xref: /dragonfly/usr.bin/localedef/wide.c (revision c6ecc293)
1 /*
2  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
3  * Copyright 2012 Garrett D'Amore <garrett@damore.org>  All rights reserved.
4  * Copyright 2015 John Marino <draco@marino.st>
5  *
6  * This source code is derived from the illumos localedef command, and
7  * provided under BSD-style license terms by Nexenta Systems, Inc.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * The functions in this file convert from the standard multibyte forms
34  * to the wide character forms used internally by libc.  Unfortunately,
35  * this approach means that we need a method for each and every encoding.
36  */
37 
38 #include <ctype.h>
39 #include <stdint.h>
40 #include <stdlib.h>
41 #include <wchar.h>
42 #include <string.h>
43 #include <sys/types.h>
44 #include "localedef.h"
45 
46 static int towide_none(wchar_t *, const char *, unsigned);
47 static int towide_utf8(wchar_t *, const char *, unsigned);
48 static int towide_big5(wchar_t *, const char *, unsigned);
49 static int towide_gbk(wchar_t *, const char *, unsigned);
50 static int towide_gb2312(wchar_t *, const char *, unsigned);
51 static int towide_gb18030(wchar_t *, const char *, unsigned);
52 static int towide_mskanji(wchar_t *, const char *, unsigned);
53 static int towide_euccn(wchar_t *, const char *, unsigned);
54 static int towide_eucjp(wchar_t *, const char *, unsigned);
55 static int towide_euckr(wchar_t *, const char *, unsigned);
56 static int towide_euctw(wchar_t *, const char *, unsigned);
57 
58 static int tomb_none(char *, wchar_t);
59 static int tomb_utf8(char *, wchar_t);
60 static int tomb_mbs(char *, wchar_t);
61 
62 static int (*_towide)(wchar_t *, const char *, unsigned) = towide_none;
63 static int (*_tomb)(char *, wchar_t) = tomb_none;
64 static char _encoding_buffer[20] = {'N','O','N','E'};
65 static const char *_encoding = _encoding_buffer;
66 static int _nbits = 7;
67 
68 /*
69  * Table of supported encodings.  We only bother to list the multibyte
70  * encodings here, because single byte locales are handed by "NONE".
71  */
72 static struct {
73 	const char *name;
74 	/* the name that the underlying libc implemenation uses */
75 	const char *cname;
76 	/* the maximum number of bits required for priorities */
77 	int nbits;
78 	int (*towide)(wchar_t *, const char *, unsigned);
79 	int (*tomb)(char *, wchar_t);
80 } mb_encodings[] = {
81 	/*
82 	 * UTF8 values max out at 0x1fffff (although in theory there could
83 	 * be later extensions, but it won't happen.)  This means we only need
84 	 * 21 bits to be able to encode the entire range of priorities.
85 	 */
86 	{ "UTF-8",	"UTF-8",	21, towide_utf8, tomb_utf8 },
87 	{ "UTF8",	"UTF-8",	21, towide_utf8, tomb_utf8 },
88 	{ "utf8",	"UTF-8",	21, towide_utf8, tomb_utf8 },
89 	{ "utf-8",	"UTF-8",	21, towide_utf8, tomb_utf8 },
90 
91 	{ "EUC-CN",	"EUC-CN",	16, towide_euccn, tomb_mbs },
92 	{ "eucCN",	"EUC-CN",	16, towide_euccn, tomb_mbs },
93 	/*
94 	 * Becuase the 3-byte form of EUC-JP use the same leading byte,
95 	 * only 17 bits required to provide unique priorities.  (The low
96 	 * bit of that first byte is set.)  By setting this value low,
97 	 * we can get by with only 3 bytes in the strxfrm expansion.
98 	 */
99 	{ "EUC-JP",	"EUC-JP",	17, towide_eucjp, tomb_mbs },
100 	{ "eucJP",	"EUC-JP",	17, towide_eucjp, tomb_mbs },
101 
102 	{ "EUC-KR",	"EUC-KR",	16, towide_euckr, tomb_mbs },
103 	{ "eucKR",	"EUC-KR",	16, towide_euckr, tomb_mbs },
104 	/*
105 	 * EUC-TW uses 2 bytes most of the time, but 4 bytes if the
106 	 * high order byte is 0x8E.  However, with 4 byte encodings,
107 	 * the third byte will be A0-B0.  So we only need to consider
108 	 * the lower order 24 bits for collation.
