 'i':
597 		case 'o':
598 		case 'u':
599 		case 'x':
600 		case 'X':
601 		case 'c':
602 			skipsize = intsz;
603 			break;
604 		case 'p':
605 			skipsize = sizeof(void *);
606 			break;
607 		case 'f':
608 			if (p[-1] == 'l')
609 				skipsize = sizeof(double);
610 			else
611 				skipsize = sizeof(float);
612 			break;
613 		case 's':
614 			if (dofree) {
615 			  char *t = ((char **)fmtdata)[0];
616 			  free(t);
617 			  skipsize = sizeof(char *);
618 			} else {
619 			  char *t = strdup(kvm_string(((char **)fmtdata)[0],
620 							  &strctx));
621 			  ((const char **)fmtdata)[0] = t;
622 
623 				skipsize = sizeof(char *);
624 			}
625 			++ret;
626 			break;
627 		default:
628 			fprintf(stderr, "Unknown conversion specifier %c "
629 				"in fmt starting with %s\n", p[0], f - 1);
630 			return -1;
631 		}
632 		fmtdata += skipsize;
633 	}
634 	return ret;
635 }
636 
637 static
638 void
639 dump_callback(void *ctx, int n, int row __unused, struct ktr_entry *entry,
640 	      uint64_t *last_ts __unused)
641 {
642 	evtr_t evtr = (evtr_t)ctx;
643 	struct evtr_event ev;
644 	static struct save_ctx pctx, fmtctx, infoctx;
645 	struct ktr_info *ki;
646 	int conv = 0;	/* pointless */
647 
648 	ev.ts = entry->ktr_timestamp;
649 	ev.type = EVTR_TYPE_PROBE;
650 	ev.line = entry->ktr_line;
651 	ev.file = kvm_string(entry->ktr_file, &pctx);
652 	ev.func = NULL;
653 	ev.cpu = n;
654 	if ((ki = kvm_ktrinfo(entry->ktr_info, &infoctx))) {
655 		ev.fmt = kvm_string(ki->kf_format, &fmtctx);
656 		ev.fmtdata = entry->ktr_data;
657 		if ((conv = mangle_string_ptrs(ev.fmt,
658 					       __DECONST(uint8_t *, ev.fmtdata),
659 					       0)) < 0)
660 			errx(1, "Can't parse format string");
661 		ev.fmtdatalen = ki->kf_data_size;
662 	} else {
663 		ev.fmt = ev.fmtdata = NULL;
664 		ev.fmtdatalen = 0;
665 	}
666 	if (evtr_dump_event(evtr, &ev)) {
667 		err(1, "%s", evtr_errmsg(evtr));
668 	}
669 	if (ev.fmtdata && conv) {
670 		mangle_string_ptrs(ev.fmt, __DECONST(uint8_t *, ev.fmtdata),
671 				   !0);
672 	}
673 }
674 
675 static
676 struct ktr_info *
677 kvm_ktrinfo(void *kptr, struct save_ctx *ctx)
678 {
679 	struct ktr_info *ki = (void *)ctx->save_buf;
680 
681 	if (kptr == NULL)
682 		return(NULL);
683 	if (ctx->save_kptr != kptr) {
684 		if (kvm_read(kd, (uintptr_t)kptr, ki, sizeof(*ki)) == -1) {
685 			bzero(&ki, sizeof(*ki));
686 		} else {
687 			ctx->save_kptr = kptr;
688 		}
689 	}
690 	return(ki);
691 }
692 
693 static
694 const char *
695 kvm_string(const char *kptr, struct save_ctx *ctx)
696 {
697 	u_int l;
698 	u_int n;
699 
700 	if (kptr == NULL)
701 		return("?");
702 	if (ctx->save_kptr != (const void *)kptr) {
