xref: /dragonfly/usr.bin/top/m_dragonfly.c (revision a8ca8ac6)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
24  */
25 
26 #include <sys/user.h>
27 #include <sys/types.h>
28 #include <sys/time.h>
29 #include <sys/signal.h>
30 #include <sys/param.h>
31 
32 #include "os.h"
33 #include <err.h>
34 #include <kvm.h>
35 #include <stdio.h>
36 #include <unistd.h>
37 #include <math.h>
38 #include <pwd.h>
39 #include <sys/errno.h>
40 #include <sys/sysctl.h>
41 #include <sys/file.h>
42 #include <sys/vmmeter.h>
43 #include <sys/resource.h>
44 #include <sys/rtprio.h>
45 
46 /* Swap */
47 #include <stdlib.h>
48 #include <stdio.h>
49 #include <sys/conf.h>
50 
51 #include <osreldate.h>		/* for changes in kernel structures */
52 
53 #include <sys/kinfo.h>
54 #include <kinfo.h>
55 #include "top.h"
56 #include "display.h"
57 #include "machine.h"
58 #include "screen.h"
59 #include "utils.h"
60 
61 int swapmode(int *retavail, int *retfree);
62 static int smpmode;
63 static int namelength;
64 static int cmdlength;
65 static int show_fullcmd;
66 
67 int n_cpus = 0;
68 
69 /*
70  * needs to be a global symbol, so wrapper can be modified accordingly.
71  */
72 static int show_threads = 0;
73 
74 /* get_process_info passes back a handle.  This is what it looks like: */
75 
76 struct handle {
77 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
78 	int remaining;		/* number of pointers remaining */
79 };
80 
81 /* declarations for load_avg */
82 #include "loadavg.h"
83 
84 #define PP(pp, field) ((pp)->kp_ ## field)
85 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
86 #define VP(pp, field) ((pp)->kp_vm_ ## field)
87 
88 /* define what weighted cpu is.  */
89 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
90 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
91 
92 /* what we consider to be process size: */
93 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
94 
95 /*
96  * These definitions control the format of the per-process area
97  */
98 
99 static char smp_header[] =
100 "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   CTIME   CPU COMMAND";
101 
102 #define smp_Proc_format \
103 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %7s %5.2f%% %.*s"
104 
105 static char up_header[] =
106 "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   CTIME   CPU COMMAND";
107 
108 #define up_Proc_format \
109 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %7s %5.2f%% %.*s"
110 
111 
112 
113 /* process state names for the "STATE" column of the display */
114 /*
115  * the extra nulls in the string "run" are for adding a slash and the
116  * processor number when needed
117  */
118 
119 const char *state_abbrev[] = {
120 	"", "RUN\0\0\0", "STOP", "SLEEP",
121 };
122 
123 
124 static kvm_t *kd;
125 
126 /* values that we stash away in _init and use in later routines */
127 
128 static double logcpu;
129 
130 static long lastpid;
131 static int ccpu;
132 
133 /* these are for calculating cpu state percentages */
134 
135 static struct kinfo_cputime *cp_time, *cp_old;
136 
137 /* these are for detailing the process states */
138 
139 int process_states[6];
140 char *procstatenames[] = {
141 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
142 	NULL
143 };
144 
145 /* these are for detailing the cpu states */
146 #define CPU_STATES 5
147 int *cpu_states;
148 char *cpustatenames[CPU_STATES + 1] = {
149 	"user", "nice", "system", "interrupt", "idle", NULL
150 };
151 
152 /* these are for detailing the memory statistics */
153 
154 long memory_stats[7];
155 char *memorynames[] = {
156 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
157 	NULL
158 };
159 
160 long swap_stats[7];
161 char *swapnames[] = {
162 	/* 0           1            2           3            4       5 */
163 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
164 	NULL
165 };
166 
167 
168 /* these are for keeping track of the proc array */
169 
170 static int nproc;
171 static int onproc = -1;
172 static int pref_len;
173 static struct kinfo_proc *pbase;
174 static struct kinfo_proc **pref;
175 
176 /* these are for getting the memory statistics */
177 
178 static int pageshift;		/* log base 2 of the pagesize */
179 
180 /* define pagetok in terms of pageshift */
181 
182 #define pagetok(size) ((size) << pageshift)
183 
184 /* sorting orders. first is default */
185 char *ordernames[] = {
186 	"cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  NULL
