xref: /dragonfly/usr.sbin/nscd/nscd.c (revision abf903a5)
1 /*-
2  * Copyright (c) 2005 Michael Bushkov <bushman@rsu.ru>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in thereg
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD: src/usr.sbin/nscd/nscd.c,v 1.7 2008/10/23 00:27:35 delphij Exp $
27  */
28 
29 #include <sys/types.h>
30 #include <sys/event.h>
31 #include <sys/socket.h>
32 #include <sys/time.h>
33 #include <sys/param.h>
34 #include <sys/un.h>
35 #include <assert.h>
36 #include <err.h>
37 #include <errno.h>
38 #include <fcntl.h>
39 #include <libutil.h>
40 #include <pthread.h>
41 #include <signal.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <unistd.h>
46 
47 #include "agents/passwd.h"
48 #include "agents/group.h"
49 #include "agents/services.h"
50 #include "cachelib.h"
51 #include "config.h"
52 #include "debug.h"
53 #include "log.h"
54 #include "nscdcli.h"
55 #include "parser.h"
56 #include "query.h"
57 #include "singletons.h"
58 
59 #ifndef CONFIG_PATH
60 #define CONFIG_PATH "/etc/nscd.conf"
61 #endif
62 #define DEFAULT_CONFIG_PATH	"nscd.conf"
63 
64 #define MAX_SOCKET_IO_SIZE	4096
65 
66 struct processing_thread_args {
67 	cache	the_cache;
68 	struct configuration	*the_configuration;
69 	struct runtime_env		*the_runtime_env;
70 };
71 
72 static void accept_connection(struct kevent *, struct runtime_env *,
73 	struct configuration *);
74 static void destroy_cache_(cache);
75 static void destroy_runtime_env(struct runtime_env *);
76 static cache init_cache_(struct configuration *);
77 static struct runtime_env *init_runtime_env(struct configuration *);
78 static void processing_loop(cache, struct runtime_env *,
79 	struct configuration *);
80 static void process_socket_event(struct kevent *, struct runtime_env *,
81 	struct configuration *);
82 static void process_timer_event(struct kevent *, struct runtime_env *,
83 	struct configuration *);
84 static void *processing_thread(void *);
85 static void usage(void);
86 
87 void get_time_func(struct timeval *);
88 
89 static void
90 usage(void)
91 {
92 	fprintf(stderr,
93 	    "usage: nscd [-dnst] [-i cachename] [-I cachename]\n");
94 	exit(1);
95 }
96 
97 static cache
98 init_cache_(struct configuration *config)
99 {
100 	struct cache_params params;
101 	cache retval;
102 
103 	struct configuration_entry *config_entry;
104 	size_t	size, i;
105 	int res;
106 
107 	TRACE_IN(init_cache_);
108 
109 	memset(&params, 0, sizeof(struct cache_params));
110 	params.get_time_func = get_time_func;
111 	retval = init_cache(&params);
112 
113 	size = configuration_get_entries_size(config);
114 	for (i = 0; i < size; ++i) {
115 		config_entry = configuration_get_entry(config, i);
116 		/*
117 		 * We should register common entries now - multipart entries
118 		 * would be registered automatically during the queries.
119 		 */
120 		res = register_cache_entry(retval, (struct cache_entry_params *)
121 			&config_entry->positive_cache_params);
122 		config_entry->positive_cache_entry = find_cache_entry(retval,
123 			config_entry->positive_cache_params.entry_name);
124 		assert(config_entry->positive_cache_entry !=
125 			INVALID_CACHE_ENTRY);
126 
127 		res = register_cache_entry(retval, (struct cache_entry_params *)
128 			&config_entry->negative_cache_params);
129 		config_entry->negative_cache_entry = find_cache_entry(retval,
130 			config_entry->negative_cache_params.entry_name);
131 		assert(config_entry->negative_cache_entry !=
132 			INVALID_CACHE_ENTRY);
133 	}
134 
135 	LOG_MSG_2("cache", "cache was successfully initialized");
136 	TRACE_OUT(init_cache_);
137 	return (retval);
138 }
139 
140 static void
141 destroy_cache_(cache the_cache)
142 {
143 	TRACE_IN(destroy_cache_);
144 	destroy_cache(the_cache);
145 	TRACE_OUT(destroy_cache_);
146 }
147 
148 /*
149  * Socket and kqueues are prepared here. We have one global queue for both
150  * socket and timers events.
