xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 0db87cb7)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int namelength;
61 static int cmdlength;
62 static int show_fullcmd;
63 
64 int n_cpus = 0;
65 
66 /* get_process_info passes back a handle.  This is what it looks like: */
67 
68 struct handle {
69 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
70 	int remaining;		/* number of pointers remaining */
71 };
72 
73 /* declarations for load_avg */
74 #include "loadavg.h"
75 
76 #define PP(pp, field) ((pp)->kp_ ## field)
77 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
78 #define VP(pp, field) ((pp)->kp_vm_ ## field)
79 
80 /* what we consider to be process size: */
81 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
82 
83 /*
84  * These definitions control the format of the per-process area
85  */
86 
87 static char smp_header[] =
88 "   PID %-*.*s NICE  SIZE    RES    STATE CPU  TIME   CTIME    CPU COMMAND";
89 
90 #define smp_Proc_format \
91 	"%6d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
92 
93 /* process state names for the "STATE" column of the display */
94 /*
95  * the extra nulls in the string "run" are for adding a slash and the
96  * processor number when needed
97  */
98 
99 const char *state_abbrev[] = {
100 	"", "RUN\0\0\0", "STOP", "SLEEP",
101 };
102 
103 
104 static kvm_t *kd;
105 
106 /* values that we stash away in _init and use in later routines */
107 
108 static long lastpid;
109 
110 /* these are for calculating cpu state percentages */
111 
112 static struct kinfo_cputime *cp_time, *cp_old;
113 
114 /* these are for detailing the process states */
115 
116 #define MAXPSTATES	6
117 
118 int process_states[MAXPSTATES];
119 
120 char *procstatenames[] = {
121 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
122 	NULL
123 };
124 
125 /* these are for detailing the cpu states */
126 #define CPU_STATES 5
127 int *cpu_states;
128 int* cpu_averages;
129 char *cpustatenames[CPU_STATES + 1] = {
130 	"user", "nice", "system", "interrupt", "idle", NULL
131 };
132 
133 /* these are for detailing the memory statistics */
134 
135 long memory_stats[7];
136 char *memorynames[] = {
137 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
138 	NULL
139 };
140 
141 long swap_stats[7];
142 char *swapnames[] = {
143 	/* 0           1            2           3            4       5 */
144 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
145 	NULL
146 };
147 
148 
149 /* these are for keeping track of the proc array */
150 
151 static int nproc;
152 static int onproc = -1;
153 static int pref_len;
154 static struct kinfo_proc *pbase;
155 static struct kinfo_proc **pref;
156 
157 /* these are for getting the memory statistics */
158 
159 static int pageshift;		/* log base 2 of the pagesize */
160 
161 /* define pagetok in terms of pageshift */
162 
163 #define pagetok(size) ((size) << pageshift)
164 
165 /* sorting orders. first is default */
166 char *ordernames[] = {
167   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
168 };
169 
170 /* compare routines */
171 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
172 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
173 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
174 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
175 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
176 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
177 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
178 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
179 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
180 
181 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
182 	proc_compare,
183 	compare_size,
184 	compare_res,
185 	compare_time,
186 	compare_prio,
187 	compare_thr,
188 	compare_pid,
189 	compare_ctime,
190 	compare_pres,
191 	NULL
192 };
193 
194 static void
195 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
196     struct kinfo_cputime *old)
197 {
198 	struct kinfo_cputime diffs;
199 	uint64_t total_change, half_total;
200 
201 	/* initialization */
202 	total_change = 0;
203 
204 	diffs.cp_user = new->cp_user - old->cp_user;
205 	diffs.cp_nice = new->cp_nice - old->cp_nice;