109 	 */
110 	{ "EUC-TW",	"EUC-TW",	24, towide_euctw, tomb_mbs },
111 	{ "eucTW",	"EUC-TW",	24, towide_euctw, tomb_mbs },
112 
113 	{ "MS_Kanji",	"MSKanji",	16, towide_mskanji, tomb_mbs },
114 	{ "MSKanji",	"MSKanji",	16, towide_mskanji, tomb_mbs },
115 	{ "PCK",	"MSKanji",	16, towide_mskanji, tomb_mbs },
116 	{ "SJIS",	"MSKanji",	16, towide_mskanji, tomb_mbs },
117 	{ "Shift_JIS",	"MSKanji",	16, towide_mskanji, tomb_mbs },
118 
119 	{ "BIG5",	"BIG5",		16, towide_big5, tomb_mbs },
120 	{ "big5",	"BIG5",		16, towide_big5, tomb_mbs },
121 	{ "Big5",	"BIG5",		16, towide_big5, tomb_mbs },
122 
123 	{ "GBK",	"GBK",		16, towide_gbk,	tomb_mbs },
124 
125 	/*
126 	 * GB18030 can get away with just 31 bits.  This is because the
127 	 * high order bit is always set for 4 byte values, and the
128 	 * at least one of the other bits in that 4 byte value will
129 	 * be non-zero.
130 	 */
131 	{ "GB18030",	"GB18030",	31, towide_gb18030, tomb_mbs },
132 
133 	/*
134 	 * This should probably be an aliase for euc-cn, or vice versa.
135 	 */
136 	{ "GB2312",	"GB2312",	16, towide_gb2312, tomb_mbs },
137 
138 	{ NULL, NULL, 0, 0, 0 },
139 };
140 
141 static char *
142 show_mb(const char *mb)
143 {
144 	static char buf[64];
145 
146 	/* ASCII stuff we just print */
147 	if (isascii(*mb) && isgraph(*mb)) {
148 		buf[0] = *mb;
149 		buf[1] = 0;
150 		return (buf);
151 	}
152 	buf[0] = 0;
153 	while (*mb != 0) {
154 		char scr[8];
155 		(void) snprintf(scr, sizeof (scr), "\\x%02x", *mb);
156 		(void) strlcat(buf, scr, sizeof (buf));
157 		mb++;
158 	}
159 	return (buf);
160 }
161 
162 static char	*widemsg;
163 
164 __printflike(1, 2) void
165 werr(const char *fmt, ...)
166 {
167 	char	*msg;
168 
169 	va_list	va;
170 	va_start(va, fmt);
171 	(void) vasprintf(&msg, fmt, va);
172 	va_end(va);
173 
174 	free(widemsg);
175 	widemsg = msg;
176 }
177 
178 /*
179  * This is used for 8-bit encodings.
180  */
181 int
182 towide_none(wchar_t *c, const char *mb, unsigned n __unused)
183 {
184 	if (mb_cur_max != 1) {
185 		werr("invalid or unsupported multibyte locale");
186 		return (-1);
187 	}
188 	*c = (uint8_t)*mb;
189 	return (1);
190 }
191 
192 int
193 tomb_none(char *mb, wchar_t wc)
194 {
195 	if (mb_cur_max != 1) {
196 		werr("invalid or unsupported multibyte locale");
197 		return (-1);
198 	}
199 	*(uint8_t *)mb = (wc & 0xff);
200 	mb[1] = 0;
201 	return (1);
202 }
203 
204 /*
205  * UTF-8 stores wide characters in UTF-32 form.
