xref: /dragonfly/usr.sbin/pfctl/pfctl_altq.c (revision 1847e88f)
1 /*	$OpenBSD: pfctl_altq.c,v 1.83 2004/03/14 21:51:44 dhartmei Exp $	*/
2 /*	$DragonFly: src/usr.sbin/pfctl/pfctl_altq.c,v 1.2 2005/02/11 22:31:45 joerg Exp $ */
3 
4 /*
5  * Copyright (c) 2002
6  *	Sony Computer Science Laboratories Inc.
7  * Copyright (c) 2002, 2003 Henning Brauer <henning@openbsd.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  */
21 
22 #include <sys/param.h>
23 #include <sys/ioctl.h>
24 #include <sys/socket.h>
25 #include <sys/sysctl.h>
26 
27 #include <net/if.h>
28 #include <net/if_mib.h>
29 #include <netinet/in.h>
30 #include <net/pf/pfvar.h>
31 
32 #include <err.h>
33 #include <errno.h>
34 #include <limits.h>
35 #include <math.h>
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39 #include <unistd.h>
40 
41 #include <net/altq/altq.h>
42 #include <net/altq/altq_cbq.h>
43 #include <net/altq/altq_priq.h>
44 #include <net/altq/altq_hfsc.h>
45 
46 #include "pfctl_parser.h"
47 #include "pfctl.h"
48 
49 #define is_sc_null(sc)	(((sc) == NULL) || ((sc)->m1 == 0 && (sc)->m2 == 0))
50 
51 TAILQ_HEAD(altqs, pf_altq) altqs = TAILQ_HEAD_INITIALIZER(altqs);
52 LIST_HEAD(gen_sc, segment) rtsc, lssc;
53 
54 struct pf_altq	*qname_to_pfaltq(const char *, const char *);
55 u_int32_t	 qname_to_qid(const char *);
56 
57 static int	eval_pfqueue_cbq(struct pfctl *, struct pf_altq *);
58 static int	cbq_compute_idletime(struct pfctl *, struct pf_altq *);
59 static int	check_commit_cbq(int, int, struct pf_altq *);
60 static int	print_cbq_opts(const struct pf_altq *);
61 
62 static int	eval_pfqueue_priq(struct pfctl *, struct pf_altq *);
63 static int	check_commit_priq(int, int, struct pf_altq *);
64 static int	print_priq_opts(const struct pf_altq *);
65 
66 static int	eval_pfqueue_hfsc(struct pfctl *, struct pf_altq *);
67 static int	check_commit_hfsc(int, int, struct pf_altq *);
68 static int	print_hfsc_opts(const struct pf_altq *,
69 		    const struct node_queue_opt *);
70 
71 static void		 gsc_add_sc(struct gen_sc *, struct service_curve *);
72 static int		 is_gsc_under_sc(struct gen_sc *,
73 			     struct service_curve *);
74 static void		 gsc_destroy(struct gen_sc *);
75 static struct segment	*gsc_getentry(struct gen_sc *, double);
76 static int		 gsc_add_seg(struct gen_sc *, double, double, double,
77 			     double);
78 static double		 sc_x2y(struct service_curve *, double);
79 
80 u_int32_t	 getifspeed(const char *);
81 u_long		 getifmtu(char *);
82 int		 eval_queue_opts(struct pf_altq *, struct node_queue_opt *,
83 		     u_int32_t);
84 u_int32_t	 eval_bwspec(struct node_queue_bw *, u_int32_t);
85 void		 print_hfsc_sc(const char *, u_int, u_int, u_int,
86 		     const struct node_hfsc_sc *);
87 
88 void
89 pfaltq_store(struct pf_altq *a)
90 {
91 	struct pf_altq	*altq;
92 
93 	if ((altq = malloc(sizeof(*altq))) == NULL)
94 		err(1, "malloc");
95 	memcpy(altq, a, sizeof(struct pf_altq));
96 	TAILQ_INSERT_TAIL(&altqs, altq, entries);
97 }
98 
99 void
100 pfaltq_free(struct pf_altq *a)
101 {
102 	struct pf_altq	*altq;
103 
104 	TAILQ_FOREACH(altq, &altqs, entries) {
105 		if (strncmp(a->ifname, altq->ifname, IFNAMSIZ) == 0 &&
106 		    strncmp(a->qname, altq->qname, PF_QNAME_SIZE) == 0) {
107 			TAILQ_REMOVE(&altqs, altq, entries);
108 			free(altq);
109 			return;
110 		}
111 	}
112 }
113 
114 struct pf_altq *
115 pfaltq_lookup(const char *ifname)
116 {
117 	struct pf_altq	*altq;
118 
119 	TAILQ_FOREACH(altq, &altqs, entries) {
120 		if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
121 		    altq->qname[0] == 0)
122 			return (altq);
123 	}
124 	return (NULL);
125 }
126 
127 struct pf_altq *
128 qname_to_pfaltq(const char *qname, const char *ifname)
129 {
130 	struct pf_altq	*altq;
131 
132 	TAILQ_FOREACH(altq, &altqs, entries) {
133 		if (strncmp(ifname, altq->ifname, IFNAMSIZ) == 0 &&
134 		    strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
135 			return (altq);
136 	}
137 	return (NULL);
138 }
139 
140 u_int32_t
141 qname_to_qid(const char *qname)
142 {
143 	struct pf_altq	*altq;
144 
145 	/*
146 	 * We guarantee that same named queues on different interfaces
147 	 * have the same qid, so we do NOT need to limit matching on
148 	 * one interface!