206 	diffs.cp_sys = new->cp_sys - old->cp_sys;
207 	diffs.cp_intr = new->cp_intr - old->cp_intr;
208 	diffs.cp_idle = new->cp_idle - old->cp_idle;
209 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
210 	    diffs.cp_intr + diffs.cp_idle;
211 	old->cp_user = new->cp_user;
212 	old->cp_nice = new->cp_nice;
213 	old->cp_sys = new->cp_sys;
214 	old->cp_intr = new->cp_intr;
215 	old->cp_idle = new->cp_idle;
216 
217 	/* avoid divide by zero potential */
218 	if (total_change == 0)
219 		total_change = 1;
220 
221 	/* calculate percentages based on overall change, rounding up */
222 	half_total = total_change >> 1;
223 
224 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
225 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
226 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
227 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
228 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
229 }
230 
231 int
232 machine_init(struct statics *statics)
233 {
234 	int pagesize;
235 	size_t modelen;
236 	struct passwd *pw;
237 	struct timeval boottime;
238 
239 	if (n_cpus < 1) {
240 		if (kinfo_get_cpus(&n_cpus))
241 			err(1, "kinfo_get_cpus failed");
242 	}
243 	/* get boot time */
244 	modelen = sizeof(boottime);
245 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
246 		/* we have no boottime to report */
247 		boottime.tv_sec = -1;
248 	}
249 
250 	while ((pw = getpwent()) != NULL) {
251 		if ((int)strlen(pw->pw_name) > namelength)
252 			namelength = strlen(pw->pw_name);
253 	}
254 	if (namelength < 8)
255 		namelength = 8;
256 	if (namelength > 13)
257 		namelength = 13;
258 
259 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
260 		return -1;
261 
262 	pbase = NULL;
263 	pref = NULL;
264 	nproc = 0;
265 	onproc = -1;
266 	/*
267 	 * get the page size with "getpagesize" and calculate pageshift from
268 	 * it
269 	 */
270 	pagesize = getpagesize();
271 	pageshift = 0;
272 	while (pagesize > 1) {
273 		pageshift++;
274 		pagesize >>= 1;
275 	}
276 
277 	/* we only need the amount of log(2)1024 for our conversion */
278 	pageshift -= LOG1024;
279 
280 	/* fill in the statics information */
281 	statics->procstate_names = procstatenames;
282 	statics->cpustate_names = cpustatenames;
283 	statics->memory_names = memorynames;
284 	statics->boottime = boottime.tv_sec;
285 	statics->swap_names = swapnames;
286 	statics->order_names = ordernames;
287 	/* we need kvm descriptor in order to show full commands */
288 	statics->flags.fullcmds = kd != NULL;
289 	statics->flags.threads = 1;
290 
291 	/* all done! */
292 	return (0);
293 }
294 
295 char *
296 format_header(char *uname_field)
297 {
298 	static char Header[128];
299 
300 	snprintf(Header, sizeof(Header), smp_header,
301 	    namelength, namelength, uname_field);
302 
303 	if (screen_width <= 79)
304 		cmdlength = 80;
305 	else
306 		cmdlength = screen_width;
307 
308 	cmdlength = cmdlength - strlen(Header) + 6;
309 
310 	return Header;
311 }
312 
313 static int swappgsin = -1;
314 static int swappgsout = -1;
315 extern struct timeval timeout;
316 
317 void
318 get_system_info(struct system_info *si)
319 {
320 	size_t len;
321 	int cpu;
322 
323 	if (cpu_states == NULL) {
324 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
325 		if (cpu_states == NULL)
326 			err(1, "malloc");
327 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
328 	}
329 	if (cp_time == NULL) {
330 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
331 		if (cp_time == NULL)
332 			err(1, "cp_time");
333 		cp_old = cp_time + n_cpus;
334 		len = n_cpus * sizeof(cp_old[0]);
335 		bzero(cp_time, len);
336 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
337 			err(1, "kern.cputime");
338 	}
339 	len = n_cpus * sizeof(cp_time[0]);
340 	bzero(cp_time, len);
341 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
342 		err(1, "kern.cputime");
343 
344 	getloadavg(si->load_avg, 3);
345 
346 	lastpid = 0;
347 
348 	/* convert cp_time counts to percentages */
349 	int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
350 	for (cpu = 0; cpu < n_cpus; ++cpu) {
351 		cputime_percentages(cpu_states + cpu * CPU_STATES,
352 		    &cp_time[cpu], &cp_old[cpu]);
