xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision 92fc8b5c)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
24  */
25 
26 #include <sys/user.h>
27 #include <sys/types.h>
28 #include <sys/time.h>
29 #include <sys/signal.h>
30 #include <sys/param.h>
31 
32 #include "os.h"
33 #include <err.h>
34 #include <kvm.h>
35 #include <stdio.h>
36 #include <unistd.h>
37 #include <math.h>
38 #include <pwd.h>
39 #include <sys/errno.h>
40 #include <sys/sysctl.h>
41 #include <sys/file.h>
42 #include <sys/vmmeter.h>
43 #include <sys/resource.h>
44 #include <sys/rtprio.h>
45 
46 /* Swap */
47 #include <stdlib.h>
48 #include <stdio.h>
49 #include <sys/conf.h>
50 
51 #include <osreldate.h>		/* for changes in kernel structures */
52 
53 #include <sys/kinfo.h>
54 #include <kinfo.h>
55 #include "top.h"
56 #include "display.h"
57 #include "machine.h"
58 #include "screen.h"
59 #include "utils.h"
60 
61 int swapmode(int *retavail, int *retfree);
62 static int smpmode;
63 static int namelength;
64 static int cmdlength;
65 static int show_fullcmd;
66 
67 int n_cpus = 0;
68 
69 /*
70  * needs to be a global symbol, so wrapper can be modified accordingly.
71  */
72 static int show_threads = 0;
73 
74 /* get_process_info passes back a handle.  This is what it looks like: */
75 
76 struct handle {
77 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
78 	int remaining;		/* number of pointers remaining */
79 };
80 
81 /* declarations for load_avg */
82 #include "loadavg.h"
83 
84 #define PP(pp, field) ((pp)->kp_ ## field)
85 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
86 #define VP(pp, field) ((pp)->kp_vm_ ## field)
87 
88 /* define what weighted cpu is.  */
89 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
90 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
91 
92 /* what we consider to be process size: */
93 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
94 
95 /*
96  * These definitions control the format of the per-process area
97  */
98 
99 static char smp_header[] =
100 "  PID %-*.*s NICE  SIZE   PRES   STATE CPU  TIME   CTIME    CPU COMMAND";
101 
102 #define smp_Proc_format \
103 	"%5d %-*.*s %3d%7s %6s %7.7s %2d %6s %7s %5.2f%% %.*s"
104 
105 static char up_header[] =
106 "  PID %-*.*s NICE  SIZE   PRES   STATE    TIME   CTIME    CPU COMMAND";
107 
108 #define up_Proc_format \
109 	"%5d %-*.*s %3d%7s %6s %7.7s%.0d %7s %7s %5.2f%% %.*s"
110 
111 
112 /* process state names for the "STATE" column of the display */
113 /*
114  * the extra nulls in the string "run" are for adding a slash and the
115  * processor number when needed
116  */
117 
118 const char *state_abbrev[] = {
119 	"", "RUN\0\0\0", "STOP", "SLEEP",
120 };
121 
122 
123 static kvm_t *kd;
124 
125 /* values that we stash away in _init and use in later routines */
126 
127 static double logcpu;
128 
129 static long lastpid;
130 static int ccpu;
131 
132 /* these are for calculating cpu state percentages */
133 
134 static struct kinfo_cputime *cp_time, *cp_old;
135 
136 /* these are for detailing the process states */
137 
138 int process_states[6];
139 char *procstatenames[] = {
140 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
141 	NULL
142 };
143 
144 /* these are for detailing the cpu states */
145 #define CPU_STATES 5
146 int *cpu_states;
147 char *cpustatenames[CPU_STATES + 1] = {
148 	"user", "nice", "system", "interrupt", "idle", NULL
149 };
150 
151 /* these are for detailing the memory statistics */
152 
153 long memory_stats[7];
154 char *memorynames[] = {
155 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
156 	NULL
157 };
158 
159 long swap_stats[7];
160 char *swapnames[] = {
161 	/* 0           1            2           3            4       5 */
162 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
163 	NULL
164 };
165 
166 