149 	 */
150 
151 	TAILQ_FOREACH(altq, &altqs, entries) {
152 		if (strncmp(qname, altq->qname, PF_QNAME_SIZE) == 0)
153 			return (altq->qid);
154 	}
155 	return (0);
156 }
157 
158 void
159 print_altq(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
160 	struct node_queue_opt *qopts)
161 {
162 	if (a->qname[0] != 0) {
163 		print_queue(a, level, bw, 0, qopts);
164 		return;
165 	}
166 
167 	printf("altq on %s ", a->ifname);
168 
169 	switch (a->scheduler) {
170 	case ALTQT_CBQ:
171 		if (!print_cbq_opts(a))
172 			printf("cbq ");
173 		break;
174 	case ALTQT_PRIQ:
175 		if (!print_priq_opts(a))
176 			printf("priq ");
177 		break;
178 	case ALTQT_HFSC:
179 		if (!print_hfsc_opts(a, qopts))
180 			printf("hfsc ");
181 		break;
182 	}
183 
184 	if (bw != NULL && bw->bw_percent > 0) {
185 		if (bw->bw_percent < 100)
186 			printf("bandwidth %u%% ", bw->bw_percent);
187 	} else
188 		printf("bandwidth %s ", rate2str((double)a->ifbandwidth));
189 
190 	if (a->qlimit != DEFAULT_QLIMIT)
191 		printf("qlimit %u ", a->qlimit);
192 	printf("tbrsize %u ", a->tbrsize);
193 }
194 
195 void
196 print_queue(const struct pf_altq *a, unsigned level, struct node_queue_bw *bw,
197     int print_interface, struct node_queue_opt *qopts)
198 {
199 	unsigned	i;
200 
201 	printf("queue ");
202 	for (i = 0; i < level; ++i)
203 		printf(" ");
204 	printf("%s ", a->qname);
205 	if (print_interface)
206 		printf("on %s ", a->ifname);
207 	if (a->scheduler == ALTQT_CBQ || a->scheduler == ALTQT_HFSC) {
208 		if (bw != NULL && bw->bw_percent > 0) {
209 			if (bw->bw_percent < 100)
210 				printf("bandwidth %u%% ", bw->bw_percent);
211 		} else
212 			printf("bandwidth %s ", rate2str((double)a->bandwidth));
213 	}
214 	if (a->priority != DEFAULT_PRIORITY)
215 		printf("priority %u ", a->priority);
216 	if (a->qlimit != DEFAULT_QLIMIT)
217 		printf("qlimit %u ", a->qlimit);
218 	switch (a->scheduler) {
219 	case ALTQT_CBQ:
220 		print_cbq_opts(a);
221 		break;
222 	case ALTQT_PRIQ:
223 		print_priq_opts(a);
224 		break;
225 	case ALTQT_HFSC:
226 		print_hfsc_opts(a, qopts);
227 		break;
228 	}
229 }
230 
231 /*
232  * eval_pfaltq computes the discipline parameters.
233  */
234 int
235 eval_pfaltq(struct pfctl *pf __unused, struct pf_altq *pa,
236 	    struct node_queue_bw *bw, struct node_queue_opt *opts)
237 {
238 	u_int	rate, size, errors = 0;
239 
240 	if (bw->bw_absolute > 0)
241 		pa->ifbandwidth = bw->bw_absolute;
242 	else
243 		if ((rate = getifspeed(pa->ifname)) == 0) {
244 			fprintf(stderr, "cannot determine interface bandwidth "
245 			    "for %s, specify an absolute bandwidth\n",
246 			    pa->ifname);
247 			errors++;
248 		} else if ((pa->ifbandwidth = eval_bwspec(bw, rate)) == 0)
249 			pa->ifbandwidth = rate;
250 
251 	errors += eval_queue_opts(pa, opts, pa->ifbandwidth);
252 
253 	/* if tbrsize is not specified, use heuristics */
254 	if (pa->tbrsize == 0) {
255 		rate = pa->ifbandwidth;
256 		if (rate <= 1 * 1000 * 1000)
257 			size = 1;
258 		else if (rate <= 10 * 1000 * 1000)
259 			size = 4;
260 		else if (rate <= 200 * 1000 * 1000)
261 			size = 8;
262 		else
263 			size = 24;
264 		size = size * getifmtu(pa->ifname);
265 		if (size > 0xffff)
266 			size = 0xffff;
267 		pa->tbrsize = size;
268 	}
269 	return (errors);
270 }
271 
272 /*
273  * check_commit_altq does consistency check for each interface
274  */
275 int
276 check_commit_altq(int dev, int opts)
277 {
278 	struct pf_altq	*altq;
279 	int		 error = 0;
280 
281 	/* call the discipline check for each interface. */
282 	TAILQ_FOREACH(altq, &altqs, entries) {
283 		if (altq->qname[0] == 0) {
284 			switch (altq->scheduler) {
285 			case ALTQT_CBQ:
286 				error = check_commit_cbq(dev, opts, altq);
287 				break;
288 			case ALTQT_PRIQ:
289 				error = check_commit_priq(dev, opts, altq);
290 				break;
291 			case ALTQT_HFSC:
292 				error = check_commit_hfsc(dev, opts, altq);
293 				break;
294 			default:
295 				break;
296 			}
297 		}
298 	}
299 	return (error);
300 }
301 
302 /*
303  * eval_pfqueue computes the queue parameters.