353 	}
354 	if (combine_cpus) {
355 		if (cpu_averages == NULL) {
356 			cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
357 			if (cpu_averages == NULL)
358 				err(1, "cpu_averages");
359 		}
360 		bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
361 		for (cpu = 0; cpu < n_cpus; ++cpu) {
362 			int j = 0;
363 			cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
364 			cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
365 			cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
366 			cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
367 			cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
368 		}
369 		for (int i = 0; i < CPU_STATES; ++i)
370 			cpu_averages[i] /= n_cpus;
371 	}
372 
373 	/* sum memory & swap statistics */
374 	{
375 		struct vmmeter vmm;
376 		struct vmstats vms;
377 		size_t vms_size = sizeof(vms);
378 		size_t vmm_size = sizeof(vmm);
379 		static unsigned int swap_delay = 0;
380 		static int swapavail = 0;
381 		static int swapfree = 0;
382 		static long bufspace = 0;
383 
384 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
385 			err(1, "sysctlbyname: vm.vmstats");
386 
387 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
388 			err(1, "sysctlbyname: vm.vmmeter");
389 
390 		if (kinfo_get_vfs_bufspace(&bufspace))
391 			err(1, "kinfo_get_vfs_bufspace");
392 
393 		/* convert memory stats to Kbytes */
394 		memory_stats[0] = pagetok(vms.v_active_count);
395 		memory_stats[1] = pagetok(vms.v_inactive_count);
396 		memory_stats[2] = pagetok(vms.v_wire_count);
397 		memory_stats[3] = pagetok(vms.v_cache_count);
398 		memory_stats[4] = bufspace / 1024;
399 		memory_stats[5] = pagetok(vms.v_free_count);
400 		memory_stats[6] = -1;
401 
402 		/* first interval */
403 		if (swappgsin < 0) {
404 			swap_stats[4] = 0;
405 			swap_stats[5] = 0;
406 		}
407 		/* compute differences between old and new swap statistic */
408 		else {
409 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
410 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
411 		}
412 
413 		swappgsin = vmm.v_swappgsin;
414 		swappgsout = vmm.v_swappgsout;
415 
416 		/* call CPU heavy swapmode() only for changes */
417 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
418 			swap_stats[3] = swapmode(&swapavail, &swapfree);
419 			swap_stats[0] = swapavail;
420 			swap_stats[1] = swapavail - swapfree;
421 			swap_stats[2] = swapfree;
422 		}
423 		swap_delay = 1;
424 		swap_stats[6] = -1;
425 	}
426 
427 	/* set arrays and strings */
428 	si->cpustates = combine_cpus == 1 ?
429 	    cpu_averages : cpu_states;
430 	si->memory = memory_stats;
431 	si->swap = swap_stats;
432 
433 
434 	if (lastpid > 0) {
435 		si->last_pid = lastpid;
436 	} else {
437 		si->last_pid = -1;
438 	}
439 }
440 
441 
442 static struct handle handle;
443 
444 caddr_t
445 get_process_info(struct system_info *si, struct process_select *sel,
446     int compare_index)
447 {
448 	int i;
449 	int total_procs;
450 	int active_procs;
451 	struct kinfo_proc **prefp;
452 	struct kinfo_proc *pp;
453 
454 	/* these are copied out of sel for speed */
455 	int show_idle;
456 	int show_system;
457 	int show_uid;
458 	int show_threads;
459 
460 	show_threads = sel->threads;
461 
462 
463 	pbase = kvm_getprocs(kd,
464 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
465 	if (nproc > onproc)
466 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
467 		    * (onproc = nproc));
468 	if (pref == NULL || pbase == NULL) {
469 		(void)fprintf(stderr, "top: Out of memory.\n");
470 		quit(23);
471 	}
472 	/* get a pointer to the states summary array */
473 	si->procstates = process_states;
474 
475 	/* set up flags which define what we are going to select */
476 	show_idle = sel->idle;
477 	show_system = sel->system;
478 	show_uid = sel->uid != -1;
479 	show_fullcmd = sel->fullcmd;
480 
481 	/* count up process states and get pointers to interesting procs */
482 	total_procs = 0;
483 	active_procs = 0;
484 	memset((char *)process_states, 0, sizeof(process_states));
485 	prefp = pref;
486 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
487 		/*
488 		 * Place pointers to each valid proc structure in pref[].