167 /* these are for keeping track of the proc array */
168 
169 static int nproc;
170 static int onproc = -1;
171 static int pref_len;
172 static struct kinfo_proc *pbase;
173 static struct kinfo_proc **pref;
174 
175 /* these are for getting the memory statistics */
176 
177 static int pageshift;		/* log base 2 of the pagesize */
178 
179 /* define pagetok in terms of pageshift */
180 
181 #define pagetok(size) ((size) << pageshift)
182 
183 /* sorting orders. first is default */
184 char *ordernames[] = {
185   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
186 };
187 
188 /* compare routines */
189 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
190 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
191 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
192 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
195 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
198 
199 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
200 	proc_compare,
201 	compare_size,
202 	compare_res,
203 	compare_time,
204 	compare_prio,
205 	compare_thr,
206 	compare_pid,
207 	compare_ctime,
208 	compare_pres,
209 	NULL
210 };
211 
212 static void
213 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
214     struct kinfo_cputime *old)
215 {
216 	struct kinfo_cputime diffs;
217 	uint64_t total_change, half_total;
218 
219 	/* initialization */
220 	total_change = 0;
221 
222 	diffs.cp_user = new->cp_user - old->cp_user;
223 	diffs.cp_nice = new->cp_nice - old->cp_nice;
224 	diffs.cp_sys = new->cp_sys - old->cp_sys;
225 	diffs.cp_intr = new->cp_intr - old->cp_intr;
226 	diffs.cp_idle = new->cp_idle - old->cp_idle;
227 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
228 	    diffs.cp_intr + diffs.cp_idle;
229 	old->cp_user = new->cp_user;
230 	old->cp_nice = new->cp_nice;
231 	old->cp_sys = new->cp_sys;
232 	old->cp_intr = new->cp_intr;
233 	old->cp_idle = new->cp_idle;
234 
235 	/* avoid divide by zero potential */
236 	if (total_change == 0)
237 		total_change = 1;
238 
239 	/* calculate percentages based on overall change, rounding up */
240 	half_total = total_change >> 1;
241 
242 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
243 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
244 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
245 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
246 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
247 }
248 
249 int
250 machine_init(struct statics *statics)
251 {
252 	int pagesize;
253 	size_t modelen;
254 	struct passwd *pw;
255 	struct timeval boottime;
256 
257 	if (n_cpus < 1) {
258 		if (kinfo_get_cpus(&n_cpus))
259 			err(1, "kinfo_get_cpus failed");
260 	}
261 	/* get boot time */
262 	modelen = sizeof(boottime);
263 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
264 		/* we have no boottime to report */
265 		boottime.tv_sec = -1;
266 	}
267 	modelen = sizeof(smpmode);
268 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
269 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
270 	    modelen != sizeof(smpmode))
271 		smpmode = 0;
272 
273 	while ((pw = getpwent()) != NULL) {
274 		if ((int)strlen(pw->pw_name) > namelength)
275 			namelength = strlen(pw->pw_name);
276 	}
277 	if (namelength < 8)
278 		namelength = 8;
279 	if (smpmode && namelength > 13)
280 		namelength = 13;
281 	else if (namelength > 15)
282 		namelength = 15;
283 
284 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
285 		return -1;
286 
287 	if (kinfo_get_sched_ccpu(&ccpu)) {
288 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
289 		return (-1);
290 	}
291 	/* this is used in calculating WCPU -- calculate it ahead of time */
292 	logcpu = log(loaddouble(ccpu));
293 
294 	pbase = NULL;
295 	pref = NULL;
296 	nproc = 0;
297 	onproc = -1;
298 	/*
