xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 1a5888d3)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <string.h>
48 #include <sys/conf.h>
49 
50 #include <osreldate.h>		/* for changes in kernel structures */
51 
52 #include <sys/kinfo.h>
53 #include <kinfo.h>
54 #include "top.h"
55 #include "display.h"
56 #include "machine.h"
57 #include "screen.h"
58 #include "utils.h"
59 
60 int swapmode(int *retavail, int *retfree);
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
64 
65 int n_cpus = 0;
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle {
70 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71 	int remaining;		/* number of pointers remaining */
72 	int show_threads;
73 };
74 
75 /* declarations for load_avg */
76 #include "loadavg.h"
77 
78 #define PP(pp, field) ((pp)->kp_ ## field)
79 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
80 #define VP(pp, field) ((pp)->kp_vm_ ## field)
81 
82 /* what we consider to be process size: */
83 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
84 
85 /*
86  * These definitions control the format of the per-process area
87  */
88 
89 static char smp_header[] =
90 "   PID %-*.*s NICE  SIZE    RES    STATE   C   TIME   CTIME    CPU COMMAND";
91 
92 #define smp_Proc_format \
93 	"%6d %-*.*s %3d%7s %6s %8.8s %3d %6s %7s %5.2f%% %.*s"
94 
95 /* process state names for the "STATE" column of the display */
96 /*
97  * the extra nulls in the string "run" are for adding a slash and the
98  * processor number when needed
99  */
100 
101 const char *state_abbrev[] = {
102 	"", "RUN\0\0\0", "STOP", "SLEEP",
103 };
104 
105 
106 static kvm_t *kd;
107 
108 /* values that we stash away in _init and use in later routines */
109 
110 static long lastpid;
111 
112 /* these are for calculating cpu state percentages */
113 
114 static struct kinfo_cputime *cp_time, *cp_old;
115 
116 /* these are for detailing the process states */
117 
118 #define MAXPSTATES	6
119 
120 int process_states[MAXPSTATES];
121 
122 char *procstatenames[] = {
123 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
124 	NULL
125 };
126 
127 /* these are for detailing the cpu states */
128 #define CPU_STATES 5
129 int *cpu_states;
130 int* cpu_averages;
131 char *cpustatenames[CPU_STATES + 1] = {
132 	"user", "nice", "system", "interrupt", "idle", NULL
133 };
134 
135 /* these are for detailing the memory statistics */
136 
137 long memory_stats[7];
138 char *memorynames[] = {
139 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
140 	NULL
141 };
142 
143 long swap_stats[7];
144 char *swapnames[] = {
145 	/* 0           1            2           3            4       5 */
146 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
147 	NULL
148 };
149 
150 
151 /* these are for keeping track of the proc array */
152 
153 static int nproc;
154 static int onproc = -1;
155 static int pref_len;
156 static struct kinfo_proc *pbase;
157 static struct kinfo_proc **pref;
158 
159 static uint64_t prev_pbase_time;	/* unit: us */
160 static struct kinfo_proc *prev_pbase;
161 static int prev_pbase_alloc;
162 static int prev_nproc;
163 static int fscale;
164 
165 /* these are for getting the memory statistics */
166 
167 static int pageshift;		/* log base 2 of the pagesize */
168 
169 /* define pagetok in terms of pageshift */
170 
171 #define pagetok(size) ((size) << pageshift)
172 
173 /* sorting orders. first is default */
174 char *ordernames[] = {
175   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
176 };
177 
178 /* compare routines */
179 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
180 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
181 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
182 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
183 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
184 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