489 		 * Process slots that are actually in use have a non-zero
490 		 * status field.  Processes with P_SYSTEM set are system
491 		 * processes---these get ignored unless show_sysprocs is set.
492 		 */
493 		if ((show_system && (LP(pp, pid) == -1)) ||
494 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
495 			int lpstate = LP(pp, stat);
496 			int pstate = PP(pp, stat);
497 
498 			total_procs++;
499 			if (lpstate == LSRUN)
500 				process_states[0]++;
501 			if (pstate >= 0 && pstate < MAXPSTATES - 1)
502 				process_states[pstate]++;
503 			if ((show_system && (LP(pp, pid) == -1)) ||
504 			    (show_idle || (LP(pp, pctcpu) != 0) ||
505 			    (lpstate == LSRUN)) &&
506 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
507 				*prefp++ = pp;
508 				active_procs++;
509 			}
510 		}
511 	}
512 
513 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
514 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
515 
516 	/* remember active and total counts */
517 	si->p_total = total_procs;
518 	si->p_active = pref_len = active_procs;
519 
520 	/* pass back a handle */
521 	handle.next_proc = pref;
522 	handle.remaining = active_procs;
523 	return ((caddr_t) & handle);
524 }
525 
526 char fmt[MAX_COLS];		/* static area where result is built */
527 
528 char *
529 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
530 {
531 	struct kinfo_proc *pp;
532 	long cputime;
533 	long ccputime;
534 	double pct;
535 	struct handle *hp;
536 	char status[16];
537 	int state;
538 	int xnice;
539 	char *comm;
540 	char cputime_fmt[10], ccputime_fmt[10];
541 
542 	/* find and remember the next proc structure */
543 	hp = (struct handle *)xhandle;
544 	pp = *(hp->next_proc++);
545 	hp->remaining--;
546 
547 	/* get the process's command name */
548 	if (show_fullcmd) {
549 		char **comm_full = kvm_getargv(kd, pp, 0);
550 		if (comm_full != 0)
551 			comm = *comm_full;
552 		else
553 			comm = PP(pp, comm);
554 	}
555 	else {
556 		comm = PP(pp, comm);
557 	}
558 
559 	/* the actual field to display */
560 	char cmdfield[MAX_COLS];
561 
562 	if (PP(pp, flags) & P_SYSTEM) {
563 		/* system process */
564 		snprintf(cmdfield, sizeof cmdfield, "[%s]", comm);
565 	} else if (LP(pp, tid) > 0) {
566 		/* display it as a thread */
567 		snprintf(cmdfield, sizeof cmdfield, "%s{%d}", comm, LP(pp, tid));
568 	} else {
569 		snprintf(cmdfield, sizeof cmdfield, "%s", comm);
570 	}
571 
572 	/*
573 	 * Convert the process's runtime from microseconds to seconds.  This
574 	 * time includes the interrupt time to be in compliance with ps output.