206  */
207 int
208 towide_utf8(wchar_t *wc, const char *mb, unsigned n)
209 {
210 	wchar_t	c;
211 	int	nb;
212 	wchar_t	lv;	/* lowest legal value */
213 	int	i;
214 	const uint8_t *s = (const uint8_t *)mb;
215 
216 	c = *s;
217 
218 	if ((c & 0x80) == 0) {
219 		/* 7-bit ASCII */
220 		*wc = c;
221 		return (1);
222 	} else if ((c & 0xe0) == 0xc0) {
223 		/* u80-u7ff - two bytes encoded */
224 		nb = 2;
225 		lv = 0x80;
226 		c &= ~0xe0;
227 	} else if ((c & 0xf0) == 0xe0) {
228 		/* u800-uffff - three bytes encoded */
229 		nb = 3;
230 		lv = 0x800;
231 		c &= ~0xf0;
232 	} else if ((c & 0xf8) == 0xf0) {
233 		/* u1000-u1fffff - four bytes encoded */
234 		nb = 4;
235 		lv = 0x1000;
236 		c &= ~0xf8;
237 	} else {
238 		/* 5 and 6 byte encodings are not legal unicode */
239 		werr("utf8 encoding too large (%s)", show_mb(mb));
240 		return (-1);
241 	}
242 	if (nb > (int)n) {
243 		werr("incomplete utf8 sequence (%s)", show_mb(mb));
244 		return (-1);
245 	}
246 
247 	for (i = 1; i < nb; i++) {
248 		if (((s[i]) & 0xc0) != 0x80) {
249 			werr("illegal utf8 byte (%x)", s[i]);
250 			return (-1);
251 		}
252 		c <<= 6;
253 		c |= (s[i] & 0x3f);
254 	}
255 
256 	if (c < lv) {
257 		werr("illegal redundant utf8 encoding (%s)", show_mb(mb));
258 		return (-1);
259 	}
260 	*wc = c;
261 	return (nb);
262 }
263 
264 int
265 tomb_utf8(char *mb, wchar_t wc)
266 {
267 	uint8_t *s = (uint8_t *)mb;
268 	uint8_t msk;
269 	int cnt;
270 	int i;
271 
272 	if (wc <= 0x7f) {
273 		s[0] = wc & 0x7f;
274 		s[1] = 0;
275 		return (1);
276 	}
277 	if (wc <= 0x7ff) {
278 		cnt = 2;
279 		msk = 0xc0;
280 	} else if (wc <= 0xffff) {
281 		cnt = 3;
282 		msk = 0xe0;
283 	} else if (wc <= 0x1fffff) {
284 		cnt = 4;
285 		msk = 0xf0;
286 	} else {
287 		werr("illegal uf8 char (%x)", wc);
288 		return (-1);
289 	}
290 	for (i = cnt - 1; i; i--) {
291 		s[i] = (wc & 0x3f) | 0x80;
292 		wc >>= 6;
293 	}
294 	s[0] = (msk) | wc;
295 	s[cnt] = 0;
296 	return (cnt);
297 }
298 
299 /*
300  * Several encodings share a simplistic dual byte encoding.  In these
301  * forms, they all indicate that a two byte sequence is to be used if
302  * the first byte has its high bit set.  They all store this simple
303  * encoding as a 16-bit value, although a great many of the possible
304  * code points are not used in most character sets.  This gives a possible
305  * set of just over 32,000 valid code points.
306  *
307  * 0x00 - 0x7f		- 1 byte encoding
308  * 0x80 - 0x7fff	- illegal
309  * 0x8000 - 0xffff	- 2 byte encoding
310  */
311 
312 static int
313 towide_dbcs(wchar_t *wc, const char *mb, unsigned n)
314 {
315 	wchar_t	c;
316 
317 	c = *(const uint8_t *)mb;
318 
319 	if ((c & 0x80) == 0) {
320 		/* 7-bit */
321 		*wc = c;
322 		return (1);
323 	}
324 	if (n < 2) {
325 		werr("incomplete character sequence (%s)", show_mb(mb));
326 		return (-1);
327 	}
328 
329 	/* Store both bytes as a single 16-bit wide. */
330 	c <<= 8;
331 	c |= (uint8_t)(mb[1]);
332 	*wc = c;
333 	return (2);
334 }
335 
336 /*
337  * Most multibyte locales just convert the wide character to the multibyte
338  * form by stripping leading null bytes, and writing the 32-bit quantity
339  * in big-endian order.
340  */
341 int
342 tomb_mbs(char *mb, wchar_t wc)
343 {
344 	uint8_t *s = (uint8_t *)mb;
345 	int 	n = 0, c;
346 
347 	if ((wc & 0xff000000U) != 0) {
348 		n = 4;
349 	} else if ((wc & 0x00ff0000U) != 0) {
350 		n = 3;
351 	} else if ((wc & 0x0000ff00U) != 0) {
352 		n = 2;
353 	} else {
354 		n = 1;
355 	}
356 	c = n;
357 	while (n) {
358 		n--;
359 		s[n] = wc & 0xff;
360 		wc >>= 8;
361 	}
362 	/* ensure null termination */
363 	s[c] = 0;
364 	return (c);
365 }
366 
367 
368 /*
369  * big5 is a simple dual byte character set.
370  */
371 int
372 towide_big5(wchar_t *wc, const char *mb, unsigned n)
373 {
374 	return (towide_dbcs(wc, mb, n));
375 }
376 
377 /*
378  * GBK encodes wides in the same way that big5 does, the high order
379  * bit of the first byte indicates a double byte character.