185 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
186 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
187 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
188 
189 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
190 	proc_compare,
191 	compare_size,
192 	compare_res,
193 	compare_time,
194 	compare_prio,
195 	compare_thr,
196 	compare_pid,
197 	compare_ctime,
198 	compare_pres,
199 	NULL
200 };
201 
202 static void
203 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
204     struct kinfo_cputime *old)
205 {
206 	struct kinfo_cputime diffs;
207 	uint64_t total_change, half_total;
208 
209 	/* initialization */
210 	total_change = 0;
211 
212 	diffs.cp_user = new->cp_user - old->cp_user;
213 	diffs.cp_nice = new->cp_nice - old->cp_nice;
214 	diffs.cp_sys = new->cp_sys - old->cp_sys;
215 	diffs.cp_intr = new->cp_intr - old->cp_intr;
216 	diffs.cp_idle = new->cp_idle - old->cp_idle;
217 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
218 	    diffs.cp_intr + diffs.cp_idle;
219 	old->cp_user = new->cp_user;
220 	old->cp_nice = new->cp_nice;
221 	old->cp_sys = new->cp_sys;
222 	old->cp_intr = new->cp_intr;
223 	old->cp_idle = new->cp_idle;
224 
225 	/* avoid divide by zero potential */
226 	if (total_change == 0)
227 		total_change = 1;
228 
229 	/* calculate percentages based on overall change, rounding up */
230 	half_total = total_change >> 1;
231 
232 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
233 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
234 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
235 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
236 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
237 }
238 
239 int
240 machine_init(struct statics *statics)
241 {
242 	int pagesize;
243 	size_t modelen, prmlen;
244 	struct passwd *pw;
245 	struct timeval boottime;
246 
247 	if (n_cpus < 1) {
248 		if (kinfo_get_cpus(&n_cpus))
249 			err(1, "kinfo_get_cpus failed");
250 	}
251 	/* get boot time */
252 	modelen = sizeof(boottime);
253 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
254 		/* we have no boottime to report */
255 		boottime.tv_sec = -1;
256 	}
257 
258 	prmlen = sizeof(fscale);
259 	if (sysctlbyname("kern.fscale", &fscale, &prmlen, NULL, 0) == -1)
260 		err(1, "sysctl kern.fscale failed");
261 
262 	while ((pw = getpwent()) != NULL) {
263 		if ((int)strlen(pw->pw_name) > namelength)
264 			namelength = strlen(pw->pw_name);
265 	}
266 	if (namelength < 8)
267 		namelength = 8;
268 	if (namelength > 13)
269 		namelength = 13;
270 
271 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
272 		return -1;
273 
274 	pbase = NULL;
275 	pref = NULL;
276 	nproc = 0;
277 	onproc = -1;
278 	prev_pbase = NULL;
279 	prev_pbase_alloc = 0;
280 	prev_pbase_time = 0;
281 	prev_nproc = 0;
282 	/*
283 	 * get the page size with "getpagesize" and calculate pageshift from
284 	 * it
285 	 */
286 	pagesize = getpagesize();
287 	pageshift = 0;
288 	while (pagesize > 1) {
289 		pageshift++;
290 		pagesize >>= 1;
291 	}
292 
293 	/* we only need the amount of log(2)1024 for our conversion */
294 	pageshift -= LOG1024;
295 
296 	/* fill in the statics information */
297 	statics->procstate_names = procstatenames;
298 	statics->cpustate_names = cpustatenames;
299 	statics->memory_names = memorynames;
300 	statics->boottime = boottime.tv_sec;
301 	statics->swap_names = swapnames;
302 	statics->order_names = ordernames;
303 	/* we need kvm descriptor in order to show full commands */
304 	statics->flags.fullcmds = kd != NULL;
305 	statics->flags.threads = 1;
306 
307 	/* all done! */
308 	return (0);
309 }
310 
311 char *
312 format_header(char *uname_field)
313 {
314 	static char Header[128];
315 
316 	snprintf(Header, sizeof(Header), smp_header,
317 	    namelength, namelength, uname_field);
318 
319 	if (screen_width <= 79)
320 		cmdlength = 80;
321 	else