575 	*/
576 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
577 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
578 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
579 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
580 
581 	/* calculate the base for cpu percentages */
582 	pct = pctdouble(LP(pp, pctcpu));
583 
584 	/* generate "STATE" field */
585 	switch (state = LP(pp, stat)) {
586 	case LSRUN:
587 		if (LP(pp, tdflags) & TDF_RUNNING)
588 			sprintf(status, "CPU%d", LP(pp, cpuid));
589 		else
590 			strcpy(status, "RUN");
591 		break;
592 	case LSSLEEP:
593 		if (LP(pp, wmesg) != NULL) {
594 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
595 			break;
596 		}
597 		/* fall through */
598 	default:
599 
600 		if (state >= 0 &&
601 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
602 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
603 		else
604 			sprintf(status, "?%5d", state);
605 		break;
606 	}
607 
608 	if (PP(pp, stat) == SZOMB)
609 		strcpy(status, "ZOMB");
610 
611 	/*
612 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
613 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
614 	 * 0 - 31 -> nice value -53 -
615 	 */
616 	switch (LP(pp, rtprio.type)) {
617 	case RTP_PRIO_REALTIME:
618 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
619 		break;
620 	case RTP_PRIO_IDLE:
621 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
622 		break;
623 	case RTP_PRIO_THREAD:
624 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
625 		break;
626 	default:
627 		xnice = PP(pp, nice);
628 		break;
629 	}
630 
631 	/* format this entry */
632 	snprintf(fmt, sizeof(fmt),
633 	    smp_Proc_format,
634 	    (int)PP(pp, pid),
635 	    namelength, namelength,
636 	    get_userid(PP(pp, ruid)),
637 	    (int)xnice,
638 	    format_k(PROCSIZE(pp)),
639 	    format_k(pagetok(VP(pp, rssize))),
640 	    status,
641 	    LP(pp, cpuid),
642 	    cputime_fmt,
643 	    ccputime_fmt,
644 	    100.0 * pct,
645 	    cmdlength,
646 	    cmdfield);
647 
648 	/* return the result */
649 	return (fmt);
650 }
651 
652 /* comparison routines for qsort */
653 
654 /*
655  *  proc_compare - comparison function for "qsort"
656  *	Compares the resource consumption of two processes using five
657  *  	distinct keys.  The keys (in descending order of importance) are:
658  *  	percent cpu, cpu ticks, state, resident set size, total virtual
659  *  	memory usage.  The process states are ordered as follows (from least
660  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
661  *  	array declaration below maps a process state index into a number
662  *  	that reflects this ordering.
663  */
664 
665 static unsigned char sorted_state[] =
666 {
667 	0,			/* not used		 */
668 	3,			/* sleep		 */
669 	1,			/* ABANDONED (WAIT)	 */
670 	6,			/* run			 */
671 	5,			/* start		 */
672 	2,			/* zombie		 */
673 	4			/* stop			 */
674 };
675 
676 
677 #define ORDERKEY_PCTCPU \
678   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
679      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
680 
681 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
682 
683 #define ORDERKEY_CPTICKS \
684   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
685 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
686 
687 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
688   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
689 
690 #define ORDERKEY_CTIME \
691    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
692 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
693 