299 	 * get the page size with "getpagesize" and calculate pageshift from
300 	 * it
301 	 */
302 	pagesize = getpagesize();
303 	pageshift = 0;
304 	while (pagesize > 1) {
305 		pageshift++;
306 		pagesize >>= 1;
307 	}
308 
309 	/* we only need the amount of log(2)1024 for our conversion */
310 	pageshift -= LOG1024;
311 
312 	/* fill in the statics information */
313 	statics->procstate_names = procstatenames;
314 	statics->cpustate_names = cpustatenames;
315 	statics->memory_names = memorynames;
316 	statics->boottime = boottime.tv_sec;
317 	statics->swap_names = swapnames;
318 	statics->order_names = ordernames;
319 	/* we need kvm descriptor in order to show full commands */
320 	statics->flags.fullcmds = kd != NULL;
321 
322 	/* all done! */
323 	return (0);
324 }
325 
326 char *
327 format_header(char *uname_field)
328 {
329 	static char Header[128];
330 
331 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
332 	    namelength, namelength, uname_field);
333 
334 	if (screen_width <= 79)
335 		cmdlength = 80;
336 	else
337 		cmdlength = screen_width;
338 
339 	cmdlength = cmdlength - strlen(Header) + 6;
340 
341 	return Header;
342 }
343 
344 static int swappgsin = -1;
345 static int swappgsout = -1;
346 extern struct timeval timeout;
347 
348 void
349 get_system_info(struct system_info *si)
350 {
351 	size_t len;
352 	int cpu;
353 
354 	if (cpu_states == NULL) {
355 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
356 		if (cpu_states == NULL)
357 			err(1, "malloc");
358 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
359 	}
360 	if (cp_time == NULL) {
361 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
362 		if (cp_time == NULL)
363 			err(1, "cp_time");
364 		cp_old = cp_time + n_cpus;
365 		len = n_cpus * sizeof(cp_old[0]);
366 		bzero(cp_time, len);
367 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
368 			err(1, "kern.cputime");
369 	}
370 	len = n_cpus * sizeof(cp_time[0]);
371 	bzero(cp_time, len);
372 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
373 		err(1, "kern.cputime");
374 
375 	getloadavg(si->load_avg, 3);
376 
377 	lastpid = 0;
378 
379 	/* convert cp_time counts to percentages */
380 	for (cpu = 0; cpu < n_cpus; ++cpu) {
381 		cputime_percentages(cpu_states + cpu * CPU_STATES,
382 		    &cp_time[cpu], &cp_old[cpu]);
383 	}
384 
385 	/* sum memory & swap statistics */
386 	{
387 		struct vmmeter vmm;
388 		struct vmstats vms;
389 		size_t vms_size = sizeof(vms);
390 		size_t vmm_size = sizeof(vmm);
391 		static unsigned int swap_delay = 0;
392 		static int swapavail = 0;
393 		static int swapfree = 0;
394 		static int bufspace = 0;
395 
396 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
397 			err(1, "sysctlbyname: vm.vmstats");
398 
399 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
400 			err(1, "sysctlbyname: vm.vmmeter");
401 
402 		if (kinfo_get_vfs_bufspace(&bufspace))
403 			err(1, "kinfo_get_vfs_bufspace");
404 
405 		/* convert memory stats to Kbytes */
406 		memory_stats[0] = pagetok(vms.v_active_count);
407 		memory_stats[1] = pagetok(vms.v_inactive_count);
408 		memory_stats[2] = pagetok(vms.v_wire_count);
409 		memory_stats[3] = pagetok(vms.v_cache_count);
410 		memory_stats[4] = bufspace / 1024;
411 		memory_stats[5] = pagetok(vms.v_free_count);
412 		memory_stats[6] = -1;
413 
414 		/* first interval */
415 		if (swappgsin < 0) {
416 			swap_stats[4] = 0;
417 			swap_stats[5] = 0;
418 		}
419 		/* compute differences between old and new swap statistic */
420 		else {
421 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
422 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
423 		}
424 
425 		swappgsin = vmm.v_swappgsin;
426 		swappgsout = vmm.v_swappgsout;
427 
428 		/* call CPU heavy swapmode() only for changes */
429 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