703 		ctx->save_kptr = (const void *)kptr;
704 		l = 0;
705 		while (l < sizeof(ctx->save_buf) - 1) {
706 			n = 256 - ((intptr_t)(kptr + l) & 255);
707 			if (n > sizeof(ctx->save_buf) - l - 1)
708 				n = sizeof(ctx->save_buf) - l - 1;
709 			if (kvm_read(kd, (uintptr_t)(kptr + l), ctx->save_buf + l, n) < 0)
710 				break;
711 			while (l < sizeof(ctx->save_buf) && n) {
712 			    if (ctx->save_buf[l] == 0)
713 				    break;
714 			    --n;
715 			    ++l;
716 			}
717 			if (n)
718 			    break;
719 		}
720 		ctx->save_buf[l] = 0;
721 	}
722 	return(ctx->save_buf);
723 }
724 
725 static
726 const char *
727 trunc_path(const char *str, int maxlen)
728 {
729 	int len = strlen(str);
730 
731 	if (len > maxlen)
732 		return(str + len - maxlen);
733 	else
734 		return(str);
735 }
736 
737 struct symdata {
738 	TAILQ_ENTRY(symdata) link;
739 	const char *symname;
740 	char *symaddr;
741 	char symtype;
742 };
743 
744 static TAILQ_HEAD(symlist, symdata) symlist;
745 static struct symdata *symcache;
746 static char *symbegin;
747 static char *symend;
748 
749 static
750 void
751 read_symbols(const char *file)
752 {
753 	char buf[256];
754 	char cmd[256];
755 	size_t buflen = sizeof(buf);
756 	FILE *fp;
757 	struct symdata *sym = NULL;
758 	char *s1;
759 	char *s2;
760 	char *s3;
761 
762 	TAILQ_INIT(&symlist);
763 
764 	if (file == NULL) {
765 		if (sysctlbyname("kern.bootfile", buf, &buflen, NULL, 0) < 0)
766 			file = "/boot/kernel/kernel";
767 		else
768 			file = buf;
769 	}
770 	snprintf(cmd, sizeof(cmd), "nm -n %s", file);
771 	if ((fp = popen(cmd, "r")) != NULL) {
772 		while (fgets(buf, sizeof(buf), fp) != NULL) {
773 		    s1 = strtok(buf, " \t\n");
774 		    s2 = strtok(NULL, " \t\n");
775 		    s3 = strtok(NULL, " \t\n");
776 		    if (s1 && s2 && s3) {
777 			sym = malloc(sizeof(struct symdata));
778 			sym->symaddr = (char *)strtoul(s1, NULL, 16);
779 			sym->symtype = s2[0];
780 			sym->symname = strdup(s3);
781 			if (strcmp(s3, "kernbase") == 0)
782 				symbegin = sym->symaddr;
783 			if (strcmp(s3, "end") == 0 || strcmp(s3, "_end") == 0)
784 				symend = sym->symaddr;
785 			TAILQ_INSERT_TAIL(&symlist, sym, link);
786 		    }
787 		}
788 		pclose(fp);
789 	}
790 	if (symend == NULL) {
791 		if (sym != NULL)
792 			symend = sym->symaddr;
793 		else
794 			symend = (char *)-1;
795 	}
796 	symcache = TAILQ_FIRST(&symlist);
797 }
798 
799 static
800 const char *
801 address_to_symbol(void *kptr, struct save_ctx *ctx)
802 {
803 	char *buf = ctx->save_buf;
804 	int size = sizeof(ctx->save_buf);
805 
806 	if (symcache == NULL ||
807 	   (char *)kptr < symbegin || (char *)kptr >= symend
808 	) {