304  */
305 int
306 eval_pfqueue(struct pfctl *pf, struct pf_altq *pa, struct node_queue_bw *bw,
307     struct node_queue_opt *opts)
308 {
309 	/* should be merged with expand_queue */
310 	struct pf_altq	*if_pa, *parent;
311 	int		 error = 0;
312 
313 	/* find the corresponding interface and copy fields used by queues */
314 	if ((if_pa = pfaltq_lookup(pa->ifname)) == NULL) {
315 		fprintf(stderr, "altq not defined on %s\n", pa->ifname);
316 		return (1);
317 	}
318 	pa->scheduler = if_pa->scheduler;
319 	pa->ifbandwidth = if_pa->ifbandwidth;
320 
321 	if (qname_to_pfaltq(pa->qname, pa->ifname) != NULL) {
322 		fprintf(stderr, "queue %s already exists on interface %s\n",
323 		    pa->qname, pa->ifname);
324 		return (1);
325 	}
326 	pa->qid = qname_to_qid(pa->qname);
327 
328 	parent = NULL;
329 	if (pa->parent[0] != 0) {
330 		parent = qname_to_pfaltq(pa->parent, pa->ifname);
331 		if (parent == NULL) {
332 			fprintf(stderr, "parent %s not found for %s\n",
333 			    pa->parent, pa->qname);
334 			return (1);
335 		}
336 		pa->parent_qid = parent->qid;
337 	}
338 	if (pa->qlimit == 0)
339 		pa->qlimit = DEFAULT_QLIMIT;
340 
341 	if (pa->scheduler == ALTQT_CBQ || pa->scheduler == ALTQT_HFSC) {
342 		if ((pa->bandwidth = eval_bwspec(bw,
343 		    parent == NULL ? 0 : parent->bandwidth)) == 0) {
344 			fprintf(stderr, "bandwidth for %s invalid (%d / %d)\n",
345 			    pa->qname, bw->bw_absolute, bw->bw_percent);
346 			return (1);
347 		}
348 
349 		if (pa->bandwidth > pa->ifbandwidth) {
350 			fprintf(stderr, "bandwidth for %s higher than "
351 			    "interface\n", pa->qname);
352 			return (1);
353 		}
354 		if (parent != NULL && pa->bandwidth > parent->bandwidth) {
355 			fprintf(stderr, "bandwidth for %s higher than parent\n",
356 			    pa->qname);
357 			return (1);
358 		}
359 	}
360 
361 	if (eval_queue_opts(pa, opts, parent == NULL? 0 : parent->bandwidth))
362 		return (1);
363 
364 	switch (pa->scheduler) {
365 	case ALTQT_CBQ:
366 		error = eval_pfqueue_cbq(pf, pa);
367 		break;
368 	case ALTQT_PRIQ:
369 		error = eval_pfqueue_priq(pf, pa);
370 		break;
371 	case ALTQT_HFSC:
372 		error = eval_pfqueue_hfsc(pf, pa);
373 		break;
374 	default:
375 		break;
376 	}
377 	return (error);
378 }
379 
380 /*
381  * CBQ support functions
382  */
383 #define	RM_FILTER_GAIN	5	/* log2 of gain, e.g., 5 => 31/32 */
384 #define	RM_NS_PER_SEC	(1000000000)
385 
386 static int
387 eval_pfqueue_cbq(struct pfctl *pf, struct pf_altq *pa)
388 {
389 	struct cbq_opts	*opts;
390 	u_int		 ifmtu;
391 
392 	if (pa->priority >= CBQ_MAXPRI) {
393 		warnx("priority out of range: max %d", CBQ_MAXPRI - 1);
394 		return (-1);
395 	}
396 
397 	ifmtu = getifmtu(pa->ifname);
398 	opts = &pa->pq_u.cbq_opts;
399 
400 	if (opts->pktsize == 0) {	/* use default */
401 		opts->pktsize = ifmtu;
402 		if (opts->pktsize > MCLBYTES)	/* do what TCP does */
403 			opts->pktsize &= ~MCLBYTES;
404 	} else if (opts->pktsize > ifmtu)
405 		opts->pktsize = ifmtu;
406 	if (opts->maxpktsize == 0)	/* use default */
407 		opts->maxpktsize = ifmtu;
408 	else if (opts->maxpktsize > ifmtu)
409 		opts->pktsize = ifmtu;
410 
411 	if (opts->pktsize > opts->maxpktsize)
412 		opts->pktsize = opts->maxpktsize;
413 
414 	if (pa->parent[0] == 0)
415 		opts->flags |= (CBQCLF_ROOTCLASS | CBQCLF_WRR);
416 
417 	cbq_compute_idletime(pf, pa);
418 	return (0);
419 }
420 
421 /*
422  * compute ns_per_byte, maxidle, minidle, and offtime
423  */
424 static int
425 cbq_compute_idletime(struct pfctl *pf, struct pf_altq *pa)
426 {
427 	struct cbq_opts	*opts;
428 	double		 maxidle_s, maxidle, minidle;
429 	double		 offtime, nsPerByte, ifnsPerByte, ptime, cptime;
430 	double		 z, g, f, gton, gtom;
431 	u_int		 minburst, maxburst;
432 
433 	opts = &pa->pq_u.cbq_opts;
434 	ifnsPerByte = (1.0 / (double)pa->ifbandwidth) * RM_NS_PER_SEC * 8;
435 	minburst = opts->minburst;
436 	maxburst = opts->maxburst;
437 
438 	if (pa->bandwidth == 0)
439 		f = 0.0001;	/* small enough? */
440 	else
441 		f = ((double) pa->bandwidth / (double) pa->ifbandwidth);
442 
443 	nsPerByte = ifnsPerByte / f;
444 	ptime = (double)opts->pktsize * ifnsPerByte;
445 	cptime = ptime * (1.0 - f) / f;
446 
447 	if (nsPerByte * (double)opts->maxpktsize > (double)INT_MAX) {
448 		/*
449 		 * this causes integer overflow in kernel!