151  */
152 static struct runtime_env *
153 init_runtime_env(struct configuration *config)
154 {
155 	int serv_addr_len;
156 	struct sockaddr_un serv_addr;
157 
158 	struct kevent eventlist;
159 	struct timespec timeout;
160 
161 	struct runtime_env *retval;
162 
163 	TRACE_IN(init_runtime_env);
164 	retval = (struct runtime_env *)calloc(1, sizeof(struct runtime_env));
165 	assert(retval != NULL);
166 
167 	retval->sockfd = socket(PF_LOCAL, SOCK_STREAM, 0);
168 
169 	if (config->force_unlink == 1)
170 		unlink(config->socket_path);
171 
172 	memset(&serv_addr, 0, sizeof(struct sockaddr_un));
173 	serv_addr.sun_family = PF_LOCAL;
174 	strlcpy(serv_addr.sun_path, config->socket_path,
175 		sizeof(serv_addr.sun_path));
176 	serv_addr_len = sizeof(serv_addr.sun_family) +
177 		strlen(serv_addr.sun_path) + 1;
178 
179 	if (bind(retval->sockfd, (struct sockaddr *)&serv_addr,
180 		serv_addr_len) == -1) {
181 		close(retval->sockfd);
182 		free(retval);
183 
184 		LOG_ERR_2("runtime environment", "can't bind socket to path: "
185 			"%s", config->socket_path);
186 		TRACE_OUT(init_runtime_env);
187 		return (NULL);
188 	}
189 	LOG_MSG_2("runtime environment", "using socket %s",
190 		config->socket_path);
191 
192 	/*
193 	 * Here we're marking socket as non-blocking and setting its backlog
194 	 * to the maximum value
195 	 */
196 	chmod(config->socket_path, config->socket_mode);
197 	listen(retval->sockfd, -1);
198 	fcntl(retval->sockfd, F_SETFL, O_NONBLOCK);
199 
200 	retval->queue = kqueue();
201 	assert(retval->queue != -1);
202 
203 	EV_SET(&eventlist, retval->sockfd, EVFILT_READ, EV_ADD | EV_ONESHOT,
204 		0, 0, 0);
205 	memset(&timeout, 0, sizeof(struct timespec));
206 	kevent(retval->queue, &eventlist, 1, NULL, 0, &timeout);
207 
208 	LOG_MSG_2("runtime environment", "successfully initialized");
209 	TRACE_OUT(init_runtime_env);
210 	return (retval);
211 }
212 
213 static void
214 destroy_runtime_env(struct runtime_env *env)
215 {
216 	TRACE_IN(destroy_runtime_env);
217 	close(env->queue);
218 	close(env->sockfd);
219 	free(env);
220 	TRACE_OUT(destroy_runtime_env);
221 }
222 
223 static void
224 accept_connection(struct kevent *event_data, struct runtime_env *env,
225 	struct configuration *config)
226 {
227 	struct kevent	eventlist[2];
228 	struct timespec	timeout;
229 	struct query_state	*qstate;
230 
231 	int	fd;
232 	int	res;
233 
234 	uid_t	euid;
235 	gid_t	egid;
236 
237 	TRACE_IN(accept_connection);
238 	fd = accept(event_data->ident, NULL, NULL);
239 	if (fd == -1) {
