xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 82730a9c)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int namelength;
61 static int cmdlength;
62 static int show_fullcmd;
63 
64 int n_cpus = 0;
65 
66 /* get_process_info passes back a handle.  This is what it looks like: */
67 
68 struct handle {
69 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
70 	int remaining;		/* number of pointers remaining */
71 };
72 
73 /* declarations for load_avg */
74 #include "loadavg.h"
75 
76 #define PP(pp, field) ((pp)->kp_ ## field)
77 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
78 #define VP(pp, field) ((pp)->kp_vm_ ## field)
79 
80 /* what we consider to be process size: */
81 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
82 
83 /*
84  * These definitions control the format of the per-process area
85  */
86 
87 static char smp_header[] =
88 "  PID %-*.*s NICE  SIZE    RES    STATE CPU  TIME   CTIME    CPU COMMAND";
89 
90 #define smp_Proc_format \
91 	"%5d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
92 
93 /* process state names for the "STATE" column of the display */
94 /*
95  * the extra nulls in the string "run" are for adding a slash and the
96  * processor number when needed
97  */
98 
99 const char *state_abbrev[] = {
100 	"", "RUN\0\0\0", "STOP", "SLEEP",
101 };
102 
103 
104 static kvm_t *kd;
105 
106 /* values that we stash away in _init and use in later routines */
107 
108 static long lastpid;
109 
110 /* these are for calculating cpu state percentages */
111 
112 static struct kinfo_cputime *cp_time, *cp_old;
113 
114 /* these are for detailing the process states */
115 
116 #define MAXPSTATES	6
117 
118 int process_states[MAXPSTATES];
119 
120 char *procstatenames[] = {
121 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
122 	NULL
123 };
124 
125 /* these are for detailing the cpu states */
126 #define CPU_STATES 5
127 int *cpu_states;
128 int* cpu_averages;
129 char *cpustatenames[CPU_STATES + 1] = {
130 	"user", "nice", "system", "interrupt", "idle", NULL
131 };
132 
133 /* these are for detailing the memory statistics */
134 
135 long memory_stats[7];
136 char *memorynames[] = {
137 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
138 	NULL
139 };
140 
141 long swap_stats[7];
142 char *swapnames[] = {
143 	/* 0           1            2           3            4       5 */
144 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
145 	NULL
146 };
147 
148 
149 /* these are for keeping track of the proc array */
150 
151 static int nproc;
152 static int onproc = -1;
153 static int pref_len;
154 static struct kinfo_proc *pbase;
155 static struct kinfo_proc **pref;
156 
157 /* these are for getting the memory statistics */
158 
159 static int pageshift;		/* log base 2 of the pagesize */
160 
161 /* define pagetok in terms of pageshift */
162 
163 #define pagetok(size) ((size) << pageshift)
164 
165 /* sorting orders. first is default */
166 char *ordernames[] = {
167   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
168 };
169 
170 /* compare routines */
171 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
172 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
173 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
174 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
175 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
176 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
177 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
178 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
179 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
180 
181 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
182 	proc_compare,
183 	compare_size,
184 	compare_res,
185 	compare_time,
186 	compare_prio,
187 	compare_thr,
188 	compare_pid,
189 	compare_ctime,
190 	compare_pres,
191 	NULL
192 };
193 
194 static void
195 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
196     struct kinfo_cputime *old)
197 {
198 	struct kinfo_cputime diffs;
199 	uint64_t total_change, half_total;
200 
201 	/* initialization */
202 	total_change = 0;
203 
204 	diffs.cp_user = new->cp_user - old->cp_user;
205 	diffs.cp_nice = new->cp_nice - old->cp_nice;
206 	diffs.cp_sys = new->cp_sys - old->cp_sys;
