xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 8accc937)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int smpmode;
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
64 
65 int n_cpus = 0;
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle {
70 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71 	int remaining;		/* number of pointers remaining */
72 };
73 
74 /* declarations for load_avg */
75 #include "loadavg.h"
76 
77 #define PP(pp, field) ((pp)->kp_ ## field)
78 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
79 #define VP(pp, field) ((pp)->kp_vm_ ## field)
80 
81 /* what we consider to be process size: */
82 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
83 
84 /*
85  * These definitions control the format of the per-process area
86  */
87 
88 static char smp_header[] =
89 "  PID %-*.*s NICE  SIZE    RES    STATE CPU  TIME   CTIME    CPU COMMAND";
90 
91 #define smp_Proc_format \
92 	"%5d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
93 
94 static char up_header[] =
95 "  PID %-*.*s NICE  SIZE    RES    STATE    TIME   CTIME    CPU COMMAND";
96 
97 #define up_Proc_format \
98 	"%5d %-*.*s %3d%7s %6s %8.8s%.0d %7s %7s %5.2f%% %.*s"
99 
100 
101 /* process state names for the "STATE" column of the display */
102 /*
103  * the extra nulls in the string "run" are for adding a slash and the
104  * processor number when needed
105  */
106 
107 const char *state_abbrev[] = {
108 	"", "RUN\0\0\0", "STOP", "SLEEP",
109 };
110 
111 
112 static kvm_t *kd;
113 
114 /* values that we stash away in _init and use in later routines */
115 
116 static long lastpid;
117 
118 /* these are for calculating cpu state percentages */
119 
120 static struct kinfo_cputime *cp_time, *cp_old;
121 
122 /* these are for detailing the process states */
123 
124 #define MAXPSTATES	6
125 
126 int process_states[MAXPSTATES];
127 
128 char *procstatenames[] = {
129 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
130 	NULL
131 };
132 
133 /* these are for detailing the cpu states */
134 #define CPU_STATES 5
135 int *cpu_states;
136 char *cpustatenames[CPU_STATES + 1] = {
137 	"user", "nice", "system", "interrupt", "idle", NULL
138 };
139 
140 /* these are for detailing the memory statistics */
141 
142 long memory_stats[7];
143 char *memorynames[] = {
144 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
145 	NULL
146 };
147 
148 long swap_stats[7];
149 char *swapnames[] = {
150 	/* 0           1            2           3            4       5 */
151 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
152 	NULL
153 };
154 
155 
156 /* these are for keeping track of the proc array */
157 
158 static int nproc;
159 static int onproc = -1;
160 static int pref_len;
161 static struct kinfo_proc *pbase;
162 static struct kinfo_proc **pref;
163 
164 /* these are for getting the memory statistics */
165 
166 static int pageshift;		/* log base 2 of the pagesize */
167 
168 /* define pagetok in terms of pageshift */
169 
170 #define pagetok(size) ((size) << pageshift)
171 
172 /* sorting orders. first is default */
173 char *ordernames[] = {
174   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
175 };
176 
177 /* compare routines */
178 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
179 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
180 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
181 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
182 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
183 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
184 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
185 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
186 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
187 
188 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
189 	proc_compare,
190 	compare_size,
191 	compare_res,
192 	compare_time,
193 	compare_prio,
194 	compare_thr,
195 	compare_pid,
196 	compare_ctime,
197 	compare_pres,
198 	NULL
199 };
200 
201 static void
202 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
203     struct kinfo_cputime *old)
204 {