694 #define ORDERKEY_STATE \
695   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
696                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
697 
698 #define ORDERKEY_PRIO \
699   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
700 
701 #define ORDERKEY_KTHREADS \
702   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
703 
704 #define ORDERKEY_KTHREADS_PRIO \
705   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
706 
707 #define ORDERKEY_RSSIZE \
708   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
709 
710 #define ORDERKEY_MEM \
711   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
712 
713 #define ORDERKEY_PID \
714   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
715 
716 #define ORDERKEY_PRSSIZE \
717   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
718 
719 /* compare_cpu - the comparison function for sorting by cpu percentage */
720 
721 int
722 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
723 {
724 	struct kinfo_proc *p1;
725 	struct kinfo_proc *p2;
726 	int result;
727 	pctcpu lresult;
728 
729 	/* remove one level of indirection */
730 	p1 = *(struct kinfo_proc **) pp1;
731 	p2 = *(struct kinfo_proc **) pp2;
732 
733 	ORDERKEY_PCTCPU
734 	ORDERKEY_CPTICKS
735 	ORDERKEY_STATE
736 	ORDERKEY_PRIO
737 	ORDERKEY_RSSIZE
738 	ORDERKEY_MEM
739 	{}
740 
741 	return (result);
742 }
743 
744 /* compare_size - the comparison function for sorting by total memory usage */
745 
746 int
747 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
748 {
749 	struct kinfo_proc *p1;
750 	struct kinfo_proc *p2;
751 	int result;
752 	pctcpu lresult;
753 
754 	/* remove one level of indirection */
755 	p1 = *(struct kinfo_proc **) pp1;
756 	p2 = *(struct kinfo_proc **) pp2;
757 
758 	ORDERKEY_MEM
759 	ORDERKEY_RSSIZE
760 	ORDERKEY_PCTCPU
761 	ORDERKEY_CPTICKS
762 	ORDERKEY_STATE
763 	ORDERKEY_PRIO
764 	{}
765 
766 	return (result);
767 }
768 
769 /* compare_res - the comparison function for sorting by resident set size */
770 
771 int
772 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
773 {
774 	struct kinfo_proc *p1;
775 	struct kinfo_proc *p2;
776 	int result;
777 	pctcpu lresult;
778 
779 	/* remove one level of indirection */
780 	p1 = *(struct kinfo_proc **) pp1;
781 	p2 = *(struct kinfo_proc **) pp2;
782 
783 	ORDERKEY_RSSIZE
784 	ORDERKEY_MEM
785 	ORDERKEY_PCTCPU
786 	ORDERKEY_CPTICKS
787 	ORDERKEY_STATE
788 	ORDERKEY_PRIO
789 	{}
790 
791 	return (result);
792 }
793 
794 /* compare_pres - the comparison function for sorting by proportional resident set size */
795 
796 int
797 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
798 {
799 	struct kinfo_proc *p1;
800 	struct kinfo_proc *p2;
801 	int result;
802 	pctcpu lresult;
803 
804 	/* remove one level of indirection */
805 	p1 = *(struct kinfo_proc **) pp1;
806 	p2 = *(struct kinfo_proc **) pp2;
807 
808 	ORDERKEY_PRSSIZE
809 	ORDERKEY_RSSIZE
810 	ORDERKEY_MEM
811 	ORDERKEY_PCTCPU
812 	ORDERKEY_CPTICKS
813 	ORDERKEY_STATE
814 	ORDERKEY_PRIO
815 	{}
816 
817 	return (result);
818 }
819 
820 /* compare_time - the comparison function for sorting by total cpu time */
821 
822 int
823 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
824 {
825 	struct kinfo_proc *p1;
826 	struct kinfo_proc *p2;
827 	int result;
828 	pctcpu lresult;
829 
830 	/* remove one level of indirection */
831 	p1 = *(struct kinfo_proc **) pp1;
832 	p2 = *(struct kinfo_proc **) pp2;
833 
834 	ORDERKEY_CPTICKS
835 	ORDERKEY_PCTCPU
836 	ORDERKEY_KTHREADS
837 	ORDERKEY_KTHREADS_PRIO
838 	ORDERKEY_STATE
839 	ORDERKEY_PRIO