187 };
188 
189 /* compare routines */
190 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
191 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
192 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
196 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
197 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
198 
199 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
200 	proc_compare,
201 	compare_size,
202 	compare_res,
203 	compare_time,
204 	compare_prio,
205 	compare_thr,
206 	compare_pid,
207 	compare_ctime,
208 	NULL
209 };
210 
211 static void
212 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
213     struct kinfo_cputime *old)
214 {
215 	struct kinfo_cputime diffs;
216 	uint64_t total_change, half_total;
217 
218 	/* initialization */
219 	total_change = 0;
220 
221 	diffs.cp_user = new->cp_user - old->cp_user;
222 	diffs.cp_nice = new->cp_nice - old->cp_nice;
223 	diffs.cp_sys = new->cp_sys - old->cp_sys;
224 	diffs.cp_intr = new->cp_intr - old->cp_intr;
225 	diffs.cp_idle = new->cp_idle - old->cp_idle;
226 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
227 	    diffs.cp_intr + diffs.cp_idle;
228 	old->cp_user = new->cp_user;
229 	old->cp_nice = new->cp_nice;
230 	old->cp_sys = new->cp_sys;
231 	old->cp_intr = new->cp_intr;
232 	old->cp_idle = new->cp_idle;
233 
234 	/* avoid divide by zero potential */
235 	if (total_change == 0)
236 		total_change = 1;
237 
238 	/* calculate percentages based on overall change, rounding up */
239 	half_total = total_change >> 1;
240 
241 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
242 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
243 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
244 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
245 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
246 }
247 
248 int
249 machine_init(struct statics *statics)
250 {
251 	int pagesize;
252 	size_t modelen;
253 	struct passwd *pw;
254 	struct timeval boottime;
255 
256 	if (n_cpus < 1) {
257 		if (kinfo_get_cpus(&n_cpus))
258 			err(1, "kinfo_get_cpus failed");
259 	}
260 	/* get boot time */
261 	modelen = sizeof(boottime);
262 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
263 		/* we have no boottime to report */
264 		boottime.tv_sec = -1;
265 	}
266 	modelen = sizeof(smpmode);
267 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
268 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
269 	    modelen != sizeof(smpmode))
270 		smpmode = 0;
271 
272 	while ((pw = getpwent()) != NULL) {
273 		if ((int)strlen(pw->pw_name) > namelength)
274 			namelength = strlen(pw->pw_name);
275 	}
276 	if (namelength < 8)
277 		namelength = 8;
278 	if (smpmode && namelength > 13)
279 		namelength = 13;
280 	else if (namelength > 15)
281 		namelength = 15;
282 
283 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
284 		return -1;
285 
286 	if (kinfo_get_sched_ccpu(&ccpu)) {
287 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
288 		return (-1);
289 	}
290 	/* this is used in calculating WCPU -- calculate it ahead of time */
291 	logcpu = log(loaddouble(ccpu));
292 
293 	pbase = NULL;
294 	pref = NULL;
295 	nproc = 0;
296 	onproc = -1;
297 	/*
298 	 * get the page size with "getpagesize" and calculate pageshift from
299 	 * it
300 	 */
301 	pagesize = getpagesize();
302 	pageshift = 0;
303 	while (pagesize > 1) {
304 		pageshift++;
305 		pagesize >>= 1;
306 	}
307 
308 	/* we only need the amount of log(2)1024 for our conversion */
309 	pageshift -= LOG1024;
310 
311 	/* fill in the statics information */
312 	statics->procstate_names = procstatenames;
313 	statics->cpustate_names = cpustatenames;
314 	statics->memory_names = memorynames;
315 	statics->boottime = boottime.tv_sec;
316 	statics->swap_names = swapnames;
317 	statics->order_names = ordernames;
318 	/* we need kvm descriptor in order to show full commands */
319 	statics->flags.fullcmds = kd != NULL;
320 
321 	/* all done! */
322 	return (0);
323 }
324 
325 char *
326 format_header(char *uname_field)
327 {
328 	static char Header[128];
329 
330 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
331 	    namelength, namelength, uname_field);
332 
333 	if (screen_width <= 79)
334 		cmdlength = 80;
335 	else
336 		cmdlength = screen_width;
337 
338 	cmdlength = cmdlength - strlen(Header) + 6;
339 
340 	return Header;
341 }
342 
343 static int swappgsin = -1;
344 static int swappgsout = -1;