322 		cmdlength = screen_width;
323 
324 	cmdlength = cmdlength - strlen(Header) + 6;
325 
326 	return Header;
327 }
328 
329 static int swappgsin = -1;
330 static int swappgsout = -1;
331 extern struct timeval timeout;
332 
333 void
334 get_system_info(struct system_info *si)
335 {
336 	size_t len;
337 	int cpu;
338 
339 	if (cpu_states == NULL) {
340 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
341 		if (cpu_states == NULL)
342 			err(1, "malloc");
343 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
344 	}
345 	if (cp_time == NULL) {
346 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
347 		if (cp_time == NULL)
348 			err(1, "cp_time");
349 		cp_old = cp_time + n_cpus;
350 		len = n_cpus * sizeof(cp_old[0]);
351 		bzero(cp_time, len);
352 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
353 			err(1, "kern.cputime");
354 	}
355 	len = n_cpus * sizeof(cp_time[0]);
356 	bzero(cp_time, len);
357 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
358 		err(1, "kern.cputime");
359 
360 	getloadavg(si->load_avg, 3);
361 
362 	lastpid = 0;
363 
364 	/* convert cp_time counts to percentages */
365 	int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
366 	for (cpu = 0; cpu < n_cpus; ++cpu) {
367 		cputime_percentages(cpu_states + cpu * CPU_STATES,
368 		    &cp_time[cpu], &cp_old[cpu]);
369 	}
370 	if (combine_cpus) {
371 		if (cpu_averages == NULL) {
372 			cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
373 			if (cpu_averages == NULL)
374 				err(1, "cpu_averages");
375 		}
376 		bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
377 		for (cpu = 0; cpu < n_cpus; ++cpu) {
378 			int j = 0;
379 			cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
380 			cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
381 			cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
382 			cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
383 			cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
384 		}
385 		for (int i = 0; i < CPU_STATES; ++i)
386 			cpu_averages[i] /= n_cpus;
387 	}
388 
389 	/* sum memory & swap statistics */
390 	{
391 		struct vmmeter vmm;
392 		struct vmstats vms;
393 		size_t vms_size = sizeof(vms);
394 		size_t vmm_size = sizeof(vmm);
395 		static unsigned int swap_delay = 0;
396 		static int swapavail = 0;
397 		static int swapfree = 0;
398 		static long bufspace = 0;
399 
400 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
401 			err(1, "sysctlbyname: vm.vmstats");
402 
403 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
404 			err(1, "sysctlbyname: vm.vmmeter");
405 
406 		if (kinfo_get_vfs_bufspace(&bufspace))
407 			err(1, "kinfo_get_vfs_bufspace");
408 
409 		/* convert memory stats to Kbytes */
410 		memory_stats[0] = pagetok(vms.v_active_count);
411 		memory_stats[1] = pagetok(vms.v_inactive_count);
412 		memory_stats[2] = pagetok(vms.v_wire_count);
413 		memory_stats[3] = pagetok(vms.v_cache_count);
414 		memory_stats[4] = bufspace / 1024;
415 		memory_stats[5] = pagetok(vms.v_free_count);
416 		memory_stats[6] = -1;
417 
418 		/* first interval */
419 		if (swappgsin < 0) {
420 			swap_stats[4] = 0;
421 			swap_stats[5] = 0;
422 		}
423 		/* compute differences between old and new swap statistic */
424 		else {
425 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
426 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
427 		}
428 
429 		swappgsin = vmm.v_swappgsin;
430 		swappgsout = vmm.v_swappgsout;
431 
432 		/* call CPU heavy swapmode() only for changes */
433 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
434 			swap_stats[3] = swapmode(&swapavail, &swapfree);
435 			swap_stats[0] = swapavail;
436 			swap_stats[1] = swapavail - swapfree;
437 			swap_stats[2] = swapfree;
438 		}
439 		swap_delay = 1;
440 		swap_stats[6] = -1;
441 	}
442 
443 	/* set arrays and strings */
444 	si->cpustates = combine_cpus == 1 ?
