xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision a32bc35d)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int smpmode;
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
64 
65 int n_cpus = 0;
66 
67 /*
68  * needs to be a global symbol, so wrapper can be modified accordingly.
69  */
70 static int show_threads = 0;
71 
72 /* get_process_info passes back a handle.  This is what it looks like: */
73 
74 struct handle {
75 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
76 	int remaining;		/* number of pointers remaining */
77 };
78 
79 /* declarations for load_avg */
80 #include "loadavg.h"
81 
82 #define PP(pp, field) ((pp)->kp_ ## field)
83 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
84 #define VP(pp, field) ((pp)->kp_vm_ ## field)
85 
86 /* define what weighted cpu is.  */
87 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
88 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
89 
90 /* what we consider to be process size: */
91 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
92 
93 /*
94  * These definitions control the format of the per-process area
95  */
96 
97 static char smp_header[] =
98 "  PID %-*.*s NICE  SIZE   PRES   STATE CPU  TIME   CTIME    CPU COMMAND";
99 
100 #define smp_Proc_format \
101 	"%5d %-*.*s %3d%7s %6s %7.7s %2d %6s %7s %5.2f%% %.*s"
102 
103 static char up_header[] =
104 "  PID %-*.*s NICE  SIZE   PRES   STATE    TIME   CTIME    CPU COMMAND";
105 
106 #define up_Proc_format \
107 	"%5d %-*.*s %3d%7s %6s %7.7s%.0d %7s %7s %5.2f%% %.*s"
108 
109 
110 /* process state names for the "STATE" column of the display */
111 /*
112  * the extra nulls in the string "run" are for adding a slash and the
113  * processor number when needed
114  */
115 
116 const char *state_abbrev[] = {
117 	"", "RUN\0\0\0", "STOP", "SLEEP",
118 };
119 
120 
121 static kvm_t *kd;
122 
123 /* values that we stash away in _init and use in later routines */
124 
125 static double logcpu;
126 
127 static long lastpid;
128 static int ccpu;
129 
130 /* these are for calculating cpu state percentages */
131 
132 static struct kinfo_cputime *cp_time, *cp_old;
133 
134 /* these are for detailing the process states */
135 
136 int process_states[6];
137 char *procstatenames[] = {
138 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
139 	NULL
140 };
141 
142 /* these are for detailing the cpu states */
143 #define CPU_STATES 5
144 int *cpu_states;
145 char *cpustatenames[CPU_STATES + 1] = {
146 	"user", "nice", "system", "interrupt", "idle", NULL
147 };
148 
149 /* these are for detailing the memory statistics */
150 
151 long memory_stats[7];
152 char *memorynames[] = {
153 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
154 	NULL
155 };
156 
157 long swap_stats[7];
158 char *swapnames[] = {
159 	/* 0           1            2           3            4       5 */
160 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
161 	NULL
162 };
163 
164 
165 /* these are for keeping track of the proc array */
166 
167 static int nproc;
168 static int onproc = -1;
169 static int pref_len;
170 static struct kinfo_proc *pbase;
171 static struct kinfo_proc **pref;
172 
173 /* these are for getting the memory statistics */
174 
175 static int pageshift;		/* log base 2 of the pagesize */
176 
177 /* define pagetok in terms of pageshift */
178 
179 #define pagetok(size) ((size) << pageshift)
180 
181 /* sorting orders. first is default */
182 char *ordernames[] = {
183   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
184 };
185 
186 /* compare routines */
187 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
188 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
189 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
190 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
191 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
192 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
193 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
196 
197 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
198 	proc_compare,
199 	compare_size,
200 	compare_res,
201 	compare_time,
202 	compare_prio,
203 	compare_thr,
204 	compare_pid,
205 	compare_ctime,
206 	compare_pres,
207 	NULL
208 };
209 
210 static void