207 	diffs.cp_intr = new->cp_intr - old->cp_intr;
208 	diffs.cp_idle = new->cp_idle - old->cp_idle;
209 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
210 	    diffs.cp_intr + diffs.cp_idle;
211 	old->cp_user = new->cp_user;
212 	old->cp_nice = new->cp_nice;
213 	old->cp_sys = new->cp_sys;
214 	old->cp_intr = new->cp_intr;
215 	old->cp_idle = new->cp_idle;
216 
217 	/* avoid divide by zero potential */
218 	if (total_change == 0)
219 		total_change = 1;
220 
221 	/* calculate percentages based on overall change, rounding up */
222 	half_total = total_change >> 1;
223 
224 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
225 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
226 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
227 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
228 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
229 }
230 
231 int
232 machine_init(struct statics *statics)
233 {
234 	int pagesize;
235 	size_t modelen;
236 	struct passwd *pw;
237 	struct timeval boottime;
238 
239 	if (n_cpus < 1) {
240 		if (kinfo_get_cpus(&n_cpus))
241 			err(1, "kinfo_get_cpus failed");
242 	}
243 	/* get boot time */
244 	modelen = sizeof(boottime);
245 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
246 		/* we have no boottime to report */
247 		boottime.tv_sec = -1;
248 	}
249 
250 	while ((pw = getpwent()) != NULL) {
251 		if ((int)strlen(pw->pw_name) > namelength)
252 			namelength = strlen(pw->pw_name);
253 	}
254 	if (namelength < 8)
255 		namelength = 8;
256 	if (namelength > 13)
257 		namelength = 13;
258 
259 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
260 		return -1;
261 
262 	pbase = NULL;
263 	pref = NULL;
264 	nproc = 0;
265 	onproc = -1;
266 	/*
267 	 * get the page size with "getpagesize" and calculate pageshift from
268 	 * it
269 	 */
270 	pagesize = getpagesize();
271 	pageshift = 0;
272 	while (pagesize > 1) {
273 		pageshift++;
274 		pagesize >>= 1;
275 	}
276 
277 	/* we only need the amount of log(2)1024 for our conversion */
278 	pageshift -= LOG1024;
279 
280 	/* fill in the statics information */
281 	statics->procstate_names = procstatenames;
282 	statics->cpustate_names = cpustatenames;
283 	statics->memory_names = memorynames;
284 	statics->boottime = boottime.tv_sec;
285 	statics->swap_names = swapnames;
286 	statics->order_names = ordernames;
287 	/* we need kvm descriptor in order to show full commands */
288 	statics->flags.fullcmds = kd != NULL;
289 
290 	/* all done! */
291 	return (0);
292 }
293 
294 char *
295 format_header(char *uname_field)
296 {
297 	static char Header[128];
298 
299 	snprintf(Header, sizeof(Header), smp_header,
300 	    namelength, namelength, uname_field);
301 
302 	if (screen_width <= 79)
303 		cmdlength = 80;
304 	else
305 		cmdlength = screen_width;
306 
307 	cmdlength = cmdlength - strlen(Header) + 6;
308 
309 	return Header;
310 }
311 
312 static int swappgsin = -1;
313 static int swappgsout = -1;
314 extern struct timeval timeout;
315 
316 void
317 get_system_info(struct system_info *si)
318 {
319 	size_t len;
320 	int cpu;
321 
322 	if (cpu_states == NULL) {
323 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
324 		if (cpu_states == NULL)
325 			err(1, "malloc");
326 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
327 	}
328 	if (cp_time == NULL) {
329 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
330 		if (cp_time == NULL)
331 			err(1, "cp_time");
332 		cp_old = cp_time + n_cpus;
333 		len = n_cpus * sizeof(cp_old[0]);
334 		bzero(cp_time, len);
335 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
336 			err(1, "kern.cputime");
337 	}
338 	len = n_cpus * sizeof(cp_time[0]);
339 	bzero(cp_time, len);
340 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
341 		err(1, "kern.cputime");
342 
343 	getloadavg(si->load_avg, 3);
344 
345 	lastpid = 0;
346 
347 	/* convert cp_time counts to percentages */
348 	int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
349 	for (cpu = 0; cpu < n_cpus; ++cpu) {
350 		cputime_percentages(cpu_states + cpu * CPU_STATES,
351 		    &cp_time[cpu], &cp_old[cpu]);
352 	}
353 	if (combine_cpus) {
354 		if (cpu_averages == NULL) {
355 			cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