240 		LOG_ERR_2("accept_connection", "error %d during accept()",
241 		    errno);
242 		TRACE_OUT(accept_connection);
243 		return;
244 	}
245 
246 	if (getpeereid(fd, &euid, &egid) != 0) {
247 		LOG_ERR_2("accept_connection", "error %d during getpeereid()",
248 			errno);
249 		TRACE_OUT(accept_connection);
250 		return;
251 	}
252 
253 	qstate = init_query_state(fd, sizeof(int), euid, egid);
254 	if (qstate == NULL) {
255 		LOG_ERR_2("accept_connection", "can't init query_state");
256 		TRACE_OUT(accept_connection);
257 		return;
258 	}
259 
260 	memset(&timeout, 0, sizeof(struct timespec));
261 	EV_SET(&eventlist[0], fd, EVFILT_TIMER, EV_ADD | EV_ONESHOT,
262 		0, qstate->timeout.tv_sec * 1000, qstate);
263 	EV_SET(&eventlist[1], fd, EVFILT_READ, EV_ADD | EV_ONESHOT,
264 		NOTE_LOWAT, qstate->kevent_watermark, qstate);
265 	res = kevent(env->queue, eventlist, 2, NULL, 0, &timeout);
266 	if (res < 0)
267 		LOG_ERR_2("accept_connection", "kevent error");
268 
269 	TRACE_OUT(accept_connection);
270 }
271 
272 static void
273 process_socket_event(struct kevent *event_data, struct runtime_env *env,
274 	struct configuration *config)
275 {
276 	struct kevent	eventlist[2];
277 	struct timeval	query_timeout;
278 	struct timespec	kevent_timeout;
279 	int	nevents;
280 	int	eof_res, res;
281 	ssize_t	io_res;
282 	struct query_state *qstate;
283 
284 	TRACE_IN(process_socket_event);
285 	eof_res = event_data->flags & EV_EOF ? 1 : 0;
286 	res = 0;
287 
288 	memset(&kevent_timeout, 0, sizeof(struct timespec));
289 	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER, EV_DELETE,
290 		0, 0, NULL);
291 	nevents = kevent(env->queue, eventlist, 1, NULL, 0, &kevent_timeout);
292 	if (nevents == -1) {
293 		if (errno == ENOENT) {
294 			/* the timer is already handling this event */
295 			TRACE_OUT(process_socket_event);
296 			return;
297 		} else {
298 			/* some other error happened */
299 			LOG_ERR_2("process_socket_event", "kevent error, errno"
300 				" is %d", errno);
301 			TRACE_OUT(process_socket_event);
302 			return;
303 		}
304 	}
305 	qstate = (struct query_state *)event_data->udata;
306 
307 	/*
308 	 * If the buffer that is to be send/received is too large,
309 	 * we send it implicitly, by using query_io_buffer_read and
310 	 * query_io_buffer_write functions in the query_state. These functions
311 	 * use the temporary buffer, which is later send/received in parts.
312 	 * The code below implements buffer splitting/mergind for send/receive
313 	 * operations. It also does the actual socket IO operations.