380  */
381 int
382 towide_gbk(wchar_t *wc, const char *mb, unsigned n)
383 {
384 	return (towide_dbcs(wc, mb, n));
385 }
386 
387 /*
388  * GB2312 is another DBCS.  Its cleaner than others in that the second
389  * byte does not encode ASCII, but it supports characters.
390  */
391 int
392 towide_gb2312(wchar_t *wc, const char *mb, unsigned n)
393 {
394 	return (towide_dbcs(wc, mb, n));
395 }
396 
397 /*
398  * GB18030.  This encodes as 8, 16, or 32-bits.
399  * 7-bit values are in 1 byte,  4 byte sequences are used when
400  * the second byte encodes 0x30-39 and all other sequences are 2 bytes.
401  */
402 int
403 towide_gb18030(wchar_t *wc, const char *mb, unsigned n)
404 {
405 	wchar_t	c;
406 
407 	c = *(const uint8_t *)mb;
408 
409 	if ((c & 0x80) == 0) {
410 		/* 7-bit */
411 		*wc = c;
412 		return (1);
413 	}
414 	if (n < 2) {
415 		werr("incomplete character sequence (%s)", show_mb(mb));
416 		return (-1);
417 	}
418 
419 	/* pull in the second byte */
420 	c <<= 8;
421 	c |= (uint8_t)(mb[1]);
422 
423 	if (((c & 0xff) >= 0x30) && ((c & 0xff) <= 0x39)) {
424 		if (n < 4) {
425 			werr("incomplete 4-byte character sequence (%s)",
426 			    show_mb(mb));
427 			return (-1);
428 		}
429 		c <<= 8;
430 		c |= (uint8_t)(mb[2]);
431 		c <<= 8;
432 		c |= (uint8_t)(mb[3]);
433 		*wc = c;
434 		return (4);
435 	}
436 
437 	*wc = c;
438 	return (2);
439 }
440 
441 /*
442  * MS-Kanji (aka SJIS) is almost a clean DBCS like the others, but it
443  * also has a range of single byte characters above 0x80.  (0xa1-0xdf).
444  */
445 int
446 towide_mskanji(wchar_t *wc, const char *mb, unsigned n)
447 {
448 	wchar_t	c;
449 
450 	c = *(const uint8_t *)mb;
451 
452 	if ((c < 0x80) || ((c > 0xa0) && (c < 0xe0))) {
453 		/* 7-bit */
454 		*wc = c;
455 		return (1);
456 	}
457 
458 	if (n < 2) {
459 		werr("incomplete character sequence (%s)", show_mb(mb));
460 		return (-1);
461 	}
462 
463 	/* Store both bytes as a single 16-bit wide. */
464 	c <<= 8;
465 	c |= (uint8_t)(mb[1]);
466 	*wc = c;
467 	return (2);
468 }
469 
470 /*
471  * EUC forms.  EUC encodings are "variable".  FreeBSD carries some additional
472  * variable data to encode these, but we're going to treat each as independent
473  * instead.  Its the only way we can sensibly move forward.
474  *
475  * Note that the way in which the different EUC forms vary is how wide
476  * CS2 and CS3 are and what the first byte of them is.
477  */
478 static int
479 towide_euc_impl(wchar_t *wc, const char *mb, unsigned n,
480     uint8_t cs2, uint8_t cs2width, uint8_t cs3, uint8_t cs3width)
481 {
482 	int i;
483 	int width = 2;
484 	wchar_t	c;
485 
486 	c = *(const uint8_t *)mb;
487 
488 	/*
489 	 * All variations of EUC encode 7-bit ASCII as one byte, and use
490 	 * additional bytes for more than that.
491 	 */
492 	if ((c & 0x80) == 0) {
493 		/* 7-bit */
494 		*wc = c;
495 		return (1);
496 	}
497 
498 	/*
499 	 * All EUC variants reserve 0xa1-0xff to identify CS1, which
500 	 * is always two bytes wide.  Note that unused CS will be zero,
501 	 * and that cannot be true because we know that the high order
502 	 * bit must be set.