205 	struct kinfo_cputime diffs;
206 	uint64_t total_change, half_total;
207 
208 	/* initialization */
209 	total_change = 0;
210 
211 	diffs.cp_user = new->cp_user - old->cp_user;
212 	diffs.cp_nice = new->cp_nice - old->cp_nice;
213 	diffs.cp_sys = new->cp_sys - old->cp_sys;
214 	diffs.cp_intr = new->cp_intr - old->cp_intr;
215 	diffs.cp_idle = new->cp_idle - old->cp_idle;
216 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
217 	    diffs.cp_intr + diffs.cp_idle;
218 	old->cp_user = new->cp_user;
219 	old->cp_nice = new->cp_nice;
220 	old->cp_sys = new->cp_sys;
221 	old->cp_intr = new->cp_intr;
222 	old->cp_idle = new->cp_idle;
223 
224 	/* avoid divide by zero potential */
225 	if (total_change == 0)
226 		total_change = 1;
227 
228 	/* calculate percentages based on overall change, rounding up */
229 	half_total = total_change >> 1;
230 
231 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
232 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
233 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
234 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
235 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
236 }
237 
238 int
239 machine_init(struct statics *statics)
240 {
241 	int pagesize;
242 	size_t modelen;
243 	struct passwd *pw;
244 	struct timeval boottime;
245 
246 	if (n_cpus < 1) {
247 		if (kinfo_get_cpus(&n_cpus))
248 			err(1, "kinfo_get_cpus failed");
249 	}
250 	/* get boot time */
251 	modelen = sizeof(boottime);
252 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
253 		/* we have no boottime to report */
254 		boottime.tv_sec = -1;
255 	}
256 	modelen = sizeof(smpmode);
257 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
258 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
259 	    modelen != sizeof(smpmode))
260 		smpmode = 0;
261 
262 	while ((pw = getpwent()) != NULL) {
263 		if ((int)strlen(pw->pw_name) > namelength)
264 			namelength = strlen(pw->pw_name);
265 	}
266 	if (namelength < 8)
267 		namelength = 8;
268 	if (smpmode && namelength > 13)
269 		namelength = 13;
270 	else if (namelength > 15)
271 		namelength = 15;
272 
273 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
274 		return -1;
275 
276 	pbase = NULL;
277 	pref = NULL;
278 	nproc = 0;
279 	onproc = -1;
280 	/*
281 	 * get the page size with "getpagesize" and calculate pageshift from
282 	 * it
283 	 */
284 	pagesize = getpagesize();
285 	pageshift = 0;
286 	while (pagesize > 1) {
287 		pageshift++;
288 		pagesize >>= 1;
289 	}
290 
291 	/* we only need the amount of log(2)1024 for our conversion */
292 	pageshift -= LOG1024;
293 
294 	/* fill in the statics information */
295 	statics->procstate_names = procstatenames;
296 	statics->cpustate_names = cpustatenames;
297 	statics->memory_names = memorynames;
298 	statics->boottime = boottime.tv_sec;
299 	statics->swap_names = swapnames;
300 	statics->order_names = ordernames;
301 	/* we need kvm descriptor in order to show full commands */
302 	statics->flags.fullcmds = kd != NULL;
303 
304 	/* all done! */
305 	return (0);
306 }
307 
308 char *
309 format_header(char *uname_field)
310 {
311 	static char Header[128];
312 
313 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
314 	    namelength, namelength, uname_field);
315 
316 	if (screen_width <= 79)
317 		cmdlength = 80;
318 	else
319 		cmdlength = screen_width;
320 
321 	cmdlength = cmdlength - strlen(Header) + 6;
322 
323 	return Header;
324 }
325 
326 static int swappgsin = -1;
327 static int swappgsout = -1;
328 extern struct timeval timeout;
329 
330 void
331 get_system_info(struct system_info *si)
332 {
333 	size_t len;
334 	int cpu;
335 
336 	if (cpu_states == NULL) {
337 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
338 		if (cpu_states == NULL)
339 			err(1, "malloc");
340 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
341 	}
342 	if (cp_time == NULL) {
343 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
344 		if (cp_time == NULL)
345 			err(1, "cp_time");
346 		cp_old = cp_time + n_cpus;
347 		len = n_cpus * sizeof(cp_old[0]);
348 		bzero(cp_time, len);