445 	    cpu_averages : cpu_states;
446 	si->memory = memory_stats;
447 	si->swap = swap_stats;
448 
449 
450 	if (lastpid > 0) {
451 		si->last_pid = lastpid;
452 	} else {
453 		si->last_pid = -1;
454 	}
455 }
456 
457 
458 static struct handle handle;
459 
460 static void
461 fixup_pctcpu(struct kinfo_proc *fixit, uint64_t d)
462 {
463 	struct kinfo_proc *pp;
464 	uint64_t ticks;
465 	int i;
466 
467 	if (prev_nproc == 0 || d == 0)
468 		return;
469 
470 	if (LP(fixit, pid) == -1) {
471 		/* Skip kernel "idle" threads */
472 		if (PP(fixit, stat) == SIDL)
473 			return;
474 		for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
475 			if (LP(pp, pid) == -1 &&
476 			    PP(pp, ktaddr) == PP(fixit, ktaddr))
477 				break;
478 		}
479 	} else {
480 		for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
481 			if (LP(pp, pid) == LP(fixit, pid) &&
482 			    LP(pp, tid) == LP(fixit, tid)) {
483 				if (PP(pp, paddr) != PP(fixit, paddr)) {
484 					/* pid/tid are reused */
485 					pp = NULL;
486 				}
487 				break;
488 			}
489 		}
490 	}
491 	if (i == prev_nproc || pp == NULL)
492 		return;
493 
494 	ticks = LP(fixit, iticks) - LP(pp, iticks);
495 	ticks += LP(fixit, sticks) - LP(pp, sticks);
496 	ticks += LP(fixit, uticks) - LP(pp, uticks);
497 	if (ticks > d * 1000)
498 		ticks = d * 1000;
499 	LP(fixit, pctcpu) = (ticks * (uint64_t)fscale) / d;
500 }
501 
502 caddr_t
503 get_process_info(struct system_info *si, struct process_select *sel,
504     int compare_index)
505 {
506 	struct timespec tv;
507 	uint64_t t, d = 0;
508 
509 	int i;
510 	int total_procs;
511 	int active_procs;
512 	struct kinfo_proc **prefp;
513 	struct kinfo_proc *pp;
514 
515 	/* these are copied out of sel for speed */
516 	int show_idle;
517 	int show_system;
518 	int show_uid;
519 	int show_threads;
520 	char *match_command;
521 
522 	show_threads = sel->threads;
523 
524 	pbase = kvm_getprocs(kd,
525 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
526 	if (nproc > onproc)
527 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
528 		    * (onproc = nproc));
529 	if (pref == NULL || pbase == NULL) {
530 		(void)fprintf(stderr, "top: Out of memory.\n");
531 		quit(23);
532 	}
533 
534 	clock_gettime(CLOCK_MONOTONIC_PRECISE, &tv);
535 	t = (tv.tv_sec * 1000000ULL) + (tv.tv_nsec / 1000ULL);
536 	if (prev_pbase_time > 0 && t > prev_pbase_time)
537 		d = t - prev_pbase_time;
538 
539 	/* get a pointer to the states summary array */
540 	si->procstates = process_states;
541 
542 	/* set up flags which define what we are going to select */
543 	show_idle = sel->idle;
544 	show_system = sel->system;
545 	show_uid = sel->uid != -1;
546 	show_fullcmd = sel->fullcmd;
547 	match_command = sel->command;
548 
549 	/* count up process states and get pointers to interesting procs */
550 	total_procs = 0;
551 	active_procs = 0;
552 	memset((char *)process_states, 0, sizeof(process_states));
553 	prefp = pref;
554 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
555 		/*
556 		 * Place pointers to each valid proc structure in pref[].
557 		 * Process slots that are actually in use have a non-zero
558 		 * status field.  Processes with P_SYSTEM set are system
559 		 * processes---these get ignored unless show_sysprocs is set.
560 		 */
561 		if ((show_system && (LP(pp, pid) == -1)) ||
562 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
563 			int lpstate = LP(pp, stat);
564 			int pstate = PP(pp, stat);
565 
566 			total_procs++;
567 			if (lpstate == LSRUN)
568 				process_states[0]++;
569 			if (pstate >= 0 && pstate < MAXPSTATES - 1)
570 				process_states[pstate]++;
571 
572 			if (match_command != NULL &&
573 			    strstr(PP(pp, comm), match_command) == NULL) {
574 				/* Command does not match */
575 				continue;
576 			}
577 
578 			if (show_uid && PP(pp, ruid) != (uid_t)sel->uid) {
579 				/* UID does not match */
580 				continue;
581 			}
582 
583 			if (!show_system && LP(pp, pid) == -1) {
584 				/* Don't show system processes */
585 				continue;
586 			}
587 
588 			/* Fix up pctcpu before show_idle test */
589 			fixup_pctcpu(pp, d);
590 
591 			if (!show_idle && LP(pp, pctcpu) == 0 &&
592 			    lpstate != LSRUN) {
593 				/* Don't show idle processes */
594 				continue;
595 			}
596 
597 			*prefp++ = pp;
598 			active_procs++;
599 		}
600 	}
601 
602 	/*
603 	 * Save kinfo_procs for later pctcpu fixup.