840 	ORDERKEY_RSSIZE
841 	ORDERKEY_MEM
842 	{}
843 
844 	return (result);
845 }
846 
847 int
848 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
849 {
850 	struct kinfo_proc *p1;
851 	struct kinfo_proc *p2;
852 	int result;
853 	pctcpu lresult;
854 
855 	/* remove one level of indirection */
856 	p1 = *(struct kinfo_proc **) pp1;
857 	p2 = *(struct kinfo_proc **) pp2;
858 
859 	ORDERKEY_CTIME
860 	ORDERKEY_PCTCPU
861 	ORDERKEY_KTHREADS
862 	ORDERKEY_KTHREADS_PRIO
863 	ORDERKEY_STATE
864 	ORDERKEY_PRIO
865 	ORDERKEY_RSSIZE
866 	ORDERKEY_MEM
867 	{}
868 
869 	return (result);
870 }
871 
872 /* compare_prio - the comparison function for sorting by cpu percentage */
873 
874 int
875 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
876 {
877 	struct kinfo_proc *p1;
878 	struct kinfo_proc *p2;
879 	int result;
880 	pctcpu lresult;
881 
882 	/* remove one level of indirection */
883 	p1 = *(struct kinfo_proc **) pp1;
884 	p2 = *(struct kinfo_proc **) pp2;
885 
886 	ORDERKEY_KTHREADS
887 	ORDERKEY_KTHREADS_PRIO
888 	ORDERKEY_PRIO
889 	ORDERKEY_CPTICKS
890 	ORDERKEY_PCTCPU
891 	ORDERKEY_STATE
892 	ORDERKEY_RSSIZE
893 	ORDERKEY_MEM
894 	{}
895 
896 	return (result);
897 }
898 
899 int
900 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
901 {
902 	struct kinfo_proc *p1;
903 	struct kinfo_proc *p2;
904 	int result;
905 	pctcpu lresult;
906 
907 	/* remove one level of indirection */
908 	p1 = *(struct kinfo_proc **)pp1;
909 	p2 = *(struct kinfo_proc **)pp2;
910 
911 	ORDERKEY_KTHREADS
912 	ORDERKEY_KTHREADS_PRIO
913 	ORDERKEY_CPTICKS
914 	ORDERKEY_PCTCPU
915 	ORDERKEY_STATE
916 	ORDERKEY_RSSIZE
917 	ORDERKEY_MEM
918 	{}
919 
920 	return (result);
921 }
922 
923 /* compare_pid - the comparison function for sorting by process id */
924 
925 int
926 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
927 {
928 	struct kinfo_proc *p1;
929 	struct kinfo_proc *p2;
930 	int result;
931 
932 	/* remove one level of indirection */
933 	p1 = *(struct kinfo_proc **) pp1;
934 	p2 = *(struct kinfo_proc **) pp2;
935 
936 	ORDERKEY_PID
937 	;
938 
939 	return(result);
940 }
941 
942 /*
943  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
944  *		the process does not exist.
945  *		It is EXTREMLY IMPORTANT that this function work correctly.
946  *		If top runs setuid root (as in SVR4), then this function
947  *		is the only thing that stands in the way of a serious
948  *		security problem.  It validates requests for the "kill"
949  *		and "renice" commands.
950  */
951 
952 int
953 proc_owner(int pid)
954 {
955 	int xcnt;
956 	struct kinfo_proc **prefp;
957 	struct kinfo_proc *pp;
958 
959 	prefp = pref;
960 	xcnt = pref_len;
961 	while (--xcnt >= 0) {
962 		pp = *prefp++;
963 		if (PP(pp, pid) == (pid_t) pid) {
964 			return ((int)PP(pp, ruid));
965 		}
966 	}
967 	return (-1);
968 }
969 
970 
971 /*
972  * swapmode is based on a program called swapinfo written
973  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
974  */
975 int
976 swapmode(int *retavail, int *retfree)
977 {
978 	int n;
979 	int pagesize = getpagesize();
980 	struct kvm_swap swapary[1];
981 
982 	*retavail = 0;
983 	*retfree = 0;
984 
985 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
986 
987 	n = kvm_getswapinfo(kd, swapary, 1, 0);
988 	if (n < 0 || swapary[0].ksw_total == 0)
989 		return (0);
990 
991 	*retavail = CONVERT(swapary[0].ksw_total);
992 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
993 
994 	n = (int)((double)swapary[0].ksw_used * 100.0 /
995 	    (double)swapary[0].ksw_total);
996 	return (n);
997 }
998