349 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
350 			err(1, "kern.cputime");
351 	}
352 	len = n_cpus * sizeof(cp_time[0]);
353 	bzero(cp_time, len);
354 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
355 		err(1, "kern.cputime");
356 
357 	getloadavg(si->load_avg, 3);
358 
359 	lastpid = 0;
360 
361 	/* convert cp_time counts to percentages */
362 	for (cpu = 0; cpu < n_cpus; ++cpu) {
363 		cputime_percentages(cpu_states + cpu * CPU_STATES,
364 		    &cp_time[cpu], &cp_old[cpu]);
365 	}
366 
367 	/* sum memory & swap statistics */
368 	{
369 		struct vmmeter vmm;
370 		struct vmstats vms;
371 		size_t vms_size = sizeof(vms);
372 		size_t vmm_size = sizeof(vmm);
373 		static unsigned int swap_delay = 0;
374 		static int swapavail = 0;
375 		static int swapfree = 0;
376 		static long bufspace = 0;
377 
378 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
379 			err(1, "sysctlbyname: vm.vmstats");
380 
381 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
382 			err(1, "sysctlbyname: vm.vmmeter");
383 
384 		if (kinfo_get_vfs_bufspace(&bufspace))
385 			err(1, "kinfo_get_vfs_bufspace");
386 
387 		/* convert memory stats to Kbytes */
388 		memory_stats[0] = pagetok(vms.v_active_count);
389 		memory_stats[1] = pagetok(vms.v_inactive_count);
390 		memory_stats[2] = pagetok(vms.v_wire_count);
391 		memory_stats[3] = pagetok(vms.v_cache_count);
392 		memory_stats[4] = bufspace / 1024;
393 		memory_stats[5] = pagetok(vms.v_free_count);
394 		memory_stats[6] = -1;
395 
396 		/* first interval */
397 		if (swappgsin < 0) {
398 			swap_stats[4] = 0;
399 			swap_stats[5] = 0;
400 		}
401 		/* compute differences between old and new swap statistic */
402 		else {
403 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
404 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
405 		}
406 
407 		swappgsin = vmm.v_swappgsin;
408 		swappgsout = vmm.v_swappgsout;
409 
410 		/* call CPU heavy swapmode() only for changes */
411 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
412 			swap_stats[3] = swapmode(&swapavail, &swapfree);
413 			swap_stats[0] = swapavail;
414 			swap_stats[1] = swapavail - swapfree;
415 			swap_stats[2] = swapfree;
416 		}
417 		swap_delay = 1;
418 		swap_stats[6] = -1;
419 	}
420 
421 	/* set arrays and strings */
422 	si->cpustates = cpu_states;
423 	si->memory = memory_stats;
424 	si->swap = swap_stats;
425 
426 
427 	if (lastpid > 0) {
428 		si->last_pid = lastpid;
429 	} else {
430 		si->last_pid = -1;
431 	}
432 }
433 
434 
435 static struct handle handle;
436 
437 caddr_t
438 get_process_info(struct system_info *si, struct process_select *sel,
439     int compare_index)
440 {
441 	int i;
442 	int total_procs;
443 	int active_procs;
444 	struct kinfo_proc **prefp;
445 	struct kinfo_proc *pp;
446 
447 	/* these are copied out of sel for speed */
448 	int show_idle;
449 	int show_system;
450 	int show_uid;
451 	int show_threads;
452 
453 	show_threads = sel->threads;
454 
455 
456 	pbase = kvm_getprocs(kd,
457 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
458 	if (nproc > onproc)
459 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
460 		    * (onproc = nproc));
461 	if (pref == NULL || pbase == NULL) {
462 		(void)fprintf(stderr, "top: Out of memory.\n");
463 		quit(23);
464 	}
465 	/* get a pointer to the states summary array */
466 	si->procstates = process_states;
467 
468 	/* set up flags which define what we are going to select */
469 	show_idle = sel->idle;
470 	show_system = sel->system;
471 	show_uid = sel->uid != -1;
472 	show_fullcmd = sel->fullcmd;
473 
474 	/* count up process states and get pointers to interesting procs */
475 	total_procs = 0;
476 	active_procs = 0;
477 	memset((char *)process_states, 0, sizeof(process_states));
478 	prefp = pref;
479 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
480 		/*
481 		 * Place pointers to each valid proc structure in pref[].
482 		 * Process slots that are actually in use have a non-zero
483 		 * status field.  Processes with P_SYSTEM set are system
484 		 * processes---these get ignored unless show_sysprocs is set.