211 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
212     struct kinfo_cputime *old)
213 {
214 	struct kinfo_cputime diffs;
215 	uint64_t total_change, half_total;
216 
217 	/* initialization */
218 	total_change = 0;
219 
220 	diffs.cp_user = new->cp_user - old->cp_user;
221 	diffs.cp_nice = new->cp_nice - old->cp_nice;
222 	diffs.cp_sys = new->cp_sys - old->cp_sys;
223 	diffs.cp_intr = new->cp_intr - old->cp_intr;
224 	diffs.cp_idle = new->cp_idle - old->cp_idle;
225 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
226 	    diffs.cp_intr + diffs.cp_idle;
227 	old->cp_user = new->cp_user;
228 	old->cp_nice = new->cp_nice;
229 	old->cp_sys = new->cp_sys;
230 	old->cp_intr = new->cp_intr;
231 	old->cp_idle = new->cp_idle;
232 
233 	/* avoid divide by zero potential */
234 	if (total_change == 0)
235 		total_change = 1;
236 
237 	/* calculate percentages based on overall change, rounding up */
238 	half_total = total_change >> 1;
239 
240 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
241 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
242 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
243 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
244 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
245 }
246 
247 int
248 machine_init(struct statics *statics)
249 {
250 	int pagesize;
251 	size_t modelen;
252 	struct passwd *pw;
253 	struct timeval boottime;
254 
255 	if (n_cpus < 1) {
256 		if (kinfo_get_cpus(&n_cpus))
257 			err(1, "kinfo_get_cpus failed");
258 	}
259 	/* get boot time */
260 	modelen = sizeof(boottime);
261 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
262 		/* we have no boottime to report */
263 		boottime.tv_sec = -1;
264 	}
265 	modelen = sizeof(smpmode);
266 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
267 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
268 	    modelen != sizeof(smpmode))
269 		smpmode = 0;
270 
271 	while ((pw = getpwent()) != NULL) {
272 		if ((int)strlen(pw->pw_name) > namelength)
273 			namelength = strlen(pw->pw_name);
274 	}
275 	if (namelength < 8)
276 		namelength = 8;
277 	if (smpmode && namelength > 13)
278 		namelength = 13;
279 	else if (namelength > 15)
280 		namelength = 15;
281 
282 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
283 		return -1;
284 
285 	if (kinfo_get_sched_ccpu(&ccpu)) {
286 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
287 		return (-1);
288 	}
289 	/* this is used in calculating WCPU -- calculate it ahead of time */
290 	logcpu = log(loaddouble(ccpu));
291 
292 	pbase = NULL;
293 	pref = NULL;
294 	nproc = 0;
295 	onproc = -1;
296 	/*
297 	 * get the page size with "getpagesize" and calculate pageshift from
298 	 * it
299 	 */
300 	pagesize = getpagesize();
301 	pageshift = 0;
302 	while (pagesize > 1) {
303 		pageshift++;
304 		pagesize >>= 1;
305 	}
306 
307 	/* we only need the amount of log(2)1024 for our conversion */
308 	pageshift -= LOG1024;
309 
310 	/* fill in the statics information */
311 	statics->procstate_names = procstatenames;
312 	statics->cpustate_names = cpustatenames;
313 	statics->memory_names = memorynames;
314 	statics->boottime = boottime.tv_sec;
315 	statics->swap_names = swapnames;
316 	statics->order_names = ordernames;
317 	/* we need kvm descriptor in order to show full commands */
318 	statics->flags.fullcmds = kd != NULL;
319 
320 	/* all done! */
321 	return (0);
322 }
323 
324 char *
325 format_header(char *uname_field)
326 {
327 	static char Header[128];
328 
329 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
330 	    namelength, namelength, uname_field);
331 
332 	if (screen_width <= 79)
333 		cmdlength = 80;
334 	else
335 		cmdlength = screen_width;
336 
337 	cmdlength = cmdlength - strlen(Header) + 6;
338 
339 	return Header;
340 }
341 
342 static int swappgsin = -1;
343 static int swappgsout = -1;
344 extern struct timeval timeout;
345 
346 void
347 get_system_info(struct system_info *si)
348 {
349 	size_t len;
350 	int cpu;
351 
352 	if (cpu_states == NULL) {
353 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
354 		if (cpu_states == NULL)
355 			err(1, "malloc");
356 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
357 	}
358 	if (cp_time == NULL) {