450 		 * (bandwidth < 6Kbps when max_pkt_size=1500)
451 		 */
452 		if (pa->bandwidth != 0 && (pf->opts & PF_OPT_QUIET) == 0)
453 			warnx("queue bandwidth must be larger than %s",
454 			    rate2str(ifnsPerByte * (double)opts->maxpktsize /
455 			    (double)INT_MAX * (double)pa->ifbandwidth));
456 			fprintf(stderr, "cbq: queue %s is too slow!\n",
457 			    pa->qname);
458 		nsPerByte = (double)(INT_MAX / opts->maxpktsize);
459 	}
460 
461 	if (maxburst == 0) {  /* use default */
462 		if (cptime > 10.0 * 1000000)
463 			maxburst = 4;
464 		else
465 			maxburst = 16;
466 	}
467 	if (minburst == 0)  /* use default */
468 		minburst = 2;
469 	if (minburst > maxburst)
470 		minburst = maxburst;
471 
472 	z = (double)(1 << RM_FILTER_GAIN);
473 	g = (1.0 - 1.0 / z);
474 	gton = pow(g, (double)maxburst);
475 	gtom = pow(g, (double)(minburst-1));
476 	maxidle = ((1.0 / f - 1.0) * ((1.0 - gton) / gton));
477 	maxidle_s = (1.0 - g);
478 	if (maxidle > maxidle_s)
479 		maxidle = ptime * maxidle;
480 	else
481 		maxidle = ptime * maxidle_s;
482 	if (minburst)
483 		offtime = cptime * (1.0 + 1.0/(1.0 - g) * (1.0 - gtom) / gtom);
484 	else
485 		offtime = cptime;
486 	minidle = -((double)opts->maxpktsize * (double)nsPerByte);
487 
488 	/* scale parameters */
489 	maxidle = ((maxidle * 8.0) / nsPerByte) *
490 	    pow(2.0, (double)RM_FILTER_GAIN);
491 	offtime = (offtime * 8.0) / nsPerByte *
492 	    pow(2.0, (double)RM_FILTER_GAIN);
493 	minidle = ((minidle * 8.0) / nsPerByte) *
494 	    pow(2.0, (double)RM_FILTER_GAIN);
495 
496 	maxidle = maxidle / 1000.0;
497 	offtime = offtime / 1000.0;
498 	minidle = minidle / 1000.0;
499 
500 	opts->minburst = minburst;
501 	opts->maxburst = maxburst;
502 	opts->ns_per_byte = (u_int)nsPerByte;
503 	opts->maxidle = (u_int)fabs(maxidle);
504 	opts->minidle = (int)minidle;
505 	opts->offtime = (u_int)fabs(offtime);
506 
507 	return (0);
508 }
509 
510 static int
511 check_commit_cbq(int dev __unused, int opts __unused, struct pf_altq *pa)
512 {
513 	struct pf_altq	*altq;
514 	int		 root_class, default_class;
515 	int		 error = 0;
516 
517 	/*
518 	 * check if cbq has one root queue and one default queue
519 	 * for this interface
520 	 */
521 	root_class = default_class = 0;
522 	TAILQ_FOREACH(altq, &altqs, entries) {
523 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
524 			continue;
525 		if (altq->qname[0] == 0)  /* this is for interface */
526 			continue;
527 		if (altq->pq_u.cbq_opts.flags & CBQCLF_ROOTCLASS)
528 			root_class++;
529 		if (altq->pq_u.cbq_opts.flags & CBQCLF_DEFCLASS)
530 			default_class++;
531 	}
532 	if (root_class != 1) {
533 		warnx("should have one root queue on %s", pa->ifname);
534 		error++;
535 	}
536 	if (default_class != 1) {
537 		warnx("should have one default queue on %s", pa->ifname);
538 		error++;
539 	}
540 	return (error);
541 }
542 
543 static int
544 print_cbq_opts(const struct pf_altq *a)
545 {
546 	const struct cbq_opts	*opts;
547 
548 	opts = &a->pq_u.cbq_opts;
549 	if (opts->flags) {
550 		printf("cbq(");
551 		if (opts->flags & CBQCLF_RED)
552 			printf(" red");
553 		if (opts->flags & CBQCLF_ECN)
554 			printf(" ecn");
555 		if (opts->flags & CBQCLF_RIO)
556 			printf(" rio");
557 		if (opts->flags & CBQCLF_CLEARDSCP)
558 			printf(" cleardscp");
559 		if (opts->flags & CBQCLF_BORROW)
560 			printf(" borrow");
561 		if (opts->flags & CBQCLF_WRR)
562 			printf(" wrr");
563 		if (opts->flags & CBQCLF_EFFICIENT)
564 			printf(" efficient");
565 		if (opts->flags & CBQCLF_ROOTCLASS)
566 			printf(" root");
567 		if (opts->flags & CBQCLF_DEFCLASS)
568 			printf(" default");
569 		printf(" ) ");
570 
571 		return (1);
572 	} else
573 		return (0);
574 }
575 
576 /*
577  * PRIQ support functions
578  */
579 static int
580 eval_pfqueue_priq(struct pfctl *pf __unused, struct pf_altq *pa)
581 {
582 	struct pf_altq	*altq;
583 
584 	if (pa->priority >= PRIQ_MAXPRI) {
585 		warnx("priority out of range: max %d", PRIQ_MAXPRI - 1);
586 		return (-1);
587 	}
588 	/* the priority should be unique for the interface */
589 	TAILQ_FOREACH(altq, &altqs, entries) {
590 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) == 0 &&
591 		    altq->qname[0] != 0 && altq->priority == pa->priority) {
592 			warnx("%s and %s have the same priority",
593 			    altq->qname, pa->qname);
594 			return (-1);
595 		}
596 	}
597 
598 	return (0);
599 }
600 
601 static int