356 			if (cpu_averages == NULL)
357 				err(1, "cpu_averages");
358 		}
359 		bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
360 		for (cpu = 0; cpu < n_cpus; ++cpu) {
361 			int j = 0;
362 			cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
363 			cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
364 			cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
365 			cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
366 			cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
367 		}
368 		for (int i = 0; i < CPU_STATES; ++i)
369 			cpu_averages[i] /= n_cpus;
370 	}
371 
372 	/* sum memory & swap statistics */
373 	{
374 		struct vmmeter vmm;
375 		struct vmstats vms;
376 		size_t vms_size = sizeof(vms);
377 		size_t vmm_size = sizeof(vmm);
378 		static unsigned int swap_delay = 0;
379 		static int swapavail = 0;
380 		static int swapfree = 0;
381 		static long bufspace = 0;
382 
383 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
384 			err(1, "sysctlbyname: vm.vmstats");
385 
386 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
387 			err(1, "sysctlbyname: vm.vmmeter");
388 
389 		if (kinfo_get_vfs_bufspace(&bufspace))
390 			err(1, "kinfo_get_vfs_bufspace");
391 
392 		/* convert memory stats to Kbytes */
393 		memory_stats[0] = pagetok(vms.v_active_count);
394 		memory_stats[1] = pagetok(vms.v_inactive_count);
395 		memory_stats[2] = pagetok(vms.v_wire_count);
396 		memory_stats[3] = pagetok(vms.v_cache_count);
397 		memory_stats[4] = bufspace / 1024;
398 		memory_stats[5] = pagetok(vms.v_free_count);
399 		memory_stats[6] = -1;
400 
401 		/* first interval */
402 		if (swappgsin < 0) {
403 			swap_stats[4] = 0;
404 			swap_stats[5] = 0;
405 		}
406 		/* compute differences between old and new swap statistic */
407 		else {
408 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
409 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
410 		}
411 
412 		swappgsin = vmm.v_swappgsin;
413 		swappgsout = vmm.v_swappgsout;
414 
415 		/* call CPU heavy swapmode() only for changes */
416 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
417 			swap_stats[3] = swapmode(&swapavail, &swapfree);
418 			swap_stats[0] = swapavail;
419 			swap_stats[1] = swapavail - swapfree;
420 			swap_stats[2] = swapfree;
421 		}
422 		swap_delay = 1;
423 		swap_stats[6] = -1;
424 	}
425 
426 	/* set arrays and strings */
427 	si->cpustates = combine_cpus == 1 ?
428 	    cpu_averages : cpu_states;
429 	si->memory = memory_stats;
430 	si->swap = swap_stats;
431 
432 
433 	if (lastpid > 0) {
434 		si->last_pid = lastpid;
435 	} else {
436 		si->last_pid = -1;
437 	}
438 }
439 
440 
441 static struct handle handle;
442 
443 caddr_t
444 get_process_info(struct system_info *si, struct process_select *sel,
445     int compare_index)
446 {
447 	int i;
448 	int total_procs;
449 	int active_procs;
450 	struct kinfo_proc **prefp;
451 	struct kinfo_proc *pp;
452 
453 	/* these are copied out of sel for speed */
454 	int show_idle;
455 	int show_system;
456 	int show_uid;
457 	int show_threads;
458 
459 	show_threads = sel->threads;
460 
461 
462 	pbase = kvm_getprocs(kd,
463 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
464 	if (nproc > onproc)
465 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
466 		    * (onproc = nproc));
467 	if (pref == NULL || pbase == NULL) {
468 		(void)fprintf(stderr, "top: Out of memory.\n");
469 		quit(23);
470 	}
471 	/* get a pointer to the states summary array */
472 	si->procstates = process_states;
473 
474 	/* set up flags which define what we are going to select */
475 	show_idle = sel->idle;
476 	show_system = sel->system;
477 	show_uid = sel->uid != -1;
478 	show_fullcmd = sel->fullcmd;
479 
480 	/* count up process states and get pointers to interesting procs */
481 	total_procs = 0;
482 	active_procs = 0;
483 	memset((char *)process_states, 0, sizeof(process_states));
484 	prefp = pref;
485 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
486 		/*
487 		 * Place pointers to each valid proc structure in pref[].
488 		 * Process slots that are actually in use have a non-zero
489 		 * status field.  Processes with P_SYSTEM set are system
490 		 * processes---these get ignored unless show_sysprocs is set.