359 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
360 		if (cp_time == NULL)
361 			err(1, "cp_time");
362 		cp_old = cp_time + n_cpus;
363 		len = n_cpus * sizeof(cp_old[0]);
364 		bzero(cp_time, len);
365 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
366 			err(1, "kern.cputime");
367 	}
368 	len = n_cpus * sizeof(cp_time[0]);
369 	bzero(cp_time, len);
370 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
371 		err(1, "kern.cputime");
372 
373 	getloadavg(si->load_avg, 3);
374 
375 	lastpid = 0;
376 
377 	/* convert cp_time counts to percentages */
378 	for (cpu = 0; cpu < n_cpus; ++cpu) {
379 		cputime_percentages(cpu_states + cpu * CPU_STATES,
380 		    &cp_time[cpu], &cp_old[cpu]);
381 	}
382 
383 	/* sum memory & swap statistics */
384 	{
385 		struct vmmeter vmm;
386 		struct vmstats vms;
387 		size_t vms_size = sizeof(vms);
388 		size_t vmm_size = sizeof(vmm);
389 		static unsigned int swap_delay = 0;
390 		static int swapavail = 0;
391 		static int swapfree = 0;
392 		static long bufspace = 0;
393 
394 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
395 			err(1, "sysctlbyname: vm.vmstats");
396 
397 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
398 			err(1, "sysctlbyname: vm.vmmeter");
399 
400 		if (kinfo_get_vfs_bufspace(&bufspace))
401 			err(1, "kinfo_get_vfs_bufspace");
402 
403 		/* convert memory stats to Kbytes */
404 		memory_stats[0] = pagetok(vms.v_active_count);
405 		memory_stats[1] = pagetok(vms.v_inactive_count);
406 		memory_stats[2] = pagetok(vms.v_wire_count);
407 		memory_stats[3] = pagetok(vms.v_cache_count);
408 		memory_stats[4] = bufspace / 1024;
409 		memory_stats[5] = pagetok(vms.v_free_count);
410 		memory_stats[6] = -1;
411 
412 		/* first interval */
413 		if (swappgsin < 0) {
414 			swap_stats[4] = 0;
415 			swap_stats[5] = 0;
416 		}
417 		/* compute differences between old and new swap statistic */
418 		else {
419 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
420 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
421 		}
422 
423 		swappgsin = vmm.v_swappgsin;
424 		swappgsout = vmm.v_swappgsout;
425 
426 		/* call CPU heavy swapmode() only for changes */
427 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
428 			swap_stats[3] = swapmode(&swapavail, &swapfree);
429 			swap_stats[0] = swapavail;
430 			swap_stats[1] = swapavail - swapfree;
431 			swap_stats[2] = swapfree;
432 		}
433 		swap_delay = 1;
434 		swap_stats[6] = -1;
435 	}
436 
437 	/* set arrays and strings */
438 	si->cpustates = cpu_states;
439 	si->memory = memory_stats;
440 	si->swap = swap_stats;
441 
442 
443 	if (lastpid > 0) {
444 		si->last_pid = lastpid;
445 	} else {
446 		si->last_pid = -1;
447 	}
448 }
449 
450 
451 static struct handle handle;
452 
453 caddr_t
454 get_process_info(struct system_info *si, struct process_select *sel,
455     int compare_index)
456 {
457 	int i;
458 	int total_procs;
459 	int active_procs;
460 	struct kinfo_proc **prefp;
461 	struct kinfo_proc *pp;
462 
463 	/* these are copied out of sel for speed */
464 	int show_idle;
465 	int show_system;
466 	int show_uid;
467 
468 
469 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
470 	if (nproc > onproc)
471 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
472 		    * (onproc = nproc));
473 	if (pref == NULL || pbase == NULL) {
474 		(void)fprintf(stderr, "top: Out of memory.\n");
475 		quit(23);
476 	}
477 	/* get a pointer to the states summary array */
478 	si->procstates = process_states;
479 
480 	/* set up flags which define what we are going to select */
481 	show_idle = sel->idle;
482 	show_system = sel->system;
483 	show_uid = sel->uid != -1;
484 	show_fullcmd = sel->fullcmd;
485 
486 	/* count up process states and get pointers to interesting procs */
487 	total_procs = 0;
488 	active_procs = 0;
489 	memset((char *)process_states, 0, sizeof(process_states));
490 	prefp = pref;
491 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
492 		/*
493 		 * Place pointers to each valid proc structure in pref[].
494 		 * Process slots that are actually in use have a non-zero
495 		 * status field.  Processes with P_SYSTEM set are system
496 		 * processes---these get ignored unless show_sysprocs is set.