314 	 */
315 	if (((qstate->use_alternate_io == 0) &&
316 		(qstate->kevent_watermark <= event_data->data)) ||
317 		((qstate->use_alternate_io != 0) &&
318 		(qstate->io_buffer_watermark <= event_data->data))) {
319 		if (qstate->use_alternate_io != 0) {
320 			switch (qstate->io_buffer_filter) {
321 			case EVFILT_READ:
322 				io_res = query_socket_read(qstate,
323 					qstate->io_buffer_p,
324 					qstate->io_buffer_watermark);
325 				if (io_res < 0) {
326 					qstate->use_alternate_io = 0;
327 					qstate->process_func = NULL;
328 				} else {
329 					qstate->io_buffer_p += io_res;
330 					if (qstate->io_buffer_p ==
331 						qstate->io_buffer +
332 						qstate->io_buffer_size) {
333 						qstate->io_buffer_p =
334 						    qstate->io_buffer;
335 						qstate->use_alternate_io = 0;
336 					}
337 				}
338 			break;
339 			default:
340 			break;
341 			}
342 		}
343 
344 		if (qstate->use_alternate_io == 0) {
345 			do {
346 				res = qstate->process_func(qstate);
347 			} while ((qstate->kevent_watermark == 0) &&
348 					(qstate->process_func != NULL) &&
349 					(res == 0));
350 
351 			if (res != 0)
352 				qstate->process_func = NULL;
353 		}
354 
355 		if ((qstate->use_alternate_io != 0) &&
356 			(qstate->io_buffer_filter == EVFILT_WRITE)) {
357 			io_res = query_socket_write(qstate, qstate->io_buffer_p,
358 				qstate->io_buffer_watermark);
359 			if (io_res < 0) {
360 				qstate->use_alternate_io = 0;
361 				qstate->process_func = NULL;
362 			} else
363 				qstate->io_buffer_p += io_res;
364 		}
365 	} else {
366 		/* assuming that socket was closed */
367 		qstate->process_func = NULL;
368 		qstate->use_alternate_io = 0;
369 	}
370 
371 	if (((qstate->process_func == NULL) &&
372 		(qstate->use_alternate_io == 0)) ||
373 		(eof_res != 0) || (res != 0)) {
374 		destroy_query_state(qstate);
375 		close(event_data->ident);
376 		TRACE_OUT(process_socket_event);
377 		return;
378 	}
379 
380 	/* updating the query_state lifetime variable */
381 	get_time_func(&query_timeout);
382 	query_timeout.tv_usec = 0;
383 	query_timeout.tv_sec -= qstate->creation_time.tv_sec;
384 	if (query_timeout.tv_sec > qstate->timeout.tv_sec)
385 		query_timeout.tv_sec = 0;
386 	else
387 		query_timeout.tv_sec = qstate->timeout.tv_sec -
388 			query_timeout.tv_sec;
389 
390 	if ((qstate->use_alternate_io != 0) && (qstate->io_buffer_p ==
391 		qstate->io_buffer + qstate->io_buffer_size))
392 		qstate->use_alternate_io = 0;
393 
394 	if (qstate->use_alternate_io == 0) {
395 		/*
396 		 * If we must send/receive the large block of data,
397 		 * we should prepare the query_state's io_XXX fields.
398 		 * We should also substitute its write_func and read_func
399 		 * with the query_io_buffer_write and query_io_buffer_read,
400 		 * which will allow us to implicitly send/receive this large
401 		 * buffer later (in the subsequent calls to the
402 		 * process_socket_event).
403 		 */
404 		if (qstate->kevent_watermark > MAX_SOCKET_IO_SIZE) {
405 			if (qstate->io_buffer != NULL)
406 				free(qstate->io_buffer);
407 
408 			qstate->io_buffer = (char *)calloc(1,
409 				qstate->kevent_watermark);
410 			assert(qstate->io_buffer != NULL);
411 
412 			qstate->io_buffer_p = qstate->io_buffer;
413 			qstate->io_buffer_size = qstate->kevent_watermark;
414 			qstate->io_buffer_filter = qstate->kevent_filter;
415 
416 			qstate->write_func = query_io_buffer_write;
417 			qstate->read_func = query_io_buffer_read;
418 
419 			if (qstate->kevent_filter == EVFILT_READ)
420 				qstate->use_alternate_io = 1;
421 
422 			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
423 			EV_SET(&eventlist[1], event_data->ident,