430 			swap_stats[3] = swapmode(&swapavail, &swapfree);
431 			swap_stats[0] = swapavail;
432 			swap_stats[1] = swapavail - swapfree;
433 			swap_stats[2] = swapfree;
434 		}
435 		swap_delay = 1;
436 		swap_stats[6] = -1;
437 	}
438 
439 	/* set arrays and strings */
440 	si->cpustates = cpu_states;
441 	si->memory = memory_stats;
442 	si->swap = swap_stats;
443 
444 
445 	if (lastpid > 0) {
446 		si->last_pid = lastpid;
447 	} else {
448 		si->last_pid = -1;
449 	}
450 }
451 
452 
453 static struct handle handle;
454 
455 caddr_t
456 get_process_info(struct system_info *si, struct process_select *sel,
457     int compare_index)
458 {
459 	int i;
460 	int total_procs;
461 	int active_procs;
462 	struct kinfo_proc **prefp;
463 	struct kinfo_proc *pp;
464 
465 	/* these are copied out of sel for speed */
466 	int show_idle;
467 	int show_system;
468 	int show_uid;
469 
470 
471 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
472 	if (nproc > onproc)
473 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
474 		    * (onproc = nproc));
475 	if (pref == NULL || pbase == NULL) {
476 		(void)fprintf(stderr, "top: Out of memory.\n");
477 		quit(23);
478 	}
479 	/* get a pointer to the states summary array */
480 	si->procstates = process_states;
481 
482 	/* set up flags which define what we are going to select */
483 	show_idle = sel->idle;
484 	show_system = sel->system;
485 	show_uid = sel->uid != -1;
486 	show_fullcmd = sel->fullcmd;
487 
488 	/* count up process states and get pointers to interesting procs */
489 	total_procs = 0;
490 	active_procs = 0;
491 	memset((char *)process_states, 0, sizeof(process_states));
492 	prefp = pref;
493 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
494 		/*
495 		 * Place pointers to each valid proc structure in pref[].
496 		 * Process slots that are actually in use have a non-zero
497 		 * status field.  Processes with P_SYSTEM set are system
498 		 * processes---these get ignored unless show_sysprocs is set.
499 		 */
500 		if ((show_threads && (LP(pp, pid) == -1)) ||
501 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
502 			total_procs++;
503 			if (LP(pp, stat) == LSRUN)
504 				process_states[0]++;
505 			process_states[PP(pp, stat)]++;
506 			if ((show_threads && (LP(pp, pid) == -1)) ||
507 			    (show_idle || (LP(pp, pctcpu) != 0) ||
508 			    (LP(pp, stat) == LSRUN)) &&
509 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
510 				*prefp++ = pp;
511 				active_procs++;
512 			}
513 		}
514 	}
515 
516 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
517 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
518 
519 	/* remember active and total counts */
520 	si->p_total = total_procs;
521 	si->p_active = pref_len = active_procs;
522 
523 	/* pass back a handle */
524 	handle.next_proc = pref;
525 	handle.remaining = active_procs;
526 	return ((caddr_t) & handle);
527 }
528 
529 char fmt[MAX_COLS];		/* static area where result is built */
530 
531 char *
532 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
533 {
534 	struct kinfo_proc *pp;
535 	long cputime;
536 	long ccputime;
537 	double pct;
538 	struct handle *hp;
539 	char status[16];
540 	int state;
541 	int xnice;
542 	char **comm_full;
543 	char *comm;
544 	char cputime_fmt[10], ccputime_fmt[10];
545 
546 	/* find and remember the next proc structure */
547 	hp = (struct handle *)xhandle;
548 	pp = *(hp->next_proc++);
549 	hp->remaining--;
550 
551 	/* get the process's command name */
552 	if (show_fullcmd) {
553 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
554 			return (fmt);
555 		}
556 	}
557 	else {
558 		comm = PP(pp, comm);
559 	}
560 
561 	/*
562 	 * Convert the process's runtime from microseconds to seconds.  This
563 	 * time includes the interrupt time to be in compliance with ps output.