809 		snprintf(buf, size, "%p", kptr);
810 		return(buf);
811 	}
812 	while ((char *)symcache->symaddr < (char *)kptr) {
813 		if (TAILQ_NEXT(symcache, link) == NULL)
814 			break;
815 		symcache = TAILQ_NEXT(symcache, link);
816 	}
817 	while ((char *)symcache->symaddr > (char *)kptr) {
818 		if (symcache != TAILQ_FIRST(&symlist))
819 			symcache = TAILQ_PREV(symcache, symlist, link);
820 	}
821 	snprintf(buf, size, "%s+%d", symcache->symname,
822 		(int)((char *)kptr - symcache->symaddr));
823 	return(buf);
824 }
825 
826 static
827 struct ktr_buffer *
828 ktr_bufs_init(void)
829 {
830 	struct ktr_buffer *ktr_bufs, *it;
831 	int i;
832 
833 	ktr_bufs = malloc(sizeof(*ktr_bufs) * ncpus);
834 	if (!ktr_bufs)
835 		err(1, "can't allocate data structures");
836 	for (i = 0; i < ncpus; ++i) {
837 		it = ktr_bufs + i;
838 		it->ents = malloc(sizeof(struct ktr_entry) * entries_per_buf);
839 		if (it->ents == NULL)
840 			err(1, "can't allocate data structures");
841 		it->reset = 1;
842 		it->beg_idx = -1;
843 		it->end_idx = -1;
844 	}
845 	return ktr_bufs;
846 }
847 
848 static
849 void
850 get_indices(struct ktr_entry **ktr_kbuf, int *ktr_idx)
851 {
852 	static struct ktr_cpu *ktr_cpus;
853 	int i;
854 
855 	if (ktr_cpus == NULL)
856 		ktr_cpus = malloc(sizeof(*ktr_cpus) * ncpus);
857 
858 	if (ktr_version < KTR_VERSION_KTR_CPU) {
859 		if (kvm_read(kd, nl_version_ktr_idx[0].n_value, ktr_idx,
860 		    sizeof(*ktr_idx) * ncpus) == -1) {
861 			errx(1, "%s", kvm_geterr(kd));
862 		}
863 		if (ktr_kbuf[0] == NULL) {
864 			if (kvm_read(kd, nl_version_ktr_idx[1].n_value,
865 			    ktr_kbuf, sizeof(*ktr_kbuf) * ncpus) == -1) {
866 				errx(1, "%s", kvm_geterr(kd));
867 			}
868 		}
869 	} else {
870 		if (kvm_read(kd, nl_version_ktr_cpu[0].n_value,
871 			     ktr_cpus, sizeof(*ktr_cpus) * ncpus) == -1) {
872 				errx(1, "%s", kvm_geterr(kd));
873 		}
874 		for (i = 0; i < ncpus; ++i) {
875 			ktr_idx[i] = ktr_cpus[i].core.ktr_idx;
876 			ktr_kbuf[i] = ktr_cpus[i].core.ktr_buf;
877 		}
878 	}
879 }
880 
881 /*
882  * Get the trace buffer data from the kernel
883  */
884 static
885 void
886 load_bufs(struct ktr_buffer *ktr_bufs, struct ktr_entry **kbufs, int *ktr_idx)
887 {
888 	struct ktr_buffer *kbuf;
889 	int i;
890 
891 	get_indices(kbufs, ktr_idx);
892 	for (i = 0; i < ncpus; ++i) {
893 		kbuf = &ktr_bufs[i];
894 		if (ktr_idx[i] == kbuf->end_idx)
895 			continue;
896 		kbuf->end_idx = ktr_idx[i];
897 
898 		/*
899 		 * If we do not have a notion of the beginning index, assume
900 		 * it is entries_per_buf before the ending index.  Don't
901 		 * worry about underflows/negative numbers, the indices will
902 		 * be masked.