602 check_commit_priq(int dev __unused, int opts __unused, struct pf_altq *pa)
603 {
604 	struct pf_altq	*altq;
605 	int		 default_class;
606 	int		 error = 0;
607 
608 	/*
609 	 * check if priq has one default class for this interface
610 	 */
611 	default_class = 0;
612 	TAILQ_FOREACH(altq, &altqs, entries) {
613 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
614 			continue;
615 		if (altq->qname[0] == 0)  /* this is for interface */
616 			continue;
617 		if (altq->pq_u.priq_opts.flags & PRCF_DEFAULTCLASS)
618 			default_class++;
619 	}
620 	if (default_class != 1) {
621 		warnx("should have one default queue on %s", pa->ifname);
622 		error++;
623 	}
624 	return (error);
625 }
626 
627 static int
628 print_priq_opts(const struct pf_altq *a)
629 {
630 	const struct priq_opts	*opts;
631 
632 	opts = &a->pq_u.priq_opts;
633 
634 	if (opts->flags) {
635 		printf("priq(");
636 		if (opts->flags & PRCF_RED)
637 			printf(" red");
638 		if (opts->flags & PRCF_ECN)
639 			printf(" ecn");
640 		if (opts->flags & PRCF_RIO)
641 			printf(" rio");
642 		if (opts->flags & PRCF_CLEARDSCP)
643 			printf(" cleardscp");
644 		if (opts->flags & PRCF_DEFAULTCLASS)
645 			printf(" default");
646 		printf(" ) ");
647 
648 		return (1);
649 	} else
650 		return (0);
651 }
652 
653 /*
654  * HFSC support functions
655  */
656 static int
657 eval_pfqueue_hfsc(struct pfctl *pf __unused, struct pf_altq *pa)
658 {
659 	struct pf_altq		*altq, *parent;
660 	struct hfsc_opts	*opts;
661 	struct service_curve	 sc;
662 
663 	opts = &pa->pq_u.hfsc_opts;
664 
665 	if (pa->parent[0] == 0) {
666 		/* root queue */
667 		opts->lssc_m1 = pa->ifbandwidth;
668 		opts->lssc_m2 = pa->ifbandwidth;
669 		opts->lssc_d = 0;
670 		return (0);
671 	}
672 
673 	LIST_INIT(&rtsc);
674 	LIST_INIT(&lssc);
675 
676 	/* if link_share is not specified, use bandwidth */
677 	if (opts->lssc_m2 == 0)
678 		opts->lssc_m2 = pa->bandwidth;
679 
680 	if ((opts->rtsc_m1 > 0 && opts->rtsc_m2 == 0) ||
681 	    (opts->lssc_m1 > 0 && opts->lssc_m2 == 0) ||
682 	    (opts->ulsc_m1 > 0 && opts->ulsc_m2 == 0)) {
683 		warnx("m2 is zero for %s", pa->qname);
684 		return (-1);
685 	}
686 
687 	if ((opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
688 	    (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0) ||
689 	    (opts->rtsc_m1 < opts->rtsc_m2 && opts->rtsc_m1 != 0)) {
690 		warnx("m1 must be zero for convex curve: %s", pa->qname);
691 		return (-1);
692 	}
693 
694 	/*
695 	 * admission control:
696 	 * for the real-time service curve, the sum of the service curves
697 	 * should not exceed 80% of the interface bandwidth.  20% is reserved
698 	 * not to over-commit the actual interface bandwidth.
699 	 * for the link-sharing service curve, the sum of the child service
700 	 * curve should not exceed the parent service curve.
701 	 * for the upper-limit service curve, the assigned bandwidth should
702 	 * be smaller than the interface bandwidth, and the upper-limit should
703 	 * be larger than the real-time service curve when both are defined.
704 	 */
705 	parent = qname_to_pfaltq(pa->parent, pa->ifname);
706 	if (parent == NULL)
707 		errx(1, "parent %s not found for %s", pa->parent, pa->qname);
708 
709 	TAILQ_FOREACH(altq, &altqs, entries) {
710 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
711 			continue;
712 		if (altq->qname[0] == 0)  /* this is for interface */
713 			continue;
714 
715 		/* if the class has a real-time service curve, add it. */
716 		if (opts->rtsc_m2 != 0 && altq->pq_u.hfsc_opts.rtsc_m2 != 0) {
717 			sc.m1 = altq->pq_u.hfsc_opts.rtsc_m1;
718 			sc.d = altq->pq_u.hfsc_opts.rtsc_d;
719 			sc.m2 = altq->pq_u.hfsc_opts.rtsc_m2;
720 			gsc_add_sc(&rtsc, &sc);
721 		}
722 
723 		if (strncmp(altq->parent, pa->parent, PF_QNAME_SIZE) != 0)
724 			continue;
725 
726 		/* if the class has a link-sharing service curve, add it. */
727 		if (opts->lssc_m2 != 0 && altq->pq_u.hfsc_opts.lssc_m2 != 0) {
728 			sc.m1 = altq->pq_u.hfsc_opts.lssc_m1;
729 			sc.d = altq->pq_u.hfsc_opts.lssc_d;
730 			sc.m2 = altq->pq_u.hfsc_opts.lssc_m2;
731 			gsc_add_sc(&lssc, &sc);
732 		}
733 	}
734 
735 	/* check the real-time service curve.  reserve 20% of interface bw */
736 	if (opts->rtsc_m2 != 0) {
737 		sc.m1 = 0;
738 		sc.d = 0;
739 		sc.m2 = pa->ifbandwidth / 100 * 80;
740 		if (!is_gsc_under_sc(&rtsc, &sc)) {
741 			warnx("real-time sc exceeds the interface bandwidth");