604 	 */
605 	if (prev_pbase_alloc < nproc) {
606 		prev_pbase_alloc = nproc;
607 		prev_pbase = realloc(prev_pbase,
608 		    prev_pbase_alloc * sizeof(struct kinfo_proc));
609 		if (prev_pbase == NULL) {
610 			fprintf(stderr, "top: Out of memory.\n");
611 			quit(23);
612 		}
613 	}
614 	prev_nproc = nproc;
615 	prev_pbase_time = t;
616 	memcpy(prev_pbase, pbase, nproc * sizeof(struct kinfo_proc));
617 
618 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
619 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
620 
621 	/* remember active and total counts */
622 	si->p_total = total_procs;
623 	si->p_active = pref_len = active_procs;
624 
625 	/* pass back a handle */
626 	handle.next_proc = pref;
627 	handle.remaining = active_procs;
628 	handle.show_threads = show_threads;
629 	return ((caddr_t) & handle);
630 }
631 
632 char fmt[MAX_COLS];		/* static area where result is built */
633 
634 char *
635 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
636 {
637 	struct kinfo_proc *pp;
638 	long cputime;
639 	long ccputime;
640 	double pct;
641 	struct handle *hp;
642 	char status[16];
643 	int state;
644 	int xnice;
645 	char *comm;
646 	char cputime_fmt[10], ccputime_fmt[10];
647 
648 	/* find and remember the next proc structure */
649 	hp = (struct handle *)xhandle;
650 	pp = *(hp->next_proc++);
651 	hp->remaining--;
652 
653 	/* get the process's command name */
654 	if (show_fullcmd) {
655 		char **comm_full = kvm_getargv(kd, pp, 0);
656 		if (comm_full != 0)
657 			comm = *comm_full;
658 		else
659 			comm = PP(pp, comm);
660 	}
661 	else {
662 		comm = PP(pp, comm);
663 	}
664 
665 	/* the actual field to display */
666 	char cmdfield[MAX_COLS];
667 
668 	if (PP(pp, flags) & P_SYSTEM) {
669 		/* system process */
670 		snprintf(cmdfield, sizeof cmdfield, "[%s]", comm);
671 	} else if (hp->show_threads && PP(pp, nthreads) > 1) {
672 		/* display it as a thread */
673 		if (strcmp(PP(pp, comm), LP(pp, comm)) == 0) {
674 			snprintf(cmdfield, sizeof cmdfield, "%s{%d}", comm,
675 			    LP(pp, tid));
676 		} else {
677 			/* show thread name in addition to tid */
678 			snprintf(cmdfield, sizeof cmdfield, "%s{%d/%s}", comm,
679 			    LP(pp, tid), LP(pp, comm));
680 		}
681 	} else {
682 		snprintf(cmdfield, sizeof cmdfield, "%s", comm);
683 	}
684 
685 	/*
686 	 * Convert the process's runtime from microseconds to seconds.  This
687 	 * time includes the interrupt time to be in compliance with ps output.