903 		 */
904 		if (kbuf->reset) {
905 			kbuf->beg_idx = kbuf->end_idx - entries_per_buf + 1;
906 			kbuf->reset = 0;
907 		}
908 		if (kvm_read(kd, (uintptr_t)kbufs[i], ktr_bufs[i].ents,
909 				sizeof(struct ktr_entry) * entries_per_buf)
910 									== -1)
911 			errx(1, "%s", kvm_geterr(kd));
912 		kbuf->modified = 1;
913 		kbuf->beg_idx = earliest_ts(kbuf);
914 	}
915 
916 }
917 
918 /*
919  * Locate the earliest timestamp iterating backwards from end_idx, but
920  * not going further back then beg_idx.  We have to do this because
921  * the kernel uses a circulating buffer.
922  */
923 static
924 int
925 earliest_ts(struct ktr_buffer *buf)
926 {
927 	struct ktr_entry *save;
928 	int count, scan, i, earliest;
929 
930 	count = 0;
931 	earliest = buf->end_idx - 1;
932 	save = &buf->ents[earliest & fifo_mask];
933 	for (scan = buf->end_idx - 1; scan != buf->beg_idx -1; --scan) {
934 		i = scan & fifo_mask;
935 		if (buf->ents[i].ktr_timestamp <= save->ktr_timestamp &&
936 		    buf->ents[i].ktr_timestamp > 0)
937 			earliest = scan;
938 		/*
939 		 * We may have gotten so far behind that beg_idx wrapped
940 		 * more then once around the buffer.  Just stop
941 		 */
942 		if (++count == entries_per_buf)
943 			break;
944 	}
945 	return earliest;
946 }
947 
948 static
949 void
950 iterate_buf(FILE *fo, struct ktr_buffer *ktr_bufs, int cpu,
951 	    u_int64_t *last_timestamp, ktr_iter_cb_t cb)
952 {
953 	struct ktr_buffer *buf = ktr_bufs + cpu;
954 
955 	if (buf->modified == 0)
956 		return;
957 	if (*last_timestamp == 0) {
958 		*last_timestamp =
959 			buf->ents[buf->beg_idx & fifo_mask].ktr_timestamp;
960 	}
961 	while (buf->beg_idx != buf->end_idx) {
962 		cb(fo, cpu, buf->beg_idx,
963 		   &buf->ents[buf->beg_idx & fifo_mask],
964 		   last_timestamp);
965 		++buf->beg_idx;
966 	}
967 	buf->modified = 0;
968 }
969 
970 static
971 void
972 iterate_bufs_timesorted(FILE *fo, struct ktr_buffer *ktr_bufs,
973 			u_int64_t *last_timestamp, ktr_iter_cb_t cb)
974 {
975 	struct ktr_entry *ent;
976 	struct ktr_buffer *buf;
977 	int n, bestn;
978 	u_int64_t ts;
979 	static int row = 0;
980 
981 	for (;;) {
982 		ts = 0;
983 		bestn = -1;
984 		for (n = 0; n < ncpus; ++n) {
985 			buf = ktr_bufs + n;
986 			if (buf->beg_idx == buf->end_idx)
987 				continue;
988 			ent = &buf->ents[buf->beg_idx & fifo_mask];
989 			if (ts == 0 || (ts >= ent->ktr_timestamp)) {
990 				ts = ent->ktr_timestamp;
991 				bestn = n;
992 			}
993 		}
994 		if ((bestn < 0) || (ts < *last_timestamp))
995 			break;
996 		buf = ktr_bufs + bestn;
997 		cb(fo, bestn, row,
998 		   &buf->ents[buf->beg_idx & fifo_mask],
999 		   last_timestamp);
1000 		++buf->beg_idx;
1001 		*last_timestamp = ts;
1002 		++row;
1003 	}
1004 }
1005 
1006 static
1007 void
1008 kvmfprintf(FILE *fp, const char *ctl, va_list va)
1009 {
1010 	int n;
1011 	int is_long;
1012 	int is_done;
1013 	char fmt[256];
1014 	static struct save_ctx strctx;
1015 	const char *s;
1016 
1017 	while (*ctl) {