564 	*/
565 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
566 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
567 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
568 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
569 
570 	/* calculate the base for cpu percentages */
571 	pct = pctdouble(LP(pp, pctcpu));
572 
573 	/* generate "STATE" field */
574 	switch (state = LP(pp, stat)) {
575 	case LSRUN:
576 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
577 			sprintf(status, "CPU%d", LP(pp, cpuid));
578 		else
579 			strcpy(status, "RUN");
580 		break;
581 	case LSSLEEP:
582 		if (LP(pp, wmesg) != NULL) {
583 			sprintf(status, "%.6s", LP(pp, wmesg));
584 			break;
585 		}
586 		/* fall through */
587 	default:
588 
589 		if (state >= 0 &&
590 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
591 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
592 		else
593 			sprintf(status, "?%5d", state);
594 		break;
595 	}
596 
597 	if (PP(pp, stat) == SZOMB)
598 		strcpy(status, "ZOMB");
599 
600 	/*
601 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
602 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
603 	 * 0 - 31 -> nice value -53 -
604 	 */
605 	switch (LP(pp, rtprio.type)) {
606 	case RTP_PRIO_REALTIME:
607 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
608 		break;
609 	case RTP_PRIO_IDLE:
610 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
611 		break;
612 	case RTP_PRIO_THREAD:
613 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
614 		break;
615 	default:
616 		xnice = PP(pp, nice);
617 		break;
618 	}
619 
620 	/* format this entry */
621 	snprintf(fmt, sizeof(fmt),
622 	    smpmode ? smp_Proc_format : up_Proc_format,
623 	    (int)PP(pp, pid),
624 	    namelength, namelength,
625 	    get_userid(PP(pp, ruid)),
626 	    (int)xnice,
627 	    format_k(PROCSIZE(pp)),
628 	    format_k(pagetok(VP(pp, prssize))),
629 	    status,
630 	    (int)(smpmode ? LP(pp, cpuid) : 0),
631 	    cputime_fmt,
632 	    ccputime_fmt,
633 	    100.0 * pct,
634 	    cmdlength,
635 	    show_fullcmd ? *comm_full : comm);
636 
637 	/* return the result */
638 	return (fmt);
639 }
640 
641 /* comparison routines for qsort */
642 
643 /*
644  *  proc_compare - comparison function for "qsort"
645  *	Compares the resource consumption of two processes using five
646  *  	distinct keys.  The keys (in descending order of importance) are:
647  *  	percent cpu, cpu ticks, state, resident set size, total virtual
648  *  	memory usage.  The process states are ordered as follows (from least
649  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
650  *  	array declaration below maps a process state index into a number
651  *  	that reflects this ordering.
652  */
653 
654 static unsigned char sorted_state[] =
655 {
656 	0,			/* not used		 */
657 	3,			/* sleep		 */
658 	1,			/* ABANDONED (WAIT)	 */
659 	6,			/* run			 */
660 	5,			/* start		 */
661 	2,			/* zombie		 */
662 	4			/* stop			 */
663 };
664 
665 
666 #define ORDERKEY_PCTCPU \
667   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
668      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
669 
670 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
671 
672 #define ORDERKEY_CPTICKS \
673   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
674 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
675 
676 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
677   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
678 
679 #define ORDERKEY_CTIME \
680    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