497 		 */
498 		if ((show_threads && (LP(pp, pid) == -1)) ||
499 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
500 			total_procs++;
501 			if (LP(pp, stat) == LSRUN)
502 				process_states[0]++;
503 			process_states[PP(pp, stat)]++;
504 			if ((show_threads && (LP(pp, pid) == -1)) ||
505 			    (show_idle || (LP(pp, pctcpu) != 0) ||
506 			    (LP(pp, stat) == LSRUN)) &&
507 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
508 				*prefp++ = pp;
509 				active_procs++;
510 			}
511 		}
512 	}
513 
514 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
515 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
516 
517 	/* remember active and total counts */
518 	si->p_total = total_procs;
519 	si->p_active = pref_len = active_procs;
520 
521 	/* pass back a handle */
522 	handle.next_proc = pref;
523 	handle.remaining = active_procs;
524 	return ((caddr_t) & handle);
525 }
526 
527 char fmt[MAX_COLS];		/* static area where result is built */
528 
529 char *
530 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
531 {
532 	struct kinfo_proc *pp;
533 	long cputime;
534 	long ccputime;
535 	double pct;
536 	struct handle *hp;
537 	char status[16];
538 	int state;
539 	int xnice;
540 	char **comm_full;
541 	char *comm;
542 	char cputime_fmt[10], ccputime_fmt[10];
543 
544 	/* find and remember the next proc structure */
545 	hp = (struct handle *)xhandle;
546 	pp = *(hp->next_proc++);
547 	hp->remaining--;
548 
549 	/* get the process's command name */
550 	if (show_fullcmd) {
551 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
552 			return (fmt);
553 		}
554 	}
555 	else {
556 		comm = PP(pp, comm);
557 	}
558 
559 	/*
560 	 * Convert the process's runtime from microseconds to seconds.  This
561 	 * time includes the interrupt time to be in compliance with ps output.
562 	*/
563 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
564 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
565 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
566 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
567 
568 	/* calculate the base for cpu percentages */
569 	pct = pctdouble(LP(pp, pctcpu));
570 
571 	/* generate "STATE" field */
572 	switch (state = LP(pp, stat)) {
573 	case LSRUN:
574 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
575 			sprintf(status, "CPU%d", LP(pp, cpuid));
576 		else
577 			strcpy(status, "RUN");
578 		break;
579 	case LSSLEEP:
580 		if (LP(pp, wmesg) != NULL) {
581 			sprintf(status, "%.6s", LP(pp, wmesg));
582 			break;
583 		}
584 		/* fall through */
585 	default:
586 
587 		if (state >= 0 &&
588 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
589 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
590 		else
591 			sprintf(status, "?%5d", state);
592 		break;
593 	}
594 
595 	if (PP(pp, stat) == SZOMB)
596 		strcpy(status, "ZOMB");
597 
598 	/*
599 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
600 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
601 	 * 0 - 31 -> nice value -53 -
602 	 */
603 	switch (LP(pp, rtprio.type)) {
604 	case RTP_PRIO_REALTIME:
605 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
606 		break;
607 	case RTP_PRIO_IDLE:
608 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
609 		break;
610 	case RTP_PRIO_THREAD:
611 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
612 		break;
613 	default:
614 		xnice = PP(pp, nice);
615 		break;
616 	}
617 
618 	/* format this entry */
619 	snprintf(fmt, sizeof(fmt),
620 	    smpmode ? smp_Proc_format : up_Proc_format,
621 	    (int)PP(pp, pid),
622 	    namelength, namelength,
623 	    get_userid(PP(pp, ruid)),
624 	    (int)xnice,
625 	    format_k(PROCSIZE(pp)),
626 	    format_k(pagetok(VP(pp, prssize))),
627 	    status,
628 	    (int)(smpmode ? LP(pp, cpuid) : 0),
629 	    cputime_fmt,
630 	    ccputime_fmt,
631 	    100.0 * pct,
632 	    cmdlength,
633 	    show_fullcmd ? *comm_full : comm);
634 
635 	/* return the result */
636 	return (fmt);
637 }
638 
639 /* comparison routines for qsort */
640 
641 /*
642  *  proc_compare - comparison function for "qsort"
643  *	Compares the resource consumption of two processes using five
644  *  	distinct keys.  The keys (in descending order of importance) are:
645  *  	percent cpu, cpu ticks, state, resident set size, total virtual
646  *  	memory usage.  The process states are ordered as follows (from least
647  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
648  *  	array declaration below maps a process state index into a number
649  *  	that reflects this ordering.