345 extern struct timeval timeout;
346 
347 void
348 get_system_info(struct system_info *si)
349 {
350 	size_t len;
351 	int cpu;
352 
353 	if (cpu_states == NULL) {
354 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
355 		if (cpu_states == NULL)
356 			err(1, "malloc");
357 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
358 	}
359 	if (cp_time == NULL) {
360 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
361 		if (cp_time == NULL)
362 			err(1, "cp_time");
363 		cp_old = cp_time + n_cpus;
364 
365 		len = n_cpus * sizeof(cp_old[0]);
366 		bzero(cp_time, len);
367 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
368 			err(1, "kern.cputime");
369 	}
370 	len = n_cpus * sizeof(cp_time[0]);
371 	bzero(cp_time, len);
372 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
373 		err(1, "kern.cputime");
374 
375 	getloadavg(si->load_avg, 3);
376 
377 	lastpid = 0;
378 
379 	/* convert cp_time counts to percentages */
380 	for (cpu = 0; cpu < n_cpus; ++cpu) {
381 		cputime_percentages(cpu_states + cpu * CPU_STATES,
382 		    &cp_time[cpu], &cp_old[cpu]);
383 	}
384 
385 	/* sum memory & swap statistics */
386 	{
387 		struct vmmeter vmm;
388 		struct vmstats vms;
389 		size_t vms_size = sizeof(vms);
390 		size_t vmm_size = sizeof(vmm);
391 		static unsigned int swap_delay = 0;
392 		static int swapavail = 0;
393 		static int swapfree = 0;
394 		static int bufspace = 0;
395 
396 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
397 			err(1, "sysctlbyname: vm.vmstats");
398 
399 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
400 			err(1, "sysctlbyname: vm.vmmeter");
401 
402 		if (kinfo_get_vfs_bufspace(&bufspace))
403 			err(1, "kinfo_get_vfs_bufspace");
404 
405 		/* convert memory stats to Kbytes */
406 		memory_stats[0] = pagetok(vms.v_active_count);
407 		memory_stats[1] = pagetok(vms.v_inactive_count);
408 		memory_stats[2] = pagetok(vms.v_wire_count);
409 		memory_stats[3] = pagetok(vms.v_cache_count);
410 		memory_stats[4] = bufspace / 1024;
411 		memory_stats[5] = pagetok(vms.v_free_count);
412 		memory_stats[6] = -1;
413 
414 		/* first interval */
415 		if (swappgsin < 0) {
416 			swap_stats[4] = 0;
417 			swap_stats[5] = 0;
418 		}
419 		/* compute differences between old and new swap statistic */
420 		else {
421 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
422 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
423 		}
424 
425 		swappgsin = vmm.v_swappgsin;
426 		swappgsout = vmm.v_swappgsout;
427 
428 		/* call CPU heavy swapmode() only for changes */
429 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
430 			swap_stats[3] = swapmode(&swapavail, &swapfree);
431 			swap_stats[0] = swapavail;
432 			swap_stats[1] = swapavail - swapfree;
433 			swap_stats[2] = swapfree;
434 		}
435 		swap_delay = 1;
436 		swap_stats[6] = -1;
437 	}
438 
439 	/* set arrays and strings */
440 	si->cpustates = cpu_states;
441 	si->memory = memory_stats;
442 	si->swap = swap_stats;
443 
444 
445 	if (lastpid > 0) {
446 		si->last_pid = lastpid;
447 	} else {
448 		si->last_pid = -1;
449 	}
450 }
451 
452 
453 static struct handle handle;
454 
455 caddr_t
456 get_process_info(struct system_info *si, struct process_select *sel,
457     int compare_index)
458 {
459 	int i;
460 	int total_procs;
461 	int active_procs;
462 	struct kinfo_proc **prefp;
463 	struct kinfo_proc *pp;
464 
465 	/* these are copied out of sel for speed */
466 	int show_idle;
467 	int show_system;
468 	int show_uid;
469 
470 
471 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
472 	if (nproc > onproc)
473 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
474 		    * (onproc = nproc));
475 	if (pref == NULL || pbase == NULL) {
476 		(void)fprintf(stderr, "top: Out of memory.\n");
477 		quit(23);
478 	}
479 	/* get a pointer to the states summary array */
480 	si->procstates = process_states;
481 
482 	/* set up flags which define what we are going to select */
483 	show_idle = sel->idle;
484 	show_system = sel->system;
485 	show_uid = sel->uid != -1;
486 	show_fullcmd = sel->fullcmd;
487 
488 	/* count up process states and get pointers to interesting procs */
489 	total_procs = 0;
490 	active_procs = 0;
491 	memset((char *)process_states, 0, sizeof(process_states));
492 	prefp = pref;
493 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
494 		/*
495 		 * Place pointers to each valid proc structure in pref[].