424 				qstate->kevent_filter, EV_ADD | EV_ONESHOT,
425 				NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
426 		} else {
427 			EV_SET(&eventlist[1], event_data->ident,
428 				qstate->kevent_filter, EV_ADD | EV_ONESHOT,
429 				NOTE_LOWAT, qstate->kevent_watermark, qstate);
430 		}
431 	} else {
432 		if (qstate->io_buffer + qstate->io_buffer_size -
433 			qstate->io_buffer_p <
434 			MAX_SOCKET_IO_SIZE) {
435 			qstate->io_buffer_watermark = qstate->io_buffer +
436 				qstate->io_buffer_size - qstate->io_buffer_p;
437 			EV_SET(&eventlist[1], event_data->ident,
438 				qstate->io_buffer_filter,
439 				EV_ADD | EV_ONESHOT, NOTE_LOWAT,
440 				qstate->io_buffer_watermark,
441 				qstate);
442 		} else {
443 			qstate->io_buffer_watermark = MAX_SOCKET_IO_SIZE;
444 			EV_SET(&eventlist[1], event_data->ident,
445 				qstate->io_buffer_filter, EV_ADD | EV_ONESHOT,
446 				NOTE_LOWAT, MAX_SOCKET_IO_SIZE, qstate);
447 		}
448 	}
449 	EV_SET(&eventlist[0], event_data->ident, EVFILT_TIMER,
450 		EV_ADD | EV_ONESHOT, 0, query_timeout.tv_sec * 1000, qstate);
451 	kevent(env->queue, eventlist, 2, NULL, 0, &kevent_timeout);
452 
453 	TRACE_OUT(process_socket_event);
454 }
455 
456 /*
457  * This routine is called if timer event has been signaled in the kqueue. It
458  * just closes the socket and destroys the query_state.
459  */
460 static void
461 process_timer_event(struct kevent *event_data, struct runtime_env *env,
462 	struct configuration *config)
463 {
464 	struct query_state	*qstate;
465 
466 	TRACE_IN(process_timer_event);
467 	qstate = (struct query_state *)event_data->udata;
468 	destroy_query_state(qstate);
469 	close(event_data->ident);
470 	TRACE_OUT(process_timer_event);
471 }
472 
473 /*
474  * Processing loop is the basic processing routine, that forms a body of each
475  * procssing thread
476  */
477 static void
478 processing_loop(cache the_cache, struct runtime_env *env,
479 	struct configuration *config)
480 {
481 	struct timespec timeout;
482 	const int eventlist_size = 1;
483 	struct kevent eventlist[eventlist_size];
484 	int nevents, i;
485 
486 	TRACE_MSG("=> processing_loop");
487 	memset(&timeout, 0, sizeof(struct timespec));
488 	memset(&eventlist, 0, sizeof(struct kevent) * eventlist_size);
489 
490 	for (;;) {
491 		nevents = kevent(env->queue, NULL, 0, eventlist,
492 			eventlist_size, NULL);
493 		/*
494 		 * we can only receive 1 event on success
495 		 */
496 		if (nevents == 1) {
497 			struct kevent *event_data;
498 			event_data = &eventlist[0];
499 
500 			if (event_data->ident == env->sockfd) {
501 				for (i = 0; i < event_data->data; ++i)
502 				    accept_connection(event_data, env, config);
503 
504 				EV_SET(eventlist, s_runtime_env->sockfd,
505 				    EVFILT_READ, EV_ADD | EV_ONESHOT,
506 				    0, 0, 0);
507 				memset(&timeout, 0,
508 				    sizeof(struct timespec));
509 				kevent(s_runtime_env->queue, eventlist,
510 				    1, NULL, 0, &timeout);
511 
512 			} else {
513 				switch (event_data->filter) {
514 				case EVFILT_READ:
515 				case EVFILT_WRITE:
516 					process_socket_event(event_data,
517 						env, config);
518 					break;
519 				case EVFILT_TIMER:
520 					process_timer_event(event_data,
521 						env, config);
522 					break;
523 				default:
524 					break;
525 				}
526 			}
527 		} else {
528 			/* this branch shouldn't be currently executed */
529 		}
530 	}
531 
532 	TRACE_MSG("<= processing_loop");
533 }
534 
535 /*
536  * Wrapper above the processing loop function. It sets the thread signal mask
537  * to avoid SIGPIPE signals (which can happen if the client works incorrectly).