503 	 */
504 	if (c >= 0xa1) {
505 		width = 2;
506 	} else if (c == cs2) {
507 		width = cs2width;
508 	} else if (c == cs3) {
509 		width = cs3width;
510 	}
511 
512 	if ((int)n < width) {
513 		werr("incomplete character sequence (%s)", show_mb(mb));
514 		return (-1);
515 	}
516 
517 	for (i = 1; i < width; i++) {
518 		/* pull in the next byte */
519 		c <<= 8;
520 		c |= (uint8_t)(mb[i]);
521 	}
522 
523 	*wc = c;
524 	return (width);
525 }
526 
527 /*
528  * EUC-CN encodes as follows:
529  *
530  * Code set 0 (ASCII):				0x21-0x7E
531  * Code set 1 (CNS 11643-1992 Plane 1):		0xA1A1-0xFEFE
532  * Code set 2:					unused
533  * Code set 3:					unused
534  */
535 int
536 towide_euccn(wchar_t *wc, const char *mb, unsigned n)
537 {
538 	return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
539 }
540 
541 /*
542  * EUC-JP encodes as follows:
543  *
544  * Code set 0 (ASCII or JIS X 0201-1976 Roman):	0x21-0x7E
545  * Code set 1 (JIS X 0208):			0xA1A1-0xFEFE
546  * Code set 2 (half-width katakana):		0x8EA1-0x8EDF
547  * Code set 3 (JIS X 0212-1990):		0x8FA1A1-0x8FFEFE
548  */
549 int
550 towide_eucjp(wchar_t *wc, const char *mb, unsigned n)
551 {
552 	return (towide_euc_impl(wc, mb, n, 0x8e, 2, 0x8f, 3));
553 }
554 
555 /*
556  * EUC-KR encodes as follows:
557  *
558  * Code set 0 (ASCII or KS C 5636-1993):	0x21-0x7E
559  * Code set 1 (KS C 5601-1992):			0xA1A1-0xFEFE
560  * Code set 2:					unused
561  * Code set 3:					unused
562  */
563 int
564 towide_euckr(wchar_t *wc, const char *mb, unsigned n)
565 {
566 	return (towide_euc_impl(wc, mb, n, 0, 0, 0, 0));
567 }
568 
569 /*
570  * EUC-TW encodes as follows:
571  *
572  * Code set 0 (ASCII):				0x21-0x7E
573  * Code set 1 (CNS 11643-1992 Plane 1):		0xA1A1-0xFEFE
574  * Code set 2 (CNS 11643-1992 Planes 1-16):	0x8EA1A1A1-0x8EB0FEFE
575  * Code set 3:					unused
576  */
577 int
578 towide_euctw(wchar_t *wc, const char *mb, unsigned n)
579 {
580 	return (towide_euc_impl(wc, mb, n, 0x8e, 4, 0, 0));
581 }
582 
583 /*
584  * Public entry points.
585  */
586 
587 int
588 to_wide(wchar_t *wc, const char *mb)
589 {
590 	/* this won't fail hard */
591 	return (_towide(wc, mb, strlen(mb)));
592 }
593 
594 int
595 to_mb(char *mb, wchar_t wc)
596 {
597 	int	rv;
598 
599 	if ((rv = _tomb(mb, wc)) < 0) {
600 		errf(widemsg);
601 		free(widemsg);
602 		widemsg = NULL;
603 	}
604 	return (rv);
605 }
606 
607 char *
608 to_mb_string(const wchar_t *wcs)
609 {
610 	char	*mbs;
611 	char	*ptr;
612 	int	len;
613 
614 	mbs = malloc((wcslen(wcs) * mb_cur_max) + 1);
615 	if (mbs == NULL) {
616 		errf("out of memory");
617 		return (NULL);
618 	}
619 	ptr = mbs;
620 	while (*wcs) {
621 		if ((len = to_mb(ptr, *wcs)) < 0) {
622 			INTERR;
623 			free(mbs);
624 			return (NULL);
625 		}
626 		wcs++;
627 		ptr += len;
628 	}
629 	*ptr = 0;
630 	return (mbs);
631 }
632 
633 void
634 set_wide_encoding(const char *encoding)
635 {
636 	int i;
637 
638 	_towide = towide_none;
639 	_tomb = tomb_none;
640 	_nbits = 8;
641 
642 	snprintf(_encoding_buffer, sizeof(_encoding_buffer), "NONE:%s",
643 	    encoding);
644 	for (i = 0; mb_encodings[i].name; i++) {
645 		if (strcasecmp(encoding, mb_encodings[i].name) == 0) {
646 			_towide = mb_encodings[i].towide;
647 			_tomb = mb_encodings[i].tomb;
648 			_encoding = mb_encodings[i].cname;
649 			_nbits = mb_encodings[i].nbits;
650 			break;
651 		}
652 	}
653 }
654 
655 const char *
656 get_wide_encoding(void)
657 {
658 	return (_encoding);
659 }
660 
661 int
662 max_wide(void)
663 {
664 	return ((int)((1U << _nbits) - 1));
665 }
666