496 		 * Process slots that are actually in use have a non-zero
497 		 * status field.  Processes with P_SYSTEM set are system
498 		 * processes---these get ignored unless show_sysprocs is set.
499 		 */
500 		if ((show_threads && (LP(pp, pid) == -1)) ||
501 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
502 			total_procs++;
503 			if (LP(pp, stat) == LSRUN)
504 				process_states[0]++;
505 			process_states[PP(pp, stat)]++;
506 			if ((show_threads && (LP(pp, pid) == -1)) ||
507 			    (show_idle || (LP(pp, pctcpu) != 0) ||
508 			    (LP(pp, stat) == LSRUN)) &&
509 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
510 				*prefp++ = pp;
511 				active_procs++;
512 			}
513 		}
514 	}
515 
516 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
517 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
518 
519 	/* remember active and total counts */
520 	si->p_total = total_procs;
521 	si->p_active = pref_len = active_procs;
522 
523 	/* pass back a handle */
524 	handle.next_proc = pref;
525 	handle.remaining = active_procs;
526 	return ((caddr_t) & handle);
527 }
528 
529 char fmt[MAX_COLS];		/* static area where result is built */
530 
531 char *
532 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
533 {
534 	struct kinfo_proc *pp;
535 	long cputime;
536 	long ccputime;
537 	double pct;
538 	struct handle *hp;
539 	char status[16];
540 	int state;
541 	int xnice;
542 	char **comm_full;
543 	char *comm;
544 	char cputime_fmt[10], ccputime_fmt[10];
545 
546 	/* find and remember the next proc structure */
547 	hp = (struct handle *)xhandle;
548 	pp = *(hp->next_proc++);
549 	hp->remaining--;
550 
551 	/* get the process's command name */
552 	if (show_fullcmd) {
553 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
554 			return (fmt);
555 		}
556 	}
557 	else {
558 		comm = PP(pp, comm);
559 	}
560 
561 	/*
562 	 * Convert the process's runtime from microseconds to seconds.  This
563 	 * time includes the interrupt time to be in compliance with ps output.
564 	*/
565 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
566 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
567 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
568 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
569 
570 	/* calculate the base for cpu percentages */
571 	pct = pctdouble(LP(pp, pctcpu));
572 
573 	/* generate "STATE" field */
574 	switch (state = LP(pp, stat)) {
575 	case LSRUN:
576 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
577 			sprintf(status, "CPU%d", LP(pp, cpuid));
578 		else
579 			strcpy(status, "RUN");
580 		break;
581 	case LSSLEEP:
582 		if (LP(pp, wmesg) != NULL) {
583 			sprintf(status, "%.6s", LP(pp, wmesg));
584 			break;
585 		}
586 		/* fall through */
587 	default:
588 
589 		if (state >= 0 &&
590 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
591 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
592 		else
593 			sprintf(status, "?%5d", state);
594 		break;
595 	}
596 
597 	if (PP(pp, stat) == SZOMB)
598 		strcpy(status, "ZOMB");
599 
600 	/*
601 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
602 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
603 	 * 0 - 31 -> nice value -53 -
604 	 */
605 	switch (LP(pp, rtprio.type)) {
606 	case RTP_PRIO_REALTIME:
607 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
608 		break;
609 	case RTP_PRIO_IDLE:
610 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
611 		break;
612 	case RTP_PRIO_THREAD:
613 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
614 		break;
615 	default:
616 		xnice = PP(pp, nice);
617 		break;
618 	}
619 
620 	/* format this entry */
621 	snprintf(fmt, sizeof(fmt),
622 	    smpmode ? smp_Proc_format : up_Proc_format,
623 	    (int)PP(pp, pid),
624 	    namelength, namelength,
625 	    get_userid(PP(pp, ruid)),
626 	    (int)((show_threads && (LP(pp, pid) == -1)) ?
627 	    LP(pp, tdprio) : LP(pp, prio)),
628 	    (int)xnice,
629 	    format_k(PROCSIZE(pp)),
630 	    format_k(pagetok(VP(pp, rssize))),
631 	    status,
632 	    (int)(smpmode ? LP(pp, cpuid) : 0),
633 	    cputime_fmt,
634 	    ccputime_fmt,
635 	    100.0 * pct,
636 	    cmdlength,
637 	    show_fullcmd ? *comm_full : comm);
638 
639 	/* return the result */
640 	return (fmt);
641 }
642 
643 /* comparison routines for qsort */
644 
645 /*
646  *  proc_compare - comparison function for "qsort"
647  *	Compares the resource consumption of two processes using five
648  *  	distinct keys.  The keys (in descending order of importance) are:
649  *  	percent cpu, cpu ticks, state, resident set size, total virtual
650  *  	memory usage.  The process states are ordered as follows (from least
651  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
652  *  	array declaration below maps a process state index into a number
653  *  	that reflects this ordering.