1018 		for (n = 0; ctl[n]; ++n) {
1019 			fmt[n] = ctl[n];
1020 			if (ctl[n] == '%')
1021 				break;
1022 		}
1023 		if (n == 0) {
1024 			is_long = 0;
1025 			is_done = 0;
1026 			n = 1;
1027 			while (n < (int)sizeof(fmt)) {
1028 				fmt[n] = ctl[n];
1029 				fmt[n+1] = 0;
1030 
1031 				switch(ctl[n]) {
1032 				case 'p':
1033 					is_long = 1;
1034 					/* fall through */
1035 				case 'd':
1036 				case 'u':
1037 				case 'x':
1038 				case 'o':
1039 				case 'X':
1040 					/*
1041 					 * Integral
1042 					 */
1043 					switch(is_long) {
1044 					case 0:
1045 						fprintf(fp, fmt,
1046 							va_arg(va, int));
1047 						break;
1048 					case 1:
1049 						fprintf(fp, fmt,
1050 							va_arg(va, long));
1051 						break;
1052 					case 2:
1053 						fprintf(fp, fmt,
1054 						    va_arg(va, long long));
1055 						break;
1056 					case 3:
1057 						fprintf(fp, fmt,
1058 						    va_arg(va, size_t));
1059 						break;
1060 					}
1061 					++n;
1062 					is_done = 1;
1063 					break;
1064 				case 'c':
1065 				        fprintf(fp, "%c", va_arg(va, int));
1066 					++n;
1067 					is_done = 1;
1068 					break;
1069 				case 's':
1070 					/*
1071 					 * String
1072 					 */
1073 					s = kvm_string(va_arg(va, char *), &strctx);
1074 					fwrite(s, 1, strlen(s), fp);
1075 					++n;
1076 					is_done = 1;
1077 					break;
1078 				case 'f':
1079 					/*
1080 					 * Floating
1081 					 */
1082 					fprintf(fp, fmt,
1083 						va_arg(va, double));
1084 					++n;
1085 					break;
1086 				case 'j':
1087 					is_long = 2;
1088 					break;
1089 				case 'z':
1090 					is_long = 3;
1091 					break;
1092 				case 'l':
1093 					if (is_long)
1094 						is_long = 2;
1095 					else
1096 						is_long = 1;
1097 					break;
1098 				case '.':
1099 				case '-':
1100 				case '+':
1101 				case '0':
1102 				case '1':
1103 				case '2':
1104 				case '3':
1105 				case '4':
1106 				case '5':
1107 				case '6':
1108 				case '7':
1109 				case '8':
1110 				case '9':
1111 					break;
1112 				default:
1113 					is_done = 1;
1114 					break;
1115 				}
1116 				if (is_done)
1117 					break;
1118 				++n;
1119 			}
1120 		} else {
1121 			fmt[n] = 0;
1122 			fprintf(fp, fmt, NULL);
1123 		}
1124 		ctl += n;
1125 	}
1126 }
1127 
1128 static void
1129 usage(void)
1130 {
1131 	fprintf(stderr, "usage: ktrdump [-acfilnpqrstx] [-A factor] "
1132 			"[-N execfile] [-M corefile] [-o outfile]\n");
1133 	exit(1);
1134 }
1135 
1136 enum argument_class {
1137 	ARGCLASS_NONE,
1138 	ARGCLASS_INTEGER,
1139 	ARGCLASS_FP,
1140 	ARGCLASS_MEMORY,
1141 	ARGCLASS_ERR,
1142 };
1143 static size_t
1144 conversion_size(const char *fmt, enum argument_class *argclass)
1145 {
1146 	const char *p;
1147 	size_t convsize, intsz;
1148 
1149 	*argclass = ARGCLASS_ERR;
1150 	if (fmt[0] != '%')
1151 		return -1;
1152 
1153 	convsize = -1;
1154 	for (p = fmt + 1; p[0]; ++p) {
1155 		int again = 0;
1156 		/*
1157 		 * Eat flags. Notice this will accept duplicate
1158 		 * flags.