688 	 */
689 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
690 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
691 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
692 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
693 
694 	/* calculate the base for cpu percentages */
695 	pct = pctdouble(LP(pp, pctcpu));
696 
697 	/* generate "STATE" field */
698 	switch (state = LP(pp, stat)) {
699 	case LSRUN:
700 		if (LP(pp, tdflags) & TDF_RUNNING)
701 			sprintf(status, "CPU%d", LP(pp, cpuid));
702 		else
703 			strcpy(status, "RUN");
704 		break;
705 	case LSSLEEP:
706 		if (LP(pp, wmesg) != NULL) {
707 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
708 			break;
709 		}
710 		/* fall through */
711 	default:
712 
713 		if (state >= 0 && (unsigned)state < NELEM(state_abbrev))
714 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
715 		else
716 			sprintf(status, "?%5d", state);
717 		break;
718 	}
719 
720 	if (PP(pp, stat) == SZOMB)
721 		strcpy(status, "ZOMB");
722 
723 	/*
724 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
725 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
726 	 * 0 - 31 -> nice value -53 -
727 	 */
728 	switch (LP(pp, rtprio.type)) {
729 	case RTP_PRIO_REALTIME:
730 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
731 		break;
732 	case RTP_PRIO_IDLE:
733 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
734 		break;
735 	case RTP_PRIO_THREAD:
736 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
737 		break;
738 	default:
739 		xnice = PP(pp, nice);
740 		break;
741 	}
742 
743 	/* format this entry */
744 	snprintf(fmt, sizeof(fmt),
745 	    smp_Proc_format,
746 	    (int)PP(pp, pid),
747 	    namelength, namelength,
748 	    get_userid(PP(pp, ruid)),
749 	    (int)xnice,
750 	    format_k(PROCSIZE(pp)),
751 	    format_k(pagetok(VP(pp, rssize))),
752 	    status,
753 	    LP(pp, cpuid),
754 	    cputime_fmt,
755 	    ccputime_fmt,
756 	    100.0 * pct,
757 	    cmdlength,
758 	    cmdfield);
759 
760 	/* return the result */
761 	return (fmt);
762 }
763 
764 /* comparison routines for qsort */
765 
766 /*
767  *  proc_compare - comparison function for "qsort"
768  *	Compares the resource consumption of two processes using five
769  *  	distinct keys.  The keys (in descending order of importance) are:
770  *  	percent cpu, cpu ticks, state, resident set size, total virtual
771  *  	memory usage.  The process states are ordered as follows (from least
772  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
773  *  	array declaration below maps a process state index into a number
774  *  	that reflects this ordering.
775  */
776 
777 static unsigned char sorted_state[] =
778 {
779 	0,			/* not used		 */
780 	3,			/* sleep		 */
781 	1,			/* ABANDONED (WAIT)	 */
782 	6,			/* run			 */
783 	5,			/* start		 */
784 	2,			/* zombie		 */
785 	4			/* stop			 */
786 };
787 
788 
789 #define ORDERKEY_PCTCPU \
790   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
791      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
792 
793 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
794 
795 #define ORDERKEY_CPTICKS \
796   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
797 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
798 
799 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
800   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
801 
802 #define ORDERKEY_CTIME \
803    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
804 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
805 
806 #define ORDERKEY_STATE \
807   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
808                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
809 
810 #define ORDERKEY_PRIO \
811   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
812 
813 #define ORDERKEY_KTHREADS \