485 		 */
486 		if ((show_system && (LP(pp, pid) == -1)) ||
487 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
488 			int pstate = LP(pp, stat);
489 
490 			total_procs++;
491 			if (pstate == LSRUN)
492 				process_states[0]++;
493 			if (pstate >= 0 && pstate < MAXPSTATES)
494 				process_states[pstate]++;
495 			if ((show_system && (LP(pp, pid) == -1)) ||
496 			    (show_idle || (LP(pp, pctcpu) != 0) ||
497 			    (pstate == LSRUN)) &&
498 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
499 				*prefp++ = pp;
500 				active_procs++;
501 			}
502 		}
503 	}
504 
505 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
506 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
507 
508 	/* remember active and total counts */
509 	si->p_total = total_procs;
510 	si->p_active = pref_len = active_procs;
511 
512 	/* pass back a handle */
513 	handle.next_proc = pref;
514 	handle.remaining = active_procs;
515 	return ((caddr_t) & handle);
516 }
517 
518 char fmt[MAX_COLS];		/* static area where result is built */
519 
520 char *
521 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
522 {
523 	struct kinfo_proc *pp;
524 	long cputime;
525 	long ccputime;
526 	double pct;
527 	struct handle *hp;
528 	char status[16];
529 	int state;
530 	int xnice;
531 	char **comm_full;
532 	char *comm;
533 	char cputime_fmt[10], ccputime_fmt[10];
534 
535 	/* find and remember the next proc structure */
536 	hp = (struct handle *)xhandle;
537 	pp = *(hp->next_proc++);
538 	hp->remaining--;
539 
540 	/* get the process's command name */
541 	if (show_fullcmd) {
542 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
543 			return (fmt);
544 		}
545 	}
546 	else {
547 		comm = PP(pp, comm);
548 	}
549 
550 	/*
551 	 * Convert the process's runtime from microseconds to seconds.  This
552 	 * time includes the interrupt time to be in compliance with ps output.
553 	*/
554 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
555 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
556 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
557 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
558 
559 	/* calculate the base for cpu percentages */
560 	pct = pctdouble(LP(pp, pctcpu));
561 
562 	/* generate "STATE" field */
563 	switch (state = LP(pp, stat)) {
564 	case LSRUN:
565 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
566 			sprintf(status, "CPU%d", LP(pp, cpuid));
567 		else
568 			strcpy(status, "RUN");
569 		break;
570 	case LSSLEEP:
571 		if (LP(pp, wmesg) != NULL) {
572 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
573 			break;
574 		}
575 		/* fall through */
576 	default:
577 
578 		if (state >= 0 &&
579 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
580 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
581 		else
582 			sprintf(status, "?%5d", state);
583 		break;
584 	}
585 
586 	if (PP(pp, stat) == SZOMB)
587 		strcpy(status, "ZOMB");
588 
589 	/*
590 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
591 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
592 	 * 0 - 31 -> nice value -53 -
593 	 */
594 	switch (LP(pp, rtprio.type)) {
595 	case RTP_PRIO_REALTIME:
596 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
597 		break;
598 	case RTP_PRIO_IDLE:
599 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
600 		break;
601 	case RTP_PRIO_THREAD:
602 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
603 		break;
604 	default:
605 		xnice = PP(pp, nice);
606 		break;
607 	}
608 
609 	/* format this entry */
610 	snprintf(fmt, sizeof(fmt),
611 	    smpmode ? smp_Proc_format : up_Proc_format,
612 	    (int)PP(pp, pid),
613 	    namelength, namelength,
614 	    get_userid(PP(pp, ruid)),
615 	    (int)xnice,
616 	    format_k(PROCSIZE(pp)),
617 	    format_k(pagetok(VP(pp, rssize))),
618 	    status,
619 	    (int)(smpmode ? LP(pp, cpuid) : 0),
620 	    cputime_fmt,
621 	    ccputime_fmt,
622 	    100.0 * pct,
623 	    cmdlength,
624 	    show_fullcmd ? *comm_full : comm);
625 
626 	/* return the result */
627 	return (fmt);
628 }
629 
630 /* comparison routines for qsort */
631 
632 /*
633  *  proc_compare - comparison function for "qsort"
634  *	Compares the resource consumption of two processes using five
635  *  	distinct keys.  The keys (in descending order of importance) are:
636  *  	percent cpu, cpu ticks, state, resident set size, total virtual
637  *  	memory usage.  The process states are ordered as follows (from least
638  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
639  *  	array declaration below maps a process state index into a number
640  *  	that reflects this ordering.