1159 		 */
1160 		switch (p[0]) {
1161 		case '#':
1162 		case '0':
1163 		case '-':
1164 		case ' ':
1165 		case '+':
1166 		case '\'':
1167 			again = !0;
1168 			break;
1169 		}
1170 		if (!again)
1171 			break;
1172 	}
1173 	/* Eat minimum field width, if any */
1174 	for (; isdigit(p[0]); ++p)
1175 			;
1176 	if (p[0] == '.')
1177 		++p;
1178 	/* Eat precision, if any */
1179 	for (; isdigit(p[0]); ++p)
1180 		;
1181 	intsz = 0;
1182 	switch (p[0]) {
1183 	case 'h':
1184 		if (p[1] == 'h') {
1185 			++p;
1186 			intsz = sizeof(char);
1187 		} else {
1188 			intsz = sizeof(short);
1189 		}
1190 		break;
1191 	case 'l':
1192 		if (p[1] == 'l') {
1193 			++p;
1194 			intsz = sizeof(long long);
1195 		} else {
1196 			intsz = sizeof(long);
1197 		}
1198 		break;
1199 	case 'j':
1200 		intsz = sizeof(intmax_t);
1201 		break;
1202 	case 't':
1203 		intsz = sizeof(ptrdiff_t);
1204 		break;
1205 	case 'z':
1206 		intsz = sizeof(size_t);
1207 		break;
1208 	default:
1209 		p--;	/* Anticipate the ++p that follows. Yes, I know. Eeek. */
1210 		break;
1211 	}
1212 	if (intsz == 0)
1213 		intsz = sizeof(int);
1214 	++p;
1215 
1216 	switch (p[0]) {
1217 	case 'c':
1218 		/* for %c, we only store 1 byte in the ktr entry */
1219 		convsize = sizeof(char);
1220 		*argclass = ARGCLASS_INTEGER;
1221 		break;
1222 	case 'd':
1223 	case 'i':
1224 	case 'o':
1225 	case 'u':
1226 	case 'x':
1227 	case 'X':
1228 		convsize = intsz;
1229 		*argclass = ARGCLASS_INTEGER;
1230 		break;
1231 	case 'p':
1232 		convsize = sizeof(void *);
1233 		*argclass = ARGCLASS_INTEGER;
1234 		break;
1235 	case 'f':
1236 		if (p[-1] == 'l')
1237 			convsize = sizeof(double);
1238 		else
1239 			convsize = sizeof(float);
1240 		break;
1241 		*argclass = ARGCLASS_FP;
1242 	case 's':
1243 		convsize = sizeof(char *);
1244 		*argclass = ARGCLASS_INTEGER;
1245 		break;
1246 	case '%':
1247 		convsize = 0;
1248 		*argclass = ARGCLASS_NONE;
1249 		break;
1250 	default:
1251 		fprintf(stderr, "Unknown conversion specifier %c "
1252 			"in fmt starting with %s\n", p[0], fmt - 1);
1253 		return -2;
1254 	}
1255 	return convsize;
1256 }
1257 
1258 #ifdef __x86_64__
1259 static int
1260 va_list_push_integral(struct my_va_list *valist, void *val, size_t valsize,
1261 		     size_t *stacksize)
1262 {
1263 	uint64_t r;
1264 
1265 	switch (valsize) {
1266 	case 1:
1267 		r = *(uint8_t *)val; break;
1268 	case 2:
1269 		r = *(uint32_t *)val; break;
1270 	case 4:
1271 		r = (*(uint32_t *)val); break;
1272 	case 8:
1273 		r = *(uint64_t *)val; break;
1274 	default:
1275 		err(1, "WTF");
1276 	}
1277 	/* we always need to push the full 8 bytes */
1278 	if ((valist->gp_offset + valsize) <= 48) {	/* got a free reg */
1279 
1280 		memcpy(((char *)valist->reg_save_area + valist->gp_offset),
1281 		       &r, sizeof(r));
1282 		valist->gp_offset += sizeof(r);
1283 		return 0;
1284 	}
1285 	/* push to "stack" */
1286 	if (!(valist->overflow_arg_area = realloc(valist->overflow_arg_area,
1287 						  *stacksize + sizeof(r))))
1288 		return -1;
1289 	/*
1290 	 * Keep a pointer to the start of the allocated memory block so
1291 	 * we can free it later. We need to update it after every realloc().