538  */
539 static void *
540 processing_thread(void *data)
541 {
542 	struct processing_thread_args	*args;
543 	sigset_t new;
544 
545 	TRACE_MSG("=> processing_thread");
546 	args = (struct processing_thread_args *)data;
547 
548 	sigemptyset(&new);
549 	sigaddset(&new, SIGPIPE);
550 	if (pthread_sigmask(SIG_BLOCK, &new, NULL) != 0)
551 		LOG_ERR_1("processing thread",
552 			"thread can't block the SIGPIPE signal");
553 
554 	processing_loop(args->the_cache, args->the_runtime_env,
555 		args->the_configuration);
556 	free(args);
557 	TRACE_MSG("<= processing_thread");
558 
559 	return (NULL);
560 }
561 
562 void
563 get_time_func(struct timeval *time)
564 {
565 	struct timespec res;
566 	memset(&res, 0, sizeof(struct timespec));
567 	clock_gettime(CLOCK_MONOTONIC, &res);
568 
569 	time->tv_sec = res.tv_sec;
570 	time->tv_usec = 0;
571 }
572 
573 /*
574  * The idea of _nss_cache_cycle_prevention_function is that nsdispatch will
575  * search for this symbol in the executable. This symbol is the attribute of
576  * the caching daemon. So, if it exists, nsdispatch won't try to connect to
577  * the caching daemon and will just ignore the 'cache' source in the
578  * nsswitch.conf. This method helps to avoid cycles and organize
579  * self-performing requests.
580  */
581 void
582 _nss_cache_cycle_prevention_function(void)
583 {
584 }
585 
586 int
587 main(int argc, char *argv[])
588 {
589 	struct processing_thread_args *thread_args;
590 	pthread_t *threads;
591 
592 	struct pidfh *pidfile;
593 	pid_t pid;
594 
595 	char const *config_file;
596 	char const *error_str;
597 	int error_line;
598 	int i, res;
599 
600 	int trace_mode_enabled;
601 	int force_single_threaded;
602 	int do_not_daemonize;
603 	int clear_user_cache_entries, clear_all_cache_entries;
604 	char *user_config_entry_name, *global_config_entry_name;
605 	int show_statistics;
606 	int daemon_mode, interactive_mode;
607 
608 
609 	/* by default all debug messages are omitted */
610 	TRACE_OFF();
611 
612 	/* parsing command line arguments */
613 	trace_mode_enabled = 0;
614 	force_single_threaded = 0;
615 	do_not_daemonize = 0;
616 	clear_user_cache_entries = 0;
617 	clear_all_cache_entries = 0;
618 	show_statistics = 0;
619 	user_config_entry_name = NULL;
620 	global_config_entry_name = NULL;
621 	while ((res = getopt(argc, argv, "nstdi:I:")) != -1) {
622 		switch (res) {
623 		case 'n':
624 			do_not_daemonize = 1;
625 			break;
626 		case 's':
627 			force_single_threaded = 1;
628 			break;
629 		case 't':
630 			trace_mode_enabled = 1;
631 			break;
632 		case 'i':
633 			clear_user_cache_entries = 1;
634 			if (optarg != NULL)
635 				if (strcmp(optarg, "all") != 0)
636 					user_config_entry_name = strdup(optarg);
637 			break;
638 		case 'I':
639 			clear_all_cache_entries = 1;
640 			if (optarg != NULL)
641 				if (strcmp(optarg, "all") != 0)
642 					global_config_entry_name =
643 						strdup(optarg);
644 			break;
645 		case 'd':
646 			show_statistics = 1;
647 			break;
648 		case '?':
649 		default:
650 			usage();
651 			/* NOT REACHED */
652 		}
653 	}
654 
655 	daemon_mode = do_not_daemonize | force_single_threaded |
656 		trace_mode_enabled;
657 	interactive_mode = clear_user_cache_entries | clear_all_cache_entries |