814   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
815 
816 #define ORDERKEY_KTHREADS_PRIO \
817   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
818 
819 #define ORDERKEY_RSSIZE \
820   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
821 
822 #define ORDERKEY_MEM \
823   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
824 
825 #define ORDERKEY_PID \
826   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
827 
828 #define ORDERKEY_PRSSIZE \
829   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
830 
831 static __inline int
832 orderkey_kernidle(const struct kinfo_proc *p1, const struct kinfo_proc *p2)
833 {
834 	int p1_kidle = 0, p2_kidle = 0;
835 
836 	if (LP(p1, pid) == -1 && PP(p1, stat) == SIDL)
837 		p1_kidle = 1;
838 	if (LP(p2, pid) == -1 && PP(p2, stat) == SIDL)
839 		p2_kidle = 1;
840 
841 	if (!p2_kidle && p1_kidle)
842 		return 1;
843 	if (p2_kidle && !p1_kidle)
844 		return -1;
845 	return 0;
846 }
847 
848 #define ORDERKEY_KIDLE	if ((result = orderkey_kernidle(p1, p2)) == 0)
849 
850 /* compare_cpu - the comparison function for sorting by cpu percentage */
851 
852 int
853 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
854 {
855 	struct kinfo_proc *p1;
856 	struct kinfo_proc *p2;
857 	int result;
858 	pctcpu lresult;
859 
860 	/* remove one level of indirection */
861 	p1 = *(struct kinfo_proc **) pp1;
862 	p2 = *(struct kinfo_proc **) pp2;
863 
864 	ORDERKEY_KIDLE
865 	ORDERKEY_PCTCPU
866 	ORDERKEY_CPTICKS
867 	ORDERKEY_STATE
868 	ORDERKEY_PRIO
869 	ORDERKEY_RSSIZE
870 	ORDERKEY_MEM
871 	{}
872 
873 	return (result);
874 }
875 
876 /* compare_size - the comparison function for sorting by total memory usage */
877 
878 int
879 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
880 {
881 	struct kinfo_proc *p1;
882 	struct kinfo_proc *p2;
883 	int result;
884 	pctcpu lresult;
885 
886 	/* remove one level of indirection */
887 	p1 = *(struct kinfo_proc **) pp1;
888 	p2 = *(struct kinfo_proc **) pp2;
889 
890 	ORDERKEY_MEM
891 	ORDERKEY_RSSIZE
892 	ORDERKEY_KIDLE
893 	ORDERKEY_PCTCPU
894 	ORDERKEY_CPTICKS
895 	ORDERKEY_STATE
896 	ORDERKEY_PRIO
897 	{}
898 
899 	return (result);
900 }
901 
902 /* compare_res - the comparison function for sorting by resident set size */
903 
904 int
905 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
906 {
907 	struct kinfo_proc *p1;
908 	struct kinfo_proc *p2;
909 	int result;
910 	pctcpu lresult;
911 
912 	/* remove one level of indirection */
913 	p1 = *(struct kinfo_proc **) pp1;
914 	p2 = *(struct kinfo_proc **) pp2;
915 
916 	ORDERKEY_RSSIZE
917 	ORDERKEY_MEM
918 	ORDERKEY_KIDLE
919 	ORDERKEY_PCTCPU
920 	ORDERKEY_CPTICKS
921 	ORDERKEY_STATE
922 	ORDERKEY_PRIO
923 	{}
924 
925 	return (result);
926 }
927 
928 /* compare_pres - the comparison function for sorting by proportional resident set size */
929 
930 int
931 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
932 {
933 	struct kinfo_proc *p1;
934 	struct kinfo_proc *p2;
935 	int result;
936 	pctcpu lresult;
937 
938 	/* remove one level of indirection */
939 	p1 = *(struct kinfo_proc **) pp1;
940 	p2 = *(struct kinfo_proc **) pp2;
941 
942 	ORDERKEY_PRSSIZE
943 	ORDERKEY_RSSIZE
944 	ORDERKEY_MEM
945 	ORDERKEY_KIDLE
946 	ORDERKEY_PCTCPU
947 	ORDERKEY_CPTICKS
948 	ORDERKEY_STATE
949 	ORDERKEY_PRIO
950 	{}
951 
952 	return (result);
953 }
954 
955 /* compare_time - the comparison function for sorting by total cpu time */
956 
957 int
958 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
959 {
960 	struct kinfo_proc *p1;
961 	struct kinfo_proc *p2;
962 	int result;
963 	pctcpu lresult;
964 
965 	/* remove one level of indirection */
966 	p1 = *(struct kinfo_proc **) pp1;
967 	p2 = *(struct kinfo_proc **) pp2;
968 
969 	ORDERKEY_KIDLE
970 	ORDERKEY_CPTICKS
971 	ORDERKEY_PCTCPU
972 	ORDERKEY_KTHREADS