1292 	 */
1293 	valist->overflow_arg_area_save = valist->overflow_arg_area;
1294 	memcpy((char *)valist->overflow_arg_area + *stacksize, &r, sizeof(r));
1295 	*stacksize += sizeof(r);
1296 	return 0;
1297 }
1298 
1299 static void
1300 va_list_rewind(struct my_va_list *valist)
1301 {
1302 	valist->gp_offset = 0;
1303 }
1304 
1305 static void
1306 va_list_cleanup(machine_va_list *_valist)
1307 {
1308 	machine_va_list valist;
1309 	if (!_valist || !*_valist)
1310 		return;
1311 	valist = *_valist;
1312 	if (valist->reg_save_area)
1313 		free(valist->reg_save_area);
1314 	if (valist->overflow_arg_area_save)
1315 		free(valist->overflow_arg_area_save);
1316 	free(valist);
1317 }
1318 
1319 static int
1320 va_list_from_blob(machine_va_list *_valist, const char *fmt, char *blob, size_t blobsize)
1321 {
1322 	machine_va_list valist;
1323 	struct reg_save_area *regs;
1324 	const char *f;
1325 	size_t sz;
1326 
1327 	if (!(valist = malloc(sizeof(*valist))))
1328 		return -1;
1329 	if (!(regs = malloc(sizeof(*regs))))
1330 		goto free_valist;
1331 	*valist = (struct my_va_list) {
1332 		.gp_offset = 0,
1333 		.fp_offset = 0,
1334 		.overflow_arg_area = NULL,
1335 		.reg_save_area = regs,
1336 		.overflow_arg_area_save = NULL,
1337 	};
1338 	enum argument_class argclass;
1339 	size_t stacksize = 0;
1340 
1341 	for (f = fmt; *f != '\0'; ++f) {
1342 		if (*f != '%')
1343 			continue;
1344 		sz = conversion_size(f, &argclass);
1345 		if (argclass == ARGCLASS_INTEGER) {
1346 			if (blobsize < sz) {
1347 				fprintf(stderr, "not enough data available "
1348 					"for format: %s\n", fmt);
1349 				goto free_areas;
1350 			}
1351 			if (va_list_push_integral(valist, blob, sz, &stacksize))
1352 				goto free_areas;
1353 			blob += sz;
1354 			blobsize -= sz;
1355 		} else if (argclass != ARGCLASS_NONE)
1356 			goto free_areas;
1357 		/* walk past the '%' */
1358 		++f;
1359 	}
1360 	if (blobsize) {
1361 		fprintf(stderr, "Couldn't consume all data for format %s "
1362 			"(%zd bytes left over)\n", fmt, blobsize);
1363 		goto free_areas;
1364 	}
1365 	va_list_rewind(valist);
1366 	*_valist = valist;
1367 	return 0;
1368 free_areas:
1369 	if (valist->reg_save_area)
1370 		free(valist->reg_save_area);
1371 	if (valist->overflow_arg_area_save)
1372 		free(valist->overflow_arg_area_save);
1373 free_valist:
1374 	free(valist);
1375 	*_valist = NULL;
1376 	return -1;
1377 }
1378 
1379 #else
1380 #error "Don't know how to get a va_list on this platform"
1381 #endif
1382