654  */
655 
656 static unsigned char sorted_state[] =
657 {
658 	0,			/* not used		 */
659 	3,			/* sleep		 */
660 	1,			/* ABANDONED (WAIT)	 */
661 	6,			/* run			 */
662 	5,			/* start		 */
663 	2,			/* zombie		 */
664 	4			/* stop			 */
665 };
666 
667 
668 #define ORDERKEY_PCTCPU \
669   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
670      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
671 
672 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
673 
674 #define ORDERKEY_CPTICKS \
675   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
676 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
677 
678 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
679   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
680 
681 #define ORDERKEY_CTIME \
682    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
683 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
684 
685 #define ORDERKEY_STATE \
686   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
687                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
688 
689 #define ORDERKEY_PRIO \
690   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
691 
692 #define ORDERKEY_KTHREADS \
693   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
694 
695 #define ORDERKEY_KTHREADS_PRIO \
696   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
697 
698 #define ORDERKEY_RSSIZE \
699   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
700 
701 #define ORDERKEY_MEM \
702   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
703 
704 #define ORDERKEY_PID \
705   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
706 
707 /* compare_cpu - the comparison function for sorting by cpu percentage */
708 
709 int
710 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
711 {
712 	struct kinfo_proc *p1;
713 	struct kinfo_proc *p2;
714 	int result;
715 	pctcpu lresult;
716 
717 	/* remove one level of indirection */
718 	p1 = *(struct kinfo_proc **) pp1;
719 	p2 = *(struct kinfo_proc **) pp2;
720 
721 	ORDERKEY_PCTCPU
722 	ORDERKEY_CPTICKS
723 	ORDERKEY_STATE
724 	ORDERKEY_PRIO
725 	ORDERKEY_RSSIZE
726 	ORDERKEY_MEM
727 	{}
728 
729 	return (result);
730 }
731 
732 /* compare_size - the comparison function for sorting by total memory usage */
733 
734 int
735 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
736 {
737 	struct kinfo_proc *p1;
738 	struct kinfo_proc *p2;
739 	int result;
740 	pctcpu lresult;
741 
742 	/* remove one level of indirection */
743 	p1 = *(struct kinfo_proc **) pp1;
744 	p2 = *(struct kinfo_proc **) pp2;
745 
746 	ORDERKEY_MEM
747 	ORDERKEY_RSSIZE
748 	ORDERKEY_PCTCPU
749 	ORDERKEY_CPTICKS
750 	ORDERKEY_STATE
751 	ORDERKEY_PRIO
752 	{}
753 
754 	return (result);
755 }
756 
757 /* compare_res - the comparison function for sorting by resident set size */
758 
759 int
760 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
761 {
762 	struct kinfo_proc *p1;
763 	struct kinfo_proc *p2;
764 	int result;
765 	pctcpu lresult;
766 
767 	/* remove one level of indirection */
768 	p1 = *(struct kinfo_proc **) pp1;
769 	p2 = *(struct kinfo_proc **) pp2;
770 
771 	ORDERKEY_RSSIZE
772 	ORDERKEY_MEM
773 	ORDERKEY_PCTCPU
774 	ORDERKEY_CPTICKS
775 	ORDERKEY_STATE
776 	ORDERKEY_PRIO
777 	{}
778 
779 	return (result);
780 }
781 
782 /* compare_time - the comparison function for sorting by total cpu time */
783 
784 int
785 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
786 {
787 	struct kinfo_proc *p1;
788 	struct kinfo_proc *p2;
789 	int result;
790 	pctcpu lresult;
791 
792 	/* remove one level of indirection */
793 	p1 = *(struct kinfo_proc **) pp1;
794 	p2 = *(struct kinfo_proc **) pp2;
795 
796 	ORDERKEY_CPTICKS