641  */
642 
643 static unsigned char sorted_state[] =
644 {
645 	0,			/* not used		 */
646 	3,			/* sleep		 */
647 	1,			/* ABANDONED (WAIT)	 */
648 	6,			/* run			 */
649 	5,			/* start		 */
650 	2,			/* zombie		 */
651 	4			/* stop			 */
652 };
653 
654 
655 #define ORDERKEY_PCTCPU \
656   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
657      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
658 
659 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
660 
661 #define ORDERKEY_CPTICKS \
662   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
663 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
664 
665 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
666   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
667 
668 #define ORDERKEY_CTIME \
669    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
670 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
671 
672 #define ORDERKEY_STATE \
673   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
674                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
675 
676 #define ORDERKEY_PRIO \
677   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
678 
679 #define ORDERKEY_KTHREADS \
680   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
681 
682 #define ORDERKEY_KTHREADS_PRIO \
683   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
684 
685 #define ORDERKEY_RSSIZE \
686   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
687 
688 #define ORDERKEY_MEM \
689   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
690 
691 #define ORDERKEY_PID \
692   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
693 
694 #define ORDERKEY_PRSSIZE \
695   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
696 
697 /* compare_cpu - the comparison function for sorting by cpu percentage */
698 
699 int
700 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
701 {
702 	struct kinfo_proc *p1;
703 	struct kinfo_proc *p2;
704 	int result;
705 	pctcpu lresult;
706 
707 	/* remove one level of indirection */
708 	p1 = *(struct kinfo_proc **) pp1;
709 	p2 = *(struct kinfo_proc **) pp2;
710 
711 	ORDERKEY_PCTCPU
712 	ORDERKEY_CPTICKS
713 	ORDERKEY_STATE
714 	ORDERKEY_PRIO
715 	ORDERKEY_RSSIZE
716 	ORDERKEY_MEM
717 	{}
718 
719 	return (result);
720 }
721 
722 /* compare_size - the comparison function for sorting by total memory usage */
723 
724 int
725 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
726 {
727 	struct kinfo_proc *p1;
728 	struct kinfo_proc *p2;
729 	int result;
730 	pctcpu lresult;
731 
732 	/* remove one level of indirection */
733 	p1 = *(struct kinfo_proc **) pp1;
734 	p2 = *(struct kinfo_proc **) pp2;
735 
736 	ORDERKEY_MEM
737 	ORDERKEY_RSSIZE
738 	ORDERKEY_PCTCPU
739 	ORDERKEY_CPTICKS
740 	ORDERKEY_STATE
741 	ORDERKEY_PRIO
742 	{}
743 
744 	return (result);
745 }
746 
747 /* compare_res - the comparison function for sorting by resident set size */
748 
749 int
750 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
751 {
752 	struct kinfo_proc *p1;
753 	struct kinfo_proc *p2;
754 	int result;
755 	pctcpu lresult;
756 
757 	/* remove one level of indirection */
758 	p1 = *(struct kinfo_proc **) pp1;
759 	p2 = *(struct kinfo_proc **) pp2;
760 
761 	ORDERKEY_RSSIZE
762 	ORDERKEY_MEM
763 	ORDERKEY_PCTCPU
764 	ORDERKEY_CPTICKS
765 	ORDERKEY_STATE
766 	ORDERKEY_PRIO
767 	{}
768 
769 	return (result);
770 }
771 
772 /* compare_pres - the comparison function for sorting by proportional resident set size */
773 
774 int
775 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
776 {
777 	struct kinfo_proc *p1;
778 	struct kinfo_proc *p2;
779 	int result;
780 	pctcpu lresult;
781 
782 	/* remove one level of indirection */
783 	p1 = *(struct kinfo_proc **) pp1;
784 	p2 = *(struct kinfo_proc **) pp2;
785 
786 	ORDERKEY_PRSSIZE
787 	ORDERKEY_RSSIZE
788 	ORDERKEY_MEM
789 	ORDERKEY_PCTCPU
790 	ORDERKEY_CPTICKS
791 	ORDERKEY_STATE
792 	ORDERKEY_PRIO
793 	{}
794 
795 	return (result);
796 }
797 
798 /* compare_time - the comparison function for sorting by total cpu time */