742 			goto err_ret;
743 		}
744 	}
745 
746 	/* check the link-sharing service curve. */
747 	if (opts->lssc_m2 != 0) {
748 		sc.m1 = parent->pq_u.hfsc_opts.lssc_m1;
749 		sc.d = parent->pq_u.hfsc_opts.lssc_d;
750 		sc.m2 = parent->pq_u.hfsc_opts.lssc_m2;
751 		if (!is_gsc_under_sc(&lssc, &sc)) {
752 			warnx("link-sharing sc exceeds parent's sc");
753 			goto err_ret;
754 		}
755 	}
756 
757 	/* check the upper-limit service curve. */
758 	if (opts->ulsc_m2 != 0) {
759 		if (opts->ulsc_m1 > pa->ifbandwidth ||
760 		    opts->ulsc_m2 > pa->ifbandwidth) {
761 			warnx("upper-limit larger than interface bandwidth");
762 			goto err_ret;
763 		}
764 		if (opts->rtsc_m2 != 0 && opts->rtsc_m2 > opts->ulsc_m2) {
765 			warnx("upper-limit sc smaller than real-time sc");
766 			goto err_ret;
767 		}
768 	}
769 
770 	gsc_destroy(&rtsc);
771 	gsc_destroy(&lssc);
772 
773 	return (0);
774 
775 err_ret:
776 	gsc_destroy(&rtsc);
777 	gsc_destroy(&lssc);
778 	return (-1);
779 }
780 
781 static int
782 check_commit_hfsc(int dev __unused, int opts __unused, struct pf_altq *pa)
783 {
784 	struct pf_altq	*altq, *def = NULL;
785 	int		 default_class;
786 	int		 error = 0;
787 
788 	/* check if hfsc has one default queue for this interface */
789 	default_class = 0;
790 	TAILQ_FOREACH(altq, &altqs, entries) {
791 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
792 			continue;
793 		if (altq->qname[0] == 0)  /* this is for interface */
794 			continue;
795 		if (altq->parent[0] == 0)  /* dummy root */
796 			continue;
797 		if (altq->pq_u.hfsc_opts.flags & HFCF_DEFAULTCLASS) {
798 			default_class++;
799 			def = altq;
800 		}
801 	}
802 	if (default_class != 1) {
803 		warnx("should have one default queue on %s", pa->ifname);
804 		return (1);
805 	}
806 	/* make sure the default queue is a leaf */
807 	TAILQ_FOREACH(altq, &altqs, entries) {
808 		if (strncmp(altq->ifname, pa->ifname, IFNAMSIZ) != 0)
809 			continue;
810 		if (altq->qname[0] == 0)  /* this is for interface */
811 			continue;
812 		if (strncmp(altq->parent, def->qname, PF_QNAME_SIZE) == 0) {
813 			warnx("default queue is not a leaf");
814 			error++;
815 		}
816 	}
817 	return (error);
818 }
819 
820 static int
821 print_hfsc_opts(const struct pf_altq *a, const struct node_queue_opt *qopts)
822 {
823 	const struct hfsc_opts		*opts;
824 	const struct node_hfsc_sc	*loc_rtsc, *loc_lssc, *ulsc;
825 
826 	opts = &a->pq_u.hfsc_opts;
827 	if (qopts == NULL)
828 		loc_rtsc = loc_lssc = ulsc = NULL;
829 	else {
830 		loc_rtsc = &qopts->data.hfsc_opts.realtime;
831 		loc_lssc = &qopts->data.hfsc_opts.linkshare;
832 		ulsc = &qopts->data.hfsc_opts.upperlimit;
833 	}
834 
835 	if (opts->flags || opts->rtsc_m2 != 0 || opts->ulsc_m2 != 0 ||
836 	    (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
837 	    opts->lssc_d != 0))) {
838 		printf("hfsc(");
839 		if (opts->flags & HFCF_RED)
840 			printf(" red");
841 		if (opts->flags & HFCF_ECN)
842 			printf(" ecn");
843 		if (opts->flags & HFCF_RIO)
844 			printf(" rio");
845 		if (opts->flags & HFCF_CLEARDSCP)
846 			printf(" cleardscp");
847 		if (opts->flags & HFCF_DEFAULTCLASS)
848 			printf(" default");
849 		if (opts->rtsc_m2 != 0)
850 			print_hfsc_sc("realtime", opts->rtsc_m1, opts->rtsc_d,
851 			    opts->rtsc_m2, loc_rtsc);
852 		if (opts->lssc_m2 != 0 && (opts->lssc_m2 != a->bandwidth ||
853 		    opts->lssc_d != 0))
854 			print_hfsc_sc("linkshare", opts->lssc_m1, opts->lssc_d,
855 			    opts->lssc_m2, loc_lssc);
856 		if (opts->ulsc_m2 != 0)
857 			print_hfsc_sc("upperlimit", opts->ulsc_m1, opts->ulsc_d,
858 			    opts->ulsc_m2, ulsc);
859 		printf(" ) ");
860 
861 		return (1);
862 	} else
863 		return (0);
864 }
865 
866 /*
867  * admission control using generalized service curve
868  */
869 #define	INFINITY	HUGE_VAL  /* positive infinity defined in <math.h> */
870 
871 /* add a new service curve to a generalized service curve */
872 static void
873 gsc_add_sc(struct gen_sc *gsc, struct service_curve *sc)
874 {
875 	if (is_sc_null(sc))
876 		return;
877 	if (sc->d != 0)
878 		gsc_add_seg(gsc, 0.0, 0.0, (double)sc->d, (double)sc->m1);
879 	gsc_add_seg(gsc, (double)sc->d, 0.0, INFINITY, (double)sc->m2);
880 }
881 
882 /*
883  * check whether all points of a generalized service curve have
884  * their y-coordinates no larger than a given two-piece linear
885  * service curve.