973 	ORDERKEY_KTHREADS_PRIO
974 	ORDERKEY_STATE
975 	ORDERKEY_PRIO
976 	ORDERKEY_RSSIZE
977 	ORDERKEY_MEM
978 	{}
979 
980 	return (result);
981 }
982 
983 int
984 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
985 {
986 	struct kinfo_proc *p1;
987 	struct kinfo_proc *p2;
988 	int result;
989 	pctcpu lresult;
990 
991 	/* remove one level of indirection */
992 	p1 = *(struct kinfo_proc **) pp1;
993 	p2 = *(struct kinfo_proc **) pp2;
994 
995 	ORDERKEY_KIDLE
996 	ORDERKEY_CTIME
997 	ORDERKEY_PCTCPU
998 	ORDERKEY_KTHREADS
999 	ORDERKEY_KTHREADS_PRIO
1000 	ORDERKEY_STATE
1001 	ORDERKEY_PRIO
1002 	ORDERKEY_RSSIZE
1003 	ORDERKEY_MEM
1004 	{}
1005 
1006 	return (result);
1007 }
1008 
1009 /* compare_prio - the comparison function for sorting by cpu percentage */
1010 
1011 int
1012 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1013 {
1014 	struct kinfo_proc *p1;
1015 	struct kinfo_proc *p2;
1016 	int result;
1017 	pctcpu lresult;
1018 
1019 	/* remove one level of indirection */
1020 	p1 = *(struct kinfo_proc **) pp1;
1021 	p2 = *(struct kinfo_proc **) pp2;
1022 
1023 	ORDERKEY_KTHREADS
1024 	ORDERKEY_KTHREADS_PRIO
1025 	ORDERKEY_PRIO
1026 	ORDERKEY_KIDLE
1027 	ORDERKEY_CPTICKS
1028 	ORDERKEY_PCTCPU
1029 	ORDERKEY_STATE
1030 	ORDERKEY_RSSIZE
1031 	ORDERKEY_MEM
1032 	{}
1033 
1034 	return (result);
1035 }
1036 
1037 int
1038 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1039 {
1040 	struct kinfo_proc *p1;
1041 	struct kinfo_proc *p2;
1042 	int result;
1043 	pctcpu lresult;
1044 
1045 	/* remove one level of indirection */
1046 	p1 = *(struct kinfo_proc **)pp1;
1047 	p2 = *(struct kinfo_proc **)pp2;
1048 
1049 	ORDERKEY_KTHREADS
1050 	ORDERKEY_KTHREADS_PRIO
1051 	ORDERKEY_KIDLE
1052 	ORDERKEY_CPTICKS
1053 	ORDERKEY_PCTCPU
1054 	ORDERKEY_STATE
1055 	ORDERKEY_RSSIZE
1056 	ORDERKEY_MEM
1057 	{}
1058 
1059 	return (result);
1060 }
1061 
1062 /* compare_pid - the comparison function for sorting by process id */
1063 
1064 int
1065 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1066 {
1067 	struct kinfo_proc *p1;
1068 	struct kinfo_proc *p2;
1069 	int result;
1070 
1071 	/* remove one level of indirection */
1072 	p1 = *(struct kinfo_proc **) pp1;
1073 	p2 = *(struct kinfo_proc **) pp2;
1074 
1075 	ORDERKEY_PID
1076 	;
1077 
1078 	return(result);
1079 }
1080 
1081 /*
1082  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1083  *		the process does not exist.
1084  *		It is EXTREMLY IMPORTANT that this function work correctly.
1085  *		If top runs setuid root (as in SVR4), then this function
1086  *		is the only thing that stands in the way of a serious
1087  *		security problem.  It validates requests for the "kill"
1088  *		and "renice" commands.
1089  */
1090 
1091 int
1092 proc_owner(int pid)
1093 {
1094 	int xcnt;
1095 	struct kinfo_proc **prefp;
1096 	struct kinfo_proc *pp;
1097 
1098 	prefp = pref;
1099 	xcnt = pref_len;
1100 	while (--xcnt >= 0) {
1101 		pp = *prefp++;
1102 		if (PP(pp, pid) == (pid_t) pid) {
1103 			return ((int)PP(pp, ruid));
1104 		}
1105 	}
1106 	return (-1);
1107 }
1108 
1109 
1110 /*
1111  * swapmode is based on a program called swapinfo written
1112  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
1113  */
1114 int
1115 swapmode(int *retavail, int *retfree)
1116 {
1117 	int n;
1118 	int pagesize = getpagesize();
1119 	struct kvm_swap swapary[1];
1120 
1121 	*retavail = 0;
1122 	*retfree = 0;
1123 
1124 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1125 
1126 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1127 	if (n < 0 || swapary[0].ksw_total == 0)
1128 		return (0);
1129 
1130 	*retavail = CONVERT(swapary[0].ksw_total);
1131 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1132 
1133 	n = (int)((double)swapary[0].ksw_used * 100.0 /
1134 	    (double)swapary[0].ksw_total);
1135 	return (n);
1136 }
1137