491 		 */
492 		if ((show_system && (LP(pp, pid) == -1)) ||
493 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
494 			int pstate = LP(pp, stat);
495 
496 			total_procs++;
497 			if (pstate == LSRUN)
498 				process_states[0]++;
499 			if (pstate >= 0 && pstate < MAXPSTATES)
500 				process_states[pstate]++;
501 			if ((show_system && (LP(pp, pid) == -1)) ||
502 			    (show_idle || (LP(pp, pctcpu) != 0) ||
503 			    (pstate == LSRUN)) &&
504 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
505 				*prefp++ = pp;
506 				active_procs++;
507 			}
508 		}
509 	}
510 
511 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
512 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
513 
514 	/* remember active and total counts */
515 	si->p_total = total_procs;
516 	si->p_active = pref_len = active_procs;
517 
518 	/* pass back a handle */
519 	handle.next_proc = pref;
520 	handle.remaining = active_procs;
521 	return ((caddr_t) & handle);
522 }
523 
524 char fmt[MAX_COLS];		/* static area where result is built */
525 
526 char *
527 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
528 {
529 	struct kinfo_proc *pp;
530 	long cputime;
531 	long ccputime;
532 	double pct;
533 	struct handle *hp;
534 	char status[16];
535 	int state;
536 	int xnice;
537 	char **comm_full;
538 	char *comm;
539 	char cputime_fmt[10], ccputime_fmt[10];
540 
541 	/* find and remember the next proc structure */
542 	hp = (struct handle *)xhandle;
543 	pp = *(hp->next_proc++);
544 	hp->remaining--;
545 
546 	/* get the process's command name */
547 	if (show_fullcmd) {
548 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
549 			return (fmt);
550 		}
551 	}
552 	else {
553 		comm = PP(pp, comm);
554 	}
555 
556 	/*
557 	 * Convert the process's runtime from microseconds to seconds.  This
558 	 * time includes the interrupt time to be in compliance with ps output.
559 	*/
560 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
561 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
562 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
563 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
564 
565 	/* calculate the base for cpu percentages */
566 	pct = pctdouble(LP(pp, pctcpu));
567 
568 	/* generate "STATE" field */
569 	switch (state = LP(pp, stat)) {
570 	case LSRUN:
571 		if (LP(pp, tdflags) & TDF_RUNNING)
572 			sprintf(status, "CPU%d", LP(pp, cpuid));
573 		else
574 			strcpy(status, "RUN");
575 		break;
576 	case LSSLEEP:
577 		if (LP(pp, wmesg) != NULL) {
578 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
579 			break;
580 		}
581 		/* fall through */
582 	default:
583 
584 		if (state >= 0 &&
585 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
586 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
587 		else
588 			sprintf(status, "?%5d", state);
589 		break;
590 	}
591 
592 	if (PP(pp, stat) == SZOMB)
593 		strcpy(status, "ZOMB");
594 
595 	/*
596 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
597 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
598 	 * 0 - 31 -> nice value -53 -
599 	 */
600 	switch (LP(pp, rtprio.type)) {
601 	case RTP_PRIO_REALTIME:
602 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
603 		break;
604 	case RTP_PRIO_IDLE:
605 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
606 		break;
607 	case RTP_PRIO_THREAD:
608 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
609 		break;
610 	default:
611 		xnice = PP(pp, nice);
612 		break;
613 	}
614 
615 	/* format this entry */
616 	snprintf(fmt, sizeof(fmt),
617 	    smp_Proc_format,
618 	    (int)PP(pp, pid),
619 	    namelength, namelength,
620 	    get_userid(PP(pp, ruid)),
621 	    (int)xnice,
622 	    format_k(PROCSIZE(pp)),
623 	    format_k(pagetok(VP(pp, rssize))),
624 	    status,
625 	    LP(pp, cpuid),
626 	    cputime_fmt,
627 	    ccputime_fmt,
628 	    100.0 * pct,
629 	    cmdlength,
630 	    show_fullcmd ? *comm_full : comm);
631 
632 	/* return the result */
633 	return (fmt);
634 }
635 
636 /* comparison routines for qsort */
637 
638 /*
639  *  proc_compare - comparison function for "qsort"
640  *	Compares the resource consumption of two processes using five
641  *  	distinct keys.  The keys (in descending order of importance) are:
642  *  	percent cpu, cpu ticks, state, resident set size, total virtual
643  *  	memory usage.  The process states are ordered as follows (from least
644  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
645  *  	array declaration below maps a process state index into a number
646  *  	that reflects this ordering.