886  */
887 static int
888 is_gsc_under_sc(struct gen_sc *gsc, struct service_curve *sc)
889 {
890 	struct segment	*s, *last, *end;
891 	double		 y;
892 
893 	if (is_sc_null(sc)) {
894 		if (LIST_EMPTY(gsc))
895 			return (1);
896 		LIST_FOREACH(s, gsc, _next) {
897 			if (s->m != 0)
898 				return (0);
899 		}
900 		return (1);
901 	}
902 	/*
903 	 * gsc has a dummy entry at the end with x = INFINITY.
904 	 * loop through up to this dummy entry.
905 	 */
906 	end = gsc_getentry(gsc, INFINITY);
907 	if (end == NULL)
908 		return (1);
909 	last = NULL;
910 	for (s = LIST_FIRST(gsc); s != end; s = LIST_NEXT(s, _next)) {
911 		if (s->y > sc_x2y(sc, s->x))
912 			return (0);
913 		last = s;
914 	}
915 	/* last now holds the real last segment */
916 	if (last == NULL)
917 		return (1);
918 	if (last->m > sc->m2)
919 		return (0);
920 	if (last->x < sc->d && last->m > sc->m1) {
921 		y = last->y + (sc->d - last->x) * last->m;
922 		if (y > sc_x2y(sc, sc->d))
923 			return (0);
924 	}
925 	return (1);
926 }
927 
928 static void
929 gsc_destroy(struct gen_sc *gsc)
930 {
931 	struct segment	*s;
932 
933 	while ((s = LIST_FIRST(gsc)) != NULL) {
934 		LIST_REMOVE(s, _next);
935 		free(s);
936 	}
937 }
938 
939 /*
940  * return a segment entry starting at x.
941  * if gsc has no entry starting at x, a new entry is created at x.
942  */
943 static struct segment *
944 gsc_getentry(struct gen_sc *gsc, double x)
945 {
946 	struct segment	*new, *prev, *s;
947 
948 	prev = NULL;
949 	LIST_FOREACH(s, gsc, _next) {
950 		if (s->x == x)
951 			return (s);	/* matching entry found */
952 		else if (s->x < x)
953 			prev = s;
954 		else
955 			break;
956 	}
957 
958 	/* we have to create a new entry */
959 	if ((new = calloc(1, sizeof(struct segment))) == NULL)
960 		return (NULL);
961 
962 	new->x = x;
963 	if (x == INFINITY || s == NULL)
964 		new->d = 0;
965 	else if (s->x == INFINITY)
966 		new->d = INFINITY;
967 	else
968 		new->d = s->x - x;
969 	if (prev == NULL) {
970 		/* insert the new entry at the head of the list */
971 		new->y = 0;
972 		new->m = 0;
973 		LIST_INSERT_HEAD(gsc, new, _next);
974 	} else {
975 		/*
976 		 * the start point intersects with the segment pointed by
977 		 * prev.  divide prev into 2 segments
978 		 */
979 		if (x == INFINITY) {
980 			prev->d = INFINITY;
981 			if (prev->m == 0)
982 				new->y = prev->y;
983 			else
984 				new->y = INFINITY;
985 		} else {
986 			prev->d = x - prev->x;
987 			new->y = prev->d * prev->m + prev->y;
988 		}
989 		new->m = prev->m;
990 		LIST_INSERT_AFTER(prev, new, _next);
991 	}
992 	return (new);
993 }
994 
995 /* add a segment to a generalized service curve */
996 static int
997 gsc_add_seg(struct gen_sc *gsc, double x, double y, double d, double m)
998 {
999 	struct segment	*start, *end, *s;
1000 	double		 x2;
1001 
1002 	if (d == INFINITY)
1003 		x2 = INFINITY;
1004 	else
1005 		x2 = x + d;
1006 	start = gsc_getentry(gsc, x);
1007 	end = gsc_getentry(gsc, x2);
1008 	if (start == NULL || end == NULL)
1009 		return (-1);
1010 
1011 	for (s = start; s != end; s = LIST_NEXT(s, _next)) {
1012 		s->m += m;
1013 		s->y += y + (s->x - x) * m;
1014 	}
1015 
1016 	end = gsc_getentry(gsc, INFINITY);
1017 	for (; s != end; s = LIST_NEXT(s, _next)) {
1018 		s->y += m * d;
1019 	}
1020 
1021 	return (0);
1022 }
1023 
1024 /* get y-projection of a service curve */
1025 static double
1026 sc_x2y(struct service_curve *sc, double x)
1027 {
1028 	double	y;
1029 
1030 	if (x <= (double)sc->d)
1031 		/* y belongs to the 1st segment */
1032 		y = x * (double)sc->m1;
1033 	else
1034 		/* y belongs to the 2nd segment */
1035 		y = (double)sc->d * (double)sc->m1
1036 			+ (x - (double)sc->d) * (double)sc->m2;
1037 	return (y);
1038 }
1039 
1040 /*
1041  * misc utilities
1042  */
1043 #define	R2S_BUFS	8
1044 #define	RATESTR_MAX	16
1045 
1046 char *
1047 rate2str(double rate)
1048 {
1049 	char		*buf;
1050 	static char	 r2sbuf[R2S_BUFS][RATESTR_MAX];  /* ring bufer */
1051 	static int	 idx = 0;
1052 	int		 i;
1053 	static const char unit[] = " KMG";
1054 
1055 	buf = r2sbuf[idx++];
1056 	if (idx == R2S_BUFS)
1057 		idx = 0;
1058 