681 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
682 
683 #define ORDERKEY_STATE \
684   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
685                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
686 
687 #define ORDERKEY_PRIO \
688   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
689 
690 #define ORDERKEY_KTHREADS \
691   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
692 
693 #define ORDERKEY_KTHREADS_PRIO \
694   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
695 
696 #define ORDERKEY_RSSIZE \
697   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
698 
699 #define ORDERKEY_MEM \
700   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
701 
702 #define ORDERKEY_PID \
703   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
704 
705 #define ORDERKEY_PRSSIZE \
706   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
707 
708 /* compare_cpu - the comparison function for sorting by cpu percentage */
709 
710 int
711 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
712 {
713 	struct kinfo_proc *p1;
714 	struct kinfo_proc *p2;
715 	int result;
716 	pctcpu lresult;
717 
718 	/* remove one level of indirection */
719 	p1 = *(struct kinfo_proc **) pp1;
720 	p2 = *(struct kinfo_proc **) pp2;
721 
722 	ORDERKEY_PCTCPU
723 	ORDERKEY_CPTICKS
724 	ORDERKEY_STATE
725 	ORDERKEY_PRIO
726 	ORDERKEY_RSSIZE
727 	ORDERKEY_MEM
728 	{}
729 
730 	return (result);
731 }
732 
733 /* compare_size - the comparison function for sorting by total memory usage */
734 
735 int
736 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
737 {
738 	struct kinfo_proc *p1;
739 	struct kinfo_proc *p2;
740 	int result;
741 	pctcpu lresult;
742 
743 	/* remove one level of indirection */
744 	p1 = *(struct kinfo_proc **) pp1;
745 	p2 = *(struct kinfo_proc **) pp2;
746 
747 	ORDERKEY_MEM
748 	ORDERKEY_RSSIZE
749 	ORDERKEY_PCTCPU
750 	ORDERKEY_CPTICKS
751 	ORDERKEY_STATE
752 	ORDERKEY_PRIO
753 	{}
754 
755 	return (result);
756 }
757 
758 /* compare_res - the comparison function for sorting by resident set size */
759 
760 int
761 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
762 {
763 	struct kinfo_proc *p1;
764 	struct kinfo_proc *p2;
765 	int result;
766 	pctcpu lresult;
767 
768 	/* remove one level of indirection */
769 	p1 = *(struct kinfo_proc **) pp1;
770 	p2 = *(struct kinfo_proc **) pp2;
771 
772 	ORDERKEY_RSSIZE
773 	ORDERKEY_MEM
774 	ORDERKEY_PCTCPU
775 	ORDERKEY_CPTICKS
776 	ORDERKEY_STATE
777 	ORDERKEY_PRIO
778 	{}
779 
780 	return (result);
781 }
782 
783 /* compare_pres - the comparison function for sorting by proportional resident set size */
784 
785 int
786 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
787 {
788 	struct kinfo_proc *p1;
789 	struct kinfo_proc *p2;
790 	int result;
791 	pctcpu lresult;
792 
793 	/* remove one level of indirection */
794 	p1 = *(struct kinfo_proc **) pp1;
795 	p2 = *(struct kinfo_proc **) pp2;
796 
797 	ORDERKEY_PRSSIZE
798 	ORDERKEY_RSSIZE
799 	ORDERKEY_MEM
800 	ORDERKEY_PCTCPU
801 	ORDERKEY_CPTICKS
802 	ORDERKEY_STATE
803 	ORDERKEY_PRIO
804 	{}
805 
806 	return (result);
807 }
808 
809 /* compare_time - the comparison function for sorting by total cpu time */
810 
811 int
812 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
813 {
814 	struct kinfo_proc *p1;
815 	struct kinfo_proc *p2;
816 	int result;
817 	pctcpu lresult;
818 
819 	/* remove one level of indirection */
820 	p1 = *(struct kinfo_proc **) pp1;
821 	p2 = *(struct kinfo_proc **) pp2;
822 
823 	ORDERKEY_CPTICKS
824 	ORDERKEY_PCTCPU
825 	ORDERKEY_KTHREADS
826 	ORDERKEY_KTHREADS_PRIO