799 
800 int
801 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
802 {
803 	struct kinfo_proc *p1;
804 	struct kinfo_proc *p2;
805 	int result;
806 	pctcpu lresult;
807 
808 	/* remove one level of indirection */
809 	p1 = *(struct kinfo_proc **) pp1;
810 	p2 = *(struct kinfo_proc **) pp2;
811 
812 	ORDERKEY_CPTICKS
813 	ORDERKEY_PCTCPU
814 	ORDERKEY_KTHREADS
815 	ORDERKEY_KTHREADS_PRIO
816 	ORDERKEY_STATE
817 	ORDERKEY_PRIO
818 	ORDERKEY_RSSIZE
819 	ORDERKEY_MEM
820 	{}
821 
822 	return (result);
823 }
824 
825 int
826 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
827 {
828 	struct kinfo_proc *p1;
829 	struct kinfo_proc *p2;
830 	int result;
831 	pctcpu lresult;
832 
833 	/* remove one level of indirection */
834 	p1 = *(struct kinfo_proc **) pp1;
835 	p2 = *(struct kinfo_proc **) pp2;
836 
837 	ORDERKEY_CTIME
838 	ORDERKEY_PCTCPU
839 	ORDERKEY_KTHREADS
840 	ORDERKEY_KTHREADS_PRIO
841 	ORDERKEY_STATE
842 	ORDERKEY_PRIO
843 	ORDERKEY_RSSIZE
844 	ORDERKEY_MEM
845 	{}
846 
847 	return (result);
848 }
849 
850 /* compare_prio - the comparison function for sorting by cpu percentage */
851 
852 int
853 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
854 {
855 	struct kinfo_proc *p1;
856 	struct kinfo_proc *p2;
857 	int result;
858 	pctcpu lresult;
859 
860 	/* remove one level of indirection */
861 	p1 = *(struct kinfo_proc **) pp1;
862 	p2 = *(struct kinfo_proc **) pp2;
863 
864 	ORDERKEY_KTHREADS
865 	ORDERKEY_KTHREADS_PRIO
866 	ORDERKEY_PRIO
867 	ORDERKEY_CPTICKS
868 	ORDERKEY_PCTCPU
869 	ORDERKEY_STATE
870 	ORDERKEY_RSSIZE
871 	ORDERKEY_MEM
872 	{}
873 
874 	return (result);
875 }
876 
877 int
878 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
879 {
880 	struct kinfo_proc *p1;
881 	struct kinfo_proc *p2;
882 	int result;
883 	pctcpu lresult;
884 
885 	/* remove one level of indirection */
886 	p1 = *(struct kinfo_proc **)pp1;
887 	p2 = *(struct kinfo_proc **)pp2;
888 
889 	ORDERKEY_KTHREADS
890 	ORDERKEY_KTHREADS_PRIO
891 	ORDERKEY_CPTICKS
892 	ORDERKEY_PCTCPU
893 	ORDERKEY_STATE
894 	ORDERKEY_RSSIZE
895 	ORDERKEY_MEM
896 	{}
897 
898 	return (result);
899 }
900 
901 /* compare_pid - the comparison function for sorting by process id */
902 
903 int
904 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
905 {
906 	struct kinfo_proc *p1;
907 	struct kinfo_proc *p2;
908 	int result;
909 
910 	/* remove one level of indirection */
911 	p1 = *(struct kinfo_proc **) pp1;
912 	p2 = *(struct kinfo_proc **) pp2;
913 
914 	ORDERKEY_PID
915 	;
916 
917 	return(result);
918 }
919 
920 /*
921  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
922  *		the process does not exist.
923  *		It is EXTREMLY IMPORTANT that this function work correctly.
924  *		If top runs setuid root (as in SVR4), then this function
925  *		is the only thing that stands in the way of a serious
926  *		security problem.  It validates requests for the "kill"
927  *		and "renice" commands.
928  */
929 
930 int
931 proc_owner(int pid)
932 {
933 	int xcnt;
934 	struct kinfo_proc **prefp;
935 	struct kinfo_proc *pp;
936 
937 	prefp = pref;
938 	xcnt = pref_len;
939 	while (--xcnt >= 0) {
940 		pp = *prefp++;
941 		if (PP(pp, pid) == (pid_t) pid) {
942 			return ((int)PP(pp, ruid));
943 		}
944 	}
945 	return (-1);
946 }
947 
948 
949 /*
950  * swapmode is based on a program called swapinfo written
951  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
952  */
953 int
954 swapmode(int *retavail, int *retfree)
955 {
956 	int n;
957 	int pagesize = getpagesize();
958 	struct kvm_swap swapary[1];
959 
960 	*retavail = 0;
961 	*retfree = 0;
962 
963 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
964 
965 	n = kvm_getswapinfo(kd, swapary, 1, 0);
966 	if (n < 0 || swapary[0].ksw_total == 0)
967 		return (0);
968 
969 	*retavail = CONVERT(swapary[0].ksw_total);
970 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
971 
972 	n = (int)((double)swapary[0].ksw_used * 100.0 /
973 	    (double)swapary[0].ksw_total);
974 	return (n);
975 }
976