1059 	for (i = 0; rate >= 1000 && i <= 3; i++)
1060 		rate /= 1000;
1061 
1062 	if ((int)(rate * 100) % 100)
1063 		snprintf(buf, RATESTR_MAX, "%.2f%cb", rate, unit[i]);
1064 	else
1065 		snprintf(buf, RATESTR_MAX, "%d%cb", (int)rate, unit[i]);
1066 
1067 	return (buf);
1068 }
1069 
1070 u_int32_t
1071 getifspeed(const char *ifname)
1072 {
1073 	size_t datalen;
1074 	int idx;
1075 	struct ifmibdata data;
1076 	int name[] = {
1077 		CTL_NET,
1078 		PF_LINK,
1079 		NETLINK_GENERIC,
1080 		IFMIB_IFDATA,
1081 		0,
1082 		IFDATA_GENERAL
1083 	};
1084 
1085 	if ((idx = (int)if_nametoindex(ifname)) == 0)
1086 		err(1, "getifspeed: if_nametoindex");
1087 	name[4] = idx;
1088 
1089 	datalen = sizeof(data);
1090 	if (sysctl(name, 6, &data, &datalen, NULL, 0))
1091 		err(1, "getifspeed: sysctl");
1092 
1093 	return(data.ifmd_data.ifi_baudrate);
1094 }
1095 
1096 u_long
1097 getifmtu(char *ifname)
1098 {
1099 	int		s;
1100 	struct ifreq	ifr;
1101 
1102 	if ((s = socket(AF_INET, SOCK_DGRAM, 0)) < 0)
1103 		err(1, "socket");
1104 	if (strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name)) >=
1105 	    sizeof(ifr.ifr_name))
1106 		errx(1, "getifmtu: strlcpy");
1107 	if (ioctl(s, SIOCGIFMTU, (caddr_t)&ifr) == -1)
1108 		err(1, "SIOCGIFMTU");
1109 	if (shutdown(s, SHUT_RDWR) == -1)
1110 		err(1, "shutdown");
1111 	if (close(s))
1112 		err(1, "close");
1113 	if (ifr.ifr_mtu > 0)
1114 		return (ifr.ifr_mtu);
1115 	else {
1116 		warnx("could not get mtu for %s, assuming 1500", ifname);
1117 		return (1500);
1118 	}
1119 }
1120 
1121 int
1122 eval_queue_opts(struct pf_altq *pa, struct node_queue_opt *opts,
1123     u_int32_t ref_bw)
1124 {
1125 	int	errors = 0;
1126 
1127 	switch (pa->scheduler) {
1128 	case ALTQT_CBQ:
1129 		pa->pq_u.cbq_opts = opts->data.cbq_opts;
1130 		break;
1131 	case ALTQT_PRIQ:
1132 		pa->pq_u.priq_opts = opts->data.priq_opts;
1133 		break;
1134 	case ALTQT_HFSC:
1135 		pa->pq_u.hfsc_opts.flags = opts->data.hfsc_opts.flags;
1136 		if (opts->data.hfsc_opts.linkshare.used) {
1137 			pa->pq_u.hfsc_opts.lssc_m1 =
1138 			    eval_bwspec(&opts->data.hfsc_opts.linkshare.m1,
1139 			    ref_bw);
1140 			pa->pq_u.hfsc_opts.lssc_m2 =
1141 			    eval_bwspec(&opts->data.hfsc_opts.linkshare.m2,
1142 			    ref_bw);
1143 			pa->pq_u.hfsc_opts.lssc_d =
1144 			    opts->data.hfsc_opts.linkshare.d;
1145 		}
1146 		if (opts->data.hfsc_opts.realtime.used) {
1147 			pa->pq_u.hfsc_opts.rtsc_m1 =
1148 			    eval_bwspec(&opts->data.hfsc_opts.realtime.m1,
1149 			    ref_bw);
1150 			pa->pq_u.hfsc_opts.rtsc_m2 =
1151 			    eval_bwspec(&opts->data.hfsc_opts.realtime.m2,
1152 			    ref_bw);
1153 			pa->pq_u.hfsc_opts.rtsc_d =
1154 			    opts->data.hfsc_opts.realtime.d;
1155 		}
1156 		if (opts->data.hfsc_opts.upperlimit.used) {
1157 			pa->pq_u.hfsc_opts.ulsc_m1 =
1158 			    eval_bwspec(&opts->data.hfsc_opts.upperlimit.m1,
1159 			    ref_bw);
1160 			pa->pq_u.hfsc_opts.ulsc_m2 =
1161 			    eval_bwspec(&opts->data.hfsc_opts.upperlimit.m2,
1162 			    ref_bw);
1163 			pa->pq_u.hfsc_opts.ulsc_d =
1164 			    opts->data.hfsc_opts.upperlimit.d;
1165 		}
1166 		break;
1167 	default:
1168 		warnx("eval_queue_opts: unknown scheduler type %u",
1169 		    opts->qtype);
1170 		errors++;
1171 		break;
1172 	}
1173 
1174 	return (errors);
1175 }
1176 
1177 u_int32_t
1178 eval_bwspec(struct node_queue_bw *bw, u_int32_t ref_bw)
1179 {
1180 	if (bw->bw_absolute > 0)
1181 		return (bw->bw_absolute);
1182 
1183 	if (bw->bw_percent > 0)
1184 		return (ref_bw / 100 * bw->bw_percent);
1185 
1186 	return (0);
1187 }
1188 
1189 void
1190 print_hfsc_sc(const char *scname, u_int m1, u_int d, u_int m2,
1191     const struct node_hfsc_sc *sc)
1192 {
1193 	printf(" %s", scname);
1194 
1195 	if (d != 0) {
1196 		printf("(");
1197 		if (sc != NULL && sc->m1.bw_percent > 0)
1198 			printf("%u%%", sc->m1.bw_percent);
1199 		else
1200 			printf("%s", rate2str((double)m1));
1201 		printf(" %u", d);
1202 	}
1203 
1204 	if (sc != NULL && sc->m2.bw_percent > 0)
1205 		printf(" %u%%", sc->m2.bw_percent);
1206 	else
1207 		printf(" %s", rate2str((double)m2));
1208 
1209 	if (d != 0)
1210 		printf(")");
1211 }
1212