650  */
651 
652 static unsigned char sorted_state[] =
653 {
654 	0,			/* not used		 */
655 	3,			/* sleep		 */
656 	1,			/* ABANDONED (WAIT)	 */
657 	6,			/* run			 */
658 	5,			/* start		 */
659 	2,			/* zombie		 */
660 	4			/* stop			 */
661 };
662 
663 
664 #define ORDERKEY_PCTCPU \
665   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
666      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
667 
668 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
669 
670 #define ORDERKEY_CPTICKS \
671   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
672 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
673 
674 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
675   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
676 
677 #define ORDERKEY_CTIME \
678    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
679 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
680 
681 #define ORDERKEY_STATE \
682   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
683                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
684 
685 #define ORDERKEY_PRIO \
686   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
687 
688 #define ORDERKEY_KTHREADS \
689   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
690 
691 #define ORDERKEY_KTHREADS_PRIO \
692   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
693 
694 #define ORDERKEY_RSSIZE \
695   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
696 
697 #define ORDERKEY_MEM \
698   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
699 
700 #define ORDERKEY_PID \
701   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
702 
703 #define ORDERKEY_PRSSIZE \
704   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
705 
706 /* compare_cpu - the comparison function for sorting by cpu percentage */
707 
708 int
709 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
710 {
711 	struct kinfo_proc *p1;
712 	struct kinfo_proc *p2;
713 	int result;
714 	pctcpu lresult;
715 
716 	/* remove one level of indirection */
717 	p1 = *(struct kinfo_proc **) pp1;
718 	p2 = *(struct kinfo_proc **) pp2;
719 
720 	ORDERKEY_PCTCPU
721 	ORDERKEY_CPTICKS
722 	ORDERKEY_STATE
723 	ORDERKEY_PRIO
724 	ORDERKEY_RSSIZE
725 	ORDERKEY_MEM
726 	{}
727 
728 	return (result);
729 }
730 
731 /* compare_size - the comparison function for sorting by total memory usage */
732 
733 int
734 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
735 {
736 	struct kinfo_proc *p1;
737 	struct kinfo_proc *p2;
738 	int result;
739 	pctcpu lresult;
740 
741 	/* remove one level of indirection */
742 	p1 = *(struct kinfo_proc **) pp1;
743 	p2 = *(struct kinfo_proc **) pp2;
744 
745 	ORDERKEY_MEM
746 	ORDERKEY_RSSIZE
747 	ORDERKEY_PCTCPU
748 	ORDERKEY_CPTICKS
749 	ORDERKEY_STATE
750 	ORDERKEY_PRIO
751 	{}
752 
753 	return (result);
754 }
755 
756 /* compare_res - the comparison function for sorting by resident set size */
757 
758 int
759 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
760 {
761 	struct kinfo_proc *p1;
762 	struct kinfo_proc *p2;
763 	int result;
764 	pctcpu lresult;
765 
766 	/* remove one level of indirection */
767 	p1 = *(struct kinfo_proc **) pp1;
768 	p2 = *(struct kinfo_proc **) pp2;
769 
770 	ORDERKEY_RSSIZE
771 	ORDERKEY_MEM
772 	ORDERKEY_PCTCPU
773 	ORDERKEY_CPTICKS
774 	ORDERKEY_STATE
775 	ORDERKEY_PRIO
776 	{}
777 
778 	return (result);
779 }
780 
781 /* compare_pres - the comparison function for sorting by proportional resident set size */
782 
783 int
784 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
785 {
786 	struct kinfo_proc *p1;
787 	struct kinfo_proc *p2;
788 	int result;
789 	pctcpu lresult;
790 
791 	/* remove one level of indirection */
792 	p1 = *(struct kinfo_proc **) pp1;
793 	p2 = *(struct kinfo_proc **) pp2;
794 
795 	ORDERKEY_PRSSIZE
796 	ORDERKEY_RSSIZE
797 	ORDERKEY_MEM
798 	ORDERKEY_PCTCPU
799 	ORDERKEY_CPTICKS
800 	ORDERKEY_STATE
801 	ORDERKEY_PRIO
802 	{}
803 
804 	return (result);
805 }
806 
807 /* compare_time - the comparison function for sorting by total cpu time */