658 		show_statistics;
659 
660 	if ((daemon_mode != 0) && (interactive_mode != 0)) {
661 		LOG_ERR_1("main", "daemon mode and interactive_mode arguments "
662 			"can't be used together");
663 		usage();
664 	}
665 
666 	if (interactive_mode != 0) {
667 		FILE *pidfin = fopen(DEFAULT_PIDFILE_PATH, "r");
668 		char pidbuf[256];
669 
670 		struct nscd_connection_params connection_params;
671 		nscd_connection connection;
672 
673 		int result;
674 
675 		if (pidfin == NULL)
676 			errx(EXIT_FAILURE, "There is no daemon running.");
677 
678 		memset(pidbuf, 0, sizeof(pidbuf));
679 		fread(pidbuf, sizeof(pidbuf) - 1, 1, pidfin);
680 		fclose(pidfin);
681 
682 		if (ferror(pidfin) != 0)
683 			errx(EXIT_FAILURE, "Can't read from pidfile.");
684 
685 		if (sscanf(pidbuf, "%d", &pid) != 1)
686 			errx(EXIT_FAILURE, "Invalid pidfile.");
687 		LOG_MSG_1("main", "daemon PID is %d", pid);
688 
689 
690 		memset(&connection_params, 0,
691 			sizeof(struct nscd_connection_params));
692 		connection_params.socket_path = DEFAULT_SOCKET_PATH;
693 		connection = open_nscd_connection__(&connection_params);
694 		if (connection == INVALID_NSCD_CONNECTION)
695 			errx(EXIT_FAILURE, "Can't connect to the daemon.");
696 
697 		if (clear_user_cache_entries != 0) {
698 			result = nscd_transform__(connection,
699 				user_config_entry_name, TT_USER);
700 			if (result != 0)
701 				LOG_MSG_1("main",
702 					"user cache transformation failed");
703 			else
704 				LOG_MSG_1("main",
705 					"user cache_transformation "
706 					"succeeded");
707 		}
708 
709 		if (clear_all_cache_entries != 0) {
710 			if (geteuid() != 0)
711 				errx(EXIT_FAILURE, "Only root can initiate "
712 					"global cache transformation.");
713 
714 			result = nscd_transform__(connection,
715 				global_config_entry_name, TT_ALL);
716 			if (result != 0)
717 				LOG_MSG_1("main",
718 					"global cache transformation "
719 					"failed");
720 			else
721 				LOG_MSG_1("main",
722 					"global cache transformation "
723 					"succeeded");
724 		}
725 
726 		close_nscd_connection__(connection);
727 
728 		free(user_config_entry_name);
729 		free(global_config_entry_name);
730 		return (EXIT_SUCCESS);
731 	}
732 
733 	pidfile = pidfile_open(DEFAULT_PIDFILE_PATH, 0644, &pid);
734 	if (pidfile == NULL) {
735 		if (errno == EEXIST)
736 			errx(EXIT_FAILURE, "Daemon already running, pid: %d.",
737 				pid);
738 		warn("Cannot open or create pidfile");
739 	}
740 
741 	if (trace_mode_enabled == 1)
742 		TRACE_ON();
743 
744 	/* blocking the main thread from receiving SIGPIPE signal */
745 	sigblock(sigmask(SIGPIPE));
746 
747 	/* daemonization */
748 	if (do_not_daemonize == 0) {
749 		res = daemon(0, trace_mode_enabled == 0 ? 0 : 1);
750 		if (res != 0) {
751 			LOG_ERR_1("main", "can't daemonize myself: %s",
752 				strerror(errno));
753 			pidfile_remove(pidfile);
754 			goto fin;
755 		} else
756 			LOG_MSG_1("main", "successfully daemonized");
757 	}
758 
759 	pidfile_write(pidfile);
760 
761 	s_agent_table = init_agent_table();
762 	register_agent(s_agent_table, init_passwd_agent());
763 	register_agent(s_agent_table, init_passwd_mp_agent());
764 	register_agent(s_agent_table, init_group_agent());
765 	register_agent(s_agent_table, init_group_mp_agent());