647  */
648 
649 static unsigned char sorted_state[] =
650 {
651 	0,			/* not used		 */
652 	3,			/* sleep		 */
653 	1,			/* ABANDONED (WAIT)	 */
654 	6,			/* run			 */
655 	5,			/* start		 */
656 	2,			/* zombie		 */
657 	4			/* stop			 */
658 };
659 
660 
661 #define ORDERKEY_PCTCPU \
662   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
663      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
664 
665 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
666 
667 #define ORDERKEY_CPTICKS \
668   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
669 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
670 
671 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
672   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
673 
674 #define ORDERKEY_CTIME \
675    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
676 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
677 
678 #define ORDERKEY_STATE \
679   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
680                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
681 
682 #define ORDERKEY_PRIO \
683   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
684 
685 #define ORDERKEY_KTHREADS \
686   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
687 
688 #define ORDERKEY_KTHREADS_PRIO \
689   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
690 
691 #define ORDERKEY_RSSIZE \
692   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
693 
694 #define ORDERKEY_MEM \
695   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
696 
697 #define ORDERKEY_PID \
698   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
699 
700 #define ORDERKEY_PRSSIZE \
701   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
702 
703 /* compare_cpu - the comparison function for sorting by cpu percentage */
704 
705 int
706 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
707 {
708 	struct kinfo_proc *p1;
709 	struct kinfo_proc *p2;
710 	int result;
711 	pctcpu lresult;
712 
713 	/* remove one level of indirection */
714 	p1 = *(struct kinfo_proc **) pp1;
715 	p2 = *(struct kinfo_proc **) pp2;
716 
717 	ORDERKEY_PCTCPU
718 	ORDERKEY_CPTICKS
719 	ORDERKEY_STATE
720 	ORDERKEY_PRIO
721 	ORDERKEY_RSSIZE
722 	ORDERKEY_MEM
723 	{}
724 
725 	return (result);
726 }
727 
728 /* compare_size - the comparison function for sorting by total memory usage */
729 
730 int
731 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
732 {
733 	struct kinfo_proc *p1;
734 	struct kinfo_proc *p2;
735 	int result;
736 	pctcpu lresult;
737 
738 	/* remove one level of indirection */
739 	p1 = *(struct kinfo_proc **) pp1;
740 	p2 = *(struct kinfo_proc **) pp2;
741 
742 	ORDERKEY_MEM
743 	ORDERKEY_RSSIZE
744 	ORDERKEY_PCTCPU
745 	ORDERKEY_CPTICKS
746 	ORDERKEY_STATE
747 	ORDERKEY_PRIO
748 	{}
749 
750 	return (result);
751 }
752 
753 /* compare_res - the comparison function for sorting by resident set size */
754 
755 int
756 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
757 {
758 	struct kinfo_proc *p1;
759 	struct kinfo_proc *p2;
760 	int result;
761 	pctcpu lresult;
762 
763 	/* remove one level of indirection */
764 	p1 = *(struct kinfo_proc **) pp1;
765 	p2 = *(struct kinfo_proc **) pp2;
766 
767 	ORDERKEY_RSSIZE
768 	ORDERKEY_MEM
769 	ORDERKEY_PCTCPU
770 	ORDERKEY_CPTICKS
771 	ORDERKEY_STATE
772 	ORDERKEY_PRIO
773 	{}
774 
775 	return (result);
776 }
777 
778 /* compare_pres - the comparison function for sorting by proportional resident set size */
779 
780 int
781 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
782 {
783 	struct kinfo_proc *p1;
784 	struct kinfo_proc *p2;
785 	int result;
786 	pctcpu lresult;
787 
788 	/* remove one level of indirection */
789 	p1 = *(struct kinfo_proc **) pp1;
790 	p2 = *(struct kinfo_proc **) pp2;
791 
792 	ORDERKEY_PRSSIZE
793 	ORDERKEY_RSSIZE
794 	ORDERKEY_MEM
795 	ORDERKEY_PCTCPU
796 	ORDERKEY_CPTICKS
797 	ORDERKEY_STATE
798 	ORDERKEY_PRIO
799 	{}
800 
801 	return (result);
802 }
803 
804 /* compare_time - the comparison function for sorting by total cpu time */