808 
809 int
810 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
811 {
812 	struct kinfo_proc *p1;
813 	struct kinfo_proc *p2;
814 	int result;
815 	pctcpu lresult;
816 
817 	/* remove one level of indirection */
818 	p1 = *(struct kinfo_proc **) pp1;
819 	p2 = *(struct kinfo_proc **) pp2;
820 
821 	ORDERKEY_CPTICKS
822 	ORDERKEY_PCTCPU
823 	ORDERKEY_KTHREADS
824 	ORDERKEY_KTHREADS_PRIO
825 	ORDERKEY_STATE
826 	ORDERKEY_PRIO
827 	ORDERKEY_RSSIZE
828 	ORDERKEY_MEM
829 	{}
830 
831 	return (result);
832 }
833 
834 int
835 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
836 {
837 	struct kinfo_proc *p1;
838 	struct kinfo_proc *p2;
839 	int result;
840 	pctcpu lresult;
841 
842 	/* remove one level of indirection */
843 	p1 = *(struct kinfo_proc **) pp1;
844 	p2 = *(struct kinfo_proc **) pp2;
845 
846 	ORDERKEY_CTIME
847 	ORDERKEY_PCTCPU
848 	ORDERKEY_KTHREADS
849 	ORDERKEY_KTHREADS_PRIO
850 	ORDERKEY_STATE
851 	ORDERKEY_PRIO
852 	ORDERKEY_RSSIZE
853 	ORDERKEY_MEM
854 	{}
855 
856 	return (result);
857 }
858 
859 /* compare_prio - the comparison function for sorting by cpu percentage */
860 
861 int
862 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
863 {
864 	struct kinfo_proc *p1;
865 	struct kinfo_proc *p2;
866 	int result;
867 	pctcpu lresult;
868 
869 	/* remove one level of indirection */
870 	p1 = *(struct kinfo_proc **) pp1;
871 	p2 = *(struct kinfo_proc **) pp2;
872 
873 	ORDERKEY_KTHREADS
874 	ORDERKEY_KTHREADS_PRIO
875 	ORDERKEY_PRIO
876 	ORDERKEY_CPTICKS
877 	ORDERKEY_PCTCPU
878 	ORDERKEY_STATE
879 	ORDERKEY_RSSIZE
880 	ORDERKEY_MEM
881 	{}
882 
883 	return (result);
884 }
885 
886 int
887 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
888 {
889 	struct kinfo_proc *p1;
890 	struct kinfo_proc *p2;
891 	int result;
892 	pctcpu lresult;
893 
894 	/* remove one level of indirection */
895 	p1 = *(struct kinfo_proc **)pp1;
896 	p2 = *(struct kinfo_proc **)pp2;
897 
898 	ORDERKEY_KTHREADS
899 	ORDERKEY_KTHREADS_PRIO
900 	ORDERKEY_CPTICKS
901 	ORDERKEY_PCTCPU
902 	ORDERKEY_STATE
903 	ORDERKEY_RSSIZE
904 	ORDERKEY_MEM
905 	{}
906 
907 	return (result);
908 }
909 
910 /* compare_pid - the comparison function for sorting by process id */
911 
912 int
913 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
914 {
915 	struct kinfo_proc *p1;
916 	struct kinfo_proc *p2;
917 	int result;
918 
919 	/* remove one level of indirection */
920 	p1 = *(struct kinfo_proc **) pp1;
921 	p2 = *(struct kinfo_proc **) pp2;
922 
923 	ORDERKEY_PID
924 	;
925 
926 	return(result);
927 }
928 
929 /*
930  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
931  *		the process does not exist.
932  *		It is EXTREMLY IMPORTANT that this function work correctly.
933  *		If top runs setuid root (as in SVR4), then this function
934  *		is the only thing that stands in the way of a serious
935  *		security problem.  It validates requests for the "kill"
936  *		and "renice" commands.
937  */
938 
939 int
940 proc_owner(int pid)
941 {
942 	int xcnt;
943 	struct kinfo_proc **prefp;
944 	struct kinfo_proc *pp;
945 
946 	prefp = pref;
947 	xcnt = pref_len;
948 	while (--xcnt >= 0) {
949 		pp = *prefp++;
950 		if (PP(pp, pid) == (pid_t) pid) {
951 			return ((int)PP(pp, ruid));
952 		}
953 	}
954 	return (-1);
955 }
956 
957 
958 /*
959  * swapmode is based on a program called swapinfo written
960  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
961  */
962 int
963 swapmode(int *retavail, int *retfree)
964 {
965 	int n;
966 	int pagesize = getpagesize();
967 	struct kvm_swap swapary[1];
968 
969 	*retavail = 0;
970 	*retfree = 0;
971 
972 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
973 
974 	n = kvm_getswapinfo(kd, swapary, 1, 0);
975 	if (n < 0 || swapary[0].ksw_total == 0)
976 		return (0);
977 
978 	*retavail = CONVERT(swapary[0].ksw_total);
979 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
980 
981 	n = (int)((double)swapary[0].ksw_used * 100.0 /
982 	    (double)swapary[0].ksw_total);
983 	return (n);
984 }
985