827 	ORDERKEY_STATE
828 	ORDERKEY_PRIO
829 	ORDERKEY_RSSIZE
830 	ORDERKEY_MEM
831 	{}
832 
833 	return (result);
834 }
835 
836 int
837 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
838 {
839 	struct kinfo_proc *p1;
840 	struct kinfo_proc *p2;
841 	int result;
842 	pctcpu lresult;
843 
844 	/* remove one level of indirection */
845 	p1 = *(struct kinfo_proc **) pp1;
846 	p2 = *(struct kinfo_proc **) pp2;
847 
848 	ORDERKEY_CTIME
849 	ORDERKEY_PCTCPU
850 	ORDERKEY_KTHREADS
851 	ORDERKEY_KTHREADS_PRIO
852 	ORDERKEY_STATE
853 	ORDERKEY_PRIO
854 	ORDERKEY_RSSIZE
855 	ORDERKEY_MEM
856 	{}
857 
858 	return (result);
859 }
860 
861 /* compare_prio - the comparison function for sorting by cpu percentage */
862 
863 int
864 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
865 {
866 	struct kinfo_proc *p1;
867 	struct kinfo_proc *p2;
868 	int result;
869 	pctcpu lresult;
870 
871 	/* remove one level of indirection */
872 	p1 = *(struct kinfo_proc **) pp1;
873 	p2 = *(struct kinfo_proc **) pp2;
874 
875 	ORDERKEY_KTHREADS
876 	ORDERKEY_KTHREADS_PRIO
877 	ORDERKEY_PRIO
878 	ORDERKEY_CPTICKS
879 	ORDERKEY_PCTCPU
880 	ORDERKEY_STATE
881 	ORDERKEY_RSSIZE
882 	ORDERKEY_MEM
883 	{}
884 
885 	return (result);
886 }
887 
888 int
889 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
890 {
891 	struct kinfo_proc *p1;
892 	struct kinfo_proc *p2;
893 	int result;
894 	pctcpu lresult;
895 
896 	/* remove one level of indirection */
897 	p1 = *(struct kinfo_proc **)pp1;
898 	p2 = *(struct kinfo_proc **)pp2;
899 
900 	ORDERKEY_KTHREADS
901 	ORDERKEY_KTHREADS_PRIO
902 	ORDERKEY_CPTICKS
903 	ORDERKEY_PCTCPU
904 	ORDERKEY_STATE
905 	ORDERKEY_RSSIZE
906 	ORDERKEY_MEM
907 	{}
908 
909 	return (result);
910 }
911 
912 /* compare_pid - the comparison function for sorting by process id */
913 
914 int
915 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
916 {
917 	struct kinfo_proc *p1;
918 	struct kinfo_proc *p2;
919 	int result;
920 
921 	/* remove one level of indirection */
922 	p1 = *(struct kinfo_proc **) pp1;
923 	p2 = *(struct kinfo_proc **) pp2;
924 
925 	ORDERKEY_PID
926 	;
927 
928 	return(result);
929 }
930 
931 /*
932  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
933  *		the process does not exist.
934  *		It is EXTREMLY IMPORTANT that this function work correctly.
935  *		If top runs setuid root (as in SVR4), then this function
936  *		is the only thing that stands in the way of a serious
937  *		security problem.  It validates requests for the "kill"
938  *		and "renice" commands.
939  */
940 
941 int
942 proc_owner(int pid)
943 {
944 	int xcnt;
945 	struct kinfo_proc **prefp;
946 	struct kinfo_proc *pp;
947 
948 	prefp = pref;
949 	xcnt = pref_len;
950 	while (--xcnt >= 0) {
951 		pp = *prefp++;
952 		if (PP(pp, pid) == (pid_t) pid) {
953 			return ((int)PP(pp, ruid));
954 		}
955 	}
956 	return (-1);
957 }
958 
959 
960 /*
961  * swapmode is based on a program called swapinfo written
962  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
963  */
964 int
965 swapmode(int *retavail, int *retfree)
966 {
967 	int n;
968 	int pagesize = getpagesize();
969 	struct kvm_swap swapary[1];
970 
971 	*retavail = 0;
972 	*retfree = 0;
973 
974 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
975 
976 	n = kvm_getswapinfo(kd, swapary, 1, 0);
977 	if (n < 0 || swapary[0].ksw_total == 0)
978 		return (0);
979 
980 	*retavail = CONVERT(swapary[0].ksw_total);
981 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
982 
983 	n = (int)((double)swapary[0].ksw_used * 100.0 /
984 	    (double)swapary[0].ksw_total);
985 	return (n);
986 }
987