766 	register_agent(s_agent_table, init_services_agent());
767 	register_agent(s_agent_table, init_services_mp_agent());
768 	LOG_MSG_1("main", "request agents registered successfully");
769 
770 	/*
771 	 * Hosts agent can't work properly until we have access to the
772 	 * appropriate dtab structures, which are used in nsdispatch
773 	 * calls
774 	 *
775 	 register_agent(s_agent_table, init_hosts_agent());
776 	*/
777 
778 	/* configuration initialization */
779 	s_configuration = init_configuration();
780 	fill_configuration_defaults(s_configuration);
781 
782 	error_str = NULL;
783 	error_line = 0;
784 	config_file = CONFIG_PATH;
785 
786 	res = parse_config_file(s_configuration, config_file, &error_str,
787 		&error_line);
788 	if ((res != 0) && (error_str == NULL)) {
789 		config_file = DEFAULT_CONFIG_PATH;
790 		res = parse_config_file(s_configuration, config_file,
791 			&error_str, &error_line);
792 	}
793 
794 	if (res != 0) {
795 		if (error_str != NULL) {
796 		LOG_ERR_1("main", "error in configuration file(%s, %d): %s\n",
797 			config_file, error_line, error_str);
798 		} else {
799 		LOG_ERR_1("main", "no configuration file found "
800 			"- was looking for %s and %s",
801 			CONFIG_PATH, DEFAULT_CONFIG_PATH);
802 		}
803 		destroy_configuration(s_configuration);
804 		return (-1);
805 	}
806 
807 	if (force_single_threaded == 1)
808 		s_configuration->threads_num = 1;
809 
810 	/* cache initialization */
811 	s_cache = init_cache_(s_configuration);
812 	if (s_cache == NULL) {
813 		LOG_ERR_1("main", "can't initialize the cache");
814 		destroy_configuration(s_configuration);
815 		return (-1);
816 	}
817 
818 	/* runtime environment initialization */
819 	s_runtime_env = init_runtime_env(s_configuration);
820 	if (s_runtime_env == NULL) {
821 		LOG_ERR_1("main", "can't initialize the runtime environment");
822 		destroy_configuration(s_configuration);
823 		destroy_cache_(s_cache);
824 		return (-1);
825 	}
826 
827 	if (s_configuration->threads_num > 1) {
828 		threads = (pthread_t *)calloc(1, sizeof(pthread_t) *
829 			s_configuration->threads_num);
830 		for (i = 0; i < s_configuration->threads_num; ++i) {
831 			thread_args = (struct processing_thread_args *)malloc(
832 				sizeof(struct processing_thread_args));
833 			thread_args->the_cache = s_cache;
834 			thread_args->the_runtime_env = s_runtime_env;
835 			thread_args->the_configuration = s_configuration;
836 
837 			LOG_MSG_1("main", "thread #%d was successfully created",
838 				i);
839 			pthread_create(&threads[i], NULL, processing_thread,
840 				thread_args);
841 
842 			thread_args = NULL;
843 		}
844 
845 		for (i = 0; i < s_configuration->threads_num; ++i)
846 			pthread_join(threads[i], NULL);
847 	} else {
848 		LOG_MSG_1("main", "working in single-threaded mode");
849 		processing_loop(s_cache, s_runtime_env, s_configuration);
850 	}
851 
852 fin:
853 	/* runtime environment destruction */
854 	destroy_runtime_env(s_runtime_env);
855 
856 	/* cache destruction */
857 	destroy_cache_(s_cache);
858 
859 	/* configuration destruction */
860 	destroy_configuration(s_configuration);
861 
862 	/* agents table destruction */
863 	destroy_agent_table(s_agent_table);
864 
865 	pidfile_remove(pidfile);
866 	return (EXIT_SUCCESS);
867 }
868