805 
806 int
807 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
808 {
809 	struct kinfo_proc *p1;
810 	struct kinfo_proc *p2;
811 	int result;
812 	pctcpu lresult;
813 
814 	/* remove one level of indirection */
815 	p1 = *(struct kinfo_proc **) pp1;
816 	p2 = *(struct kinfo_proc **) pp2;
817 
818 	ORDERKEY_CPTICKS
819 	ORDERKEY_PCTCPU
820 	ORDERKEY_KTHREADS
821 	ORDERKEY_KTHREADS_PRIO
822 	ORDERKEY_STATE
823 	ORDERKEY_PRIO
824 	ORDERKEY_RSSIZE
825 	ORDERKEY_MEM
826 	{}
827 
828 	return (result);
829 }
830 
831 int
832 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
833 {
834 	struct kinfo_proc *p1;
835 	struct kinfo_proc *p2;
836 	int result;
837 	pctcpu lresult;
838 
839 	/* remove one level of indirection */
840 	p1 = *(struct kinfo_proc **) pp1;
841 	p2 = *(struct kinfo_proc **) pp2;
842 
843 	ORDERKEY_CTIME
844 	ORDERKEY_PCTCPU
845 	ORDERKEY_KTHREADS
846 	ORDERKEY_KTHREADS_PRIO
847 	ORDERKEY_STATE
848 	ORDERKEY_PRIO
849 	ORDERKEY_RSSIZE
850 	ORDERKEY_MEM
851 	{}
852 
853 	return (result);
854 }
855 
856 /* compare_prio - the comparison function for sorting by cpu percentage */
857 
858 int
859 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
860 {
861 	struct kinfo_proc *p1;
862 	struct kinfo_proc *p2;
863 	int result;
864 	pctcpu lresult;
865 
866 	/* remove one level of indirection */
867 	p1 = *(struct kinfo_proc **) pp1;
868 	p2 = *(struct kinfo_proc **) pp2;
869 
870 	ORDERKEY_KTHREADS
871 	ORDERKEY_KTHREADS_PRIO
872 	ORDERKEY_PRIO
873 	ORDERKEY_CPTICKS
874 	ORDERKEY_PCTCPU
875 	ORDERKEY_STATE
876 	ORDERKEY_RSSIZE
877 	ORDERKEY_MEM
878 	{}
879 
880 	return (result);
881 }
882 
883 int
884 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
885 {
886 	struct kinfo_proc *p1;
887 	struct kinfo_proc *p2;
888 	int result;
889 	pctcpu lresult;
890 
891 	/* remove one level of indirection */
892 	p1 = *(struct kinfo_proc **)pp1;
893 	p2 = *(struct kinfo_proc **)pp2;
894 
895 	ORDERKEY_KTHREADS
896 	ORDERKEY_KTHREADS_PRIO
897 	ORDERKEY_CPTICKS
898 	ORDERKEY_PCTCPU
899 	ORDERKEY_STATE
900 	ORDERKEY_RSSIZE
901 	ORDERKEY_MEM
902 	{}
903 
904 	return (result);
905 }
906 
907 /* compare_pid - the comparison function for sorting by process id */
908 
909 int
910 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
911 {
912 	struct kinfo_proc *p1;
913 	struct kinfo_proc *p2;
914 	int result;
915 
916 	/* remove one level of indirection */
917 	p1 = *(struct kinfo_proc **) pp1;
918 	p2 = *(struct kinfo_proc **) pp2;
919 
920 	ORDERKEY_PID
921 	;
922 
923 	return(result);
924 }
925 
926 /*
927  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
928  *		the process does not exist.
929  *		It is EXTREMLY IMPORTANT that this function work correctly.
930  *		If top runs setuid root (as in SVR4), then this function
931  *		is the only thing that stands in the way of a serious
932  *		security problem.  It validates requests for the "kill"
933  *		and "renice" commands.
934  */
935 
936 int
937 proc_owner(int pid)
938 {
939 	int xcnt;
940 	struct kinfo_proc **prefp;
941 	struct kinfo_proc *pp;
942 
943 	prefp = pref;
944 	xcnt = pref_len;
945 	while (--xcnt >= 0) {
946 		pp = *prefp++;
947 		if (PP(pp, pid) == (pid_t) pid) {
948 			return ((int)PP(pp, ruid));
949 		}
950 	}
951 	return (-1);
952 }
953 
954 
955 /*
956  * swapmode is based on a program called swapinfo written
957  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
958  */
959 int
960 swapmode(int *retavail, int *retfree)
961 {
962 	int n;
963 	int pagesize = getpagesize();
964 	struct kvm_swap swapary[1];
965 
966 	*retavail = 0;
967 	*retfree = 0;
968 
969 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
970 
971 	n = kvm_getswapinfo(kd, swapary, 1, 0);
972 	if (n < 0 || swapary[0].ksw_total == 0)
973 		return (0);
974 
975 	*retavail = CONVERT(swapary[0].ksw_total);
976 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
977 
978 	n = (int)((double)swapary[0].ksw_used * 100.0 /
979 	    (double)swapary[0].ksw_total);
980 	return (n);
981 }
982