797 	ORDERKEY_PCTCPU
798 	ORDERKEY_KTHREADS
799 	ORDERKEY_KTHREADS_PRIO
800 	ORDERKEY_STATE
801 	ORDERKEY_PRIO
802 	ORDERKEY_RSSIZE
803 	ORDERKEY_MEM
804 	{}
805 
806 	return (result);
807 }
808 
809 int
810 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
811 {
812 	struct kinfo_proc *p1;
813 	struct kinfo_proc *p2;
814 	int result;
815 	pctcpu lresult;
816 
817 	/* remove one level of indirection */
818 	p1 = *(struct kinfo_proc **) pp1;
819 	p2 = *(struct kinfo_proc **) pp2;
820 
821 	ORDERKEY_CTIME
822 	ORDERKEY_PCTCPU
823 	ORDERKEY_KTHREADS
824 	ORDERKEY_KTHREADS_PRIO
825 	ORDERKEY_STATE
826 	ORDERKEY_PRIO
827 	ORDERKEY_RSSIZE
828 	ORDERKEY_MEM
829 	{}
830 
831 	return (result);
832 }
833 
834 /* compare_prio - the comparison function for sorting by cpu percentage */
835 
836 int
837 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
838 {
839 	struct kinfo_proc *p1;
840 	struct kinfo_proc *p2;
841 	int result;
842 	pctcpu lresult;
843 
844 	/* remove one level of indirection */
845 	p1 = *(struct kinfo_proc **) pp1;
846 	p2 = *(struct kinfo_proc **) pp2;
847 
848 	ORDERKEY_KTHREADS
849 	ORDERKEY_KTHREADS_PRIO
850 	ORDERKEY_PRIO
851 	ORDERKEY_CPTICKS
852 	ORDERKEY_PCTCPU
853 	ORDERKEY_STATE
854 	ORDERKEY_RSSIZE
855 	ORDERKEY_MEM
856 	{}
857 
858 	return (result);
859 }
860 
861 int
862 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
863 {
864 	struct kinfo_proc *p1;
865 	struct kinfo_proc *p2;
866 	int result;
867 	pctcpu lresult;
868 
869 	/* remove one level of indirection */
870 	p1 = *(struct kinfo_proc **)pp1;
871 	p2 = *(struct kinfo_proc **)pp2;
872 
873 	ORDERKEY_KTHREADS
874 	ORDERKEY_KTHREADS_PRIO
875 	ORDERKEY_CPTICKS
876 	ORDERKEY_PCTCPU
877 	ORDERKEY_STATE
878 	ORDERKEY_RSSIZE
879 	ORDERKEY_MEM
880 	{}
881 
882 	return (result);
883 }
884 
885 /* compare_pid - the comparison function for sorting by process id */
886 
887 int
888 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
889 {
890 	struct kinfo_proc *p1;
891 	struct kinfo_proc *p2;
892 	int result;
893 
894 	/* remove one level of indirection */
895 	p1 = *(struct kinfo_proc **) pp1;
896 	p2 = *(struct kinfo_proc **) pp2;
897 
898 	ORDERKEY_PID
899 	;
900 
901 	return(result);
902 }
903 
904 /*
905  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
906  *		the process does not exist.
907  *		It is EXTREMLY IMPORTANT that this function work correctly.
908  *		If top runs setuid root (as in SVR4), then this function
909  *		is the only thing that stands in the way of a serious
910  *		security problem.  It validates requests for the "kill"
911  *		and "renice" commands.
912  */
913 
914 int
915 proc_owner(int pid)
916 {
917 	int xcnt;
918 	struct kinfo_proc **prefp;
919 	struct kinfo_proc *pp;
920 
921 	prefp = pref;
922 	xcnt = pref_len;
923 	while (--xcnt >= 0) {
924 		pp = *prefp++;
925 		if (PP(pp, pid) == (pid_t) pid) {
926 			return ((int)PP(pp, ruid));
927 		}
928 	}
929 	return (-1);
930 }
931 
932 
933 /*
934  * swapmode is based on a program called swapinfo written
935  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
936  */
937 int
938 swapmode(int *retavail, int *retfree)
939 {
940 	int n;
941 	int pagesize = getpagesize();
942 	struct kvm_swap swapary[1];
943 
944 	*retavail = 0;
945 	*retfree = 0;
946 
947 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
948 
949 	n = kvm_getswapinfo(kd, swapary, 1, 0);
950 	if (n < 0 || swapary[0].ksw_total == 0)
951 		return (0);
952 
953 	*retavail = CONVERT(swapary[0].ksw_total);
954 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
955 
956 	n = (int)((double)swapary[0].ksw_used * 100.0 /
957 	    (double)swapary[0].ksw_total);
958 	return (n);
959 }
960