1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013, Joyent, Inc. All rights reserved.
28  * Copyright (c) 2012 by Delphix. All rights reserved.
29  */
30 
31 #include <stdlib.h>
32 #include <strings.h>
33 #include <errno.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <assert.h>
37 #include <ctype.h>
38 #ifdef illumos
39 #include <alloca.h>
40 #endif
41 #include <dt_impl.h>
42 #include <dt_pq.h>
43 #ifndef illumos
44 #include <libproc_compat.h>
45 #endif
46 
47 #define	DT_MASK_LO 0x00000000FFFFFFFFULL
48 
49 /*
50  * We declare this here because (1) we need it and (2) we want to avoid a
51  * dependency on libm in libdtrace.
52  */
53 static long double
54 dt_fabsl(long double x)
55 {
56 	if (x < 0)
57 		return (-x);
58 
59 	return (x);
60 }
61 
62 static int
63 dt_ndigits(long long val)
64 {
65 	int rval = 1;
66 	long long cmp = 10;
67 
68 	if (val < 0) {
69 		val = val == INT64_MIN ? INT64_MAX : -val;
70 		rval++;
71 	}
72 
73 	while (val > cmp && cmp > 0) {
74 		rval++;
75 		cmp *= 10;
76 	}
77 
78 	return (rval < 4 ? 4 : rval);
79 }
80 
81 /*
82  * 128-bit arithmetic functions needed to support the stddev() aggregating
83  * action.
84  */
85 static int
86 dt_gt_128(uint64_t *a, uint64_t *b)
87 {
88 	return (a[1] > b[1] || (a[1] == b[1] && a[0] > b[0]));
89 }
90 
91 static int
92 dt_ge_128(uint64_t *a, uint64_t *b)
93 {
94 	return (a[1] > b[1] || (a[1] == b[1] && a[0] >= b[0]));
95 }
96 
97 static int
98 dt_le_128(uint64_t *a, uint64_t *b)
99 {
100 	return (a[1] < b[1] || (a[1] == b[1] && a[0] <= b[0]));
101 }
102 
103 /*
104  * Shift the 128-bit value in a by b. If b is positive, shift left.
105  * If b is negative, shift right.
106  */
107 static void
108 dt_shift_128(uint64_t *a, int b)
109 {
110 	uint64_t mask;
111 
112 	if (b == 0)
113 		return;
114 
115 	if (b < 0) {
116 		b = -b;
117 		if (b >= 64) {
118 			a[0] = a[1] >> (b - 64);
119 			a[1] = 0;
120 		} else {
121 			a[0] >>= b;
122 			mask = 1LL << (64 - b);
123 			mask -= 1;
124 			a[0] |= ((a[1] & mask) << (64 - b));
125 			a[1] >>= b;
126 		}
127 	} else {
128 		if (b >= 64) {
129 			a[1] = a[0] << (b - 64);
130 			a[0] = 0;
131 		} else {
132 			a[1] <<= b;
133 			mask = a[0] >> (64 - b);
134 			a[1] |= mask;
135 			a[0] <<= b;
136 		}
137 	}
138 }
139 
140 static int
141 dt_nbits_128(uint64_t *a)
142 {
143 	int nbits = 0;
144 	uint64_t tmp[2];
145 	uint64_t zero[2] = { 0, 0 };
146 
147 	tmp[0] = a[0];
148 	tmp[1] = a[1];
149 
150 	dt_shift_128(tmp, -1);
151 	while (dt_gt_128(tmp, zero)) {
152 		dt_shift_128(tmp, -1);
153 		nbits++;
154 	}
155 
156 	return (nbits);
157 }
158 
159 static void
160 dt_subtract_128(uint64_t *minuend, uint64_t *subtrahend, uint64_t *difference)
161 {
162 	uint64_t result[2];
163 
164 	result[0] = minuend[0] - subtrahend[0];
165 	result[1] = minuend[1] - subtrahend[1] -
166 	    (minuend[0] < subtrahend[0] ? 1 : 0);
167 
168 	difference[0] = result[0];
169 	difference[1] = result[1];
170 }
171 
172 static void
173 dt_add_128(uint64_t *addend1, uint64_t *addend2, uint64_t *sum)
174 {
175 	uint64_t result[2];
176 
177 	result[0] = addend1[0] + addend2[0];
178 	result[1] = addend1[1] + addend2[1] +
179 	    (result[0] < addend1[0] || result[0] < addend2[0] ? 1 : 0);
180 
181 	sum[0] = result[0];
182 	sum[1] = result[1];
183 }
184 
185 /*
186  * The basic idea is to break the 2 64-bit values into 4 32-bit values,
187  * use native multiplication on those, and then re-combine into the
188  * resulting 128-bit value.
189  *
190  * (hi1 << 32 + lo1) * (hi2 << 32 + lo2) =
191  *     hi1 * hi2 << 64 +
192  *     hi1 * lo2 << 32 +
193  *     hi2 * lo1 << 32 +
194  *     lo1 * lo2
195  */
196 static void
197 dt_multiply_128(uint64_t factor1, uint64_t factor2, uint64_t *product)
198 {
199 	uint64_t hi1, hi2, lo1, lo2;
200 	uint64_t tmp[2];
201 
202 	hi1 = factor1 >> 32;
203 	hi2 = factor2 >> 32;
204 
205 	lo1 = factor1 & DT_MASK_LO;
206 	lo2 = factor2 & DT_MASK_LO;
207 
208 	product[0] = lo1 * lo2;
209 	product[1] = hi1 * hi2;
210 
211 	tmp[0] = hi1 * lo2;
212 	tmp[1] = 0;
213 	dt_shift_128(tmp, 32);
214 	dt_add_128(product, tmp, product);
215 
216 	tmp[0] = hi2 * lo1;
217 	tmp[1] = 0;
218 	dt_shift_128(tmp, 32);
219 	dt_add_128(product, tmp, product);
220 }
221 
222 /*
223  * This is long-hand division.
224  *
225  * We initialize subtrahend by shifting divisor left as far as possible. We
226  * loop, comparing subtrahend to dividend:  if subtrahend is smaller, we
227  * subtract and set the appropriate bit in the result.  We then shift
228  * subtrahend right by one bit for the next comparison.
229  */
230 static void
231 dt_divide_128(uint64_t *dividend, uint64_t divisor, uint64_t *quotient)
232 {
233 	uint64_t result[2] = { 0, 0 };
234 	uint64_t remainder[2];
235 	uint64_t subtrahend[2];
236 	uint64_t divisor_128[2];
237 	uint64_t mask[2] = { 1, 0 };
238 	int log = 0;
239 
240 	assert(divisor != 0);
241 
242 	divisor_128[0] = divisor;
243 	divisor_128[1] = 0;
244 
245 	remainder[0] = dividend[0];
246 	remainder[1] = dividend[1];
247 
248 	subtrahend[0] = divisor;
249 	subtrahend[1] = 0;
250 
251 	while (divisor > 0) {
252 		log++;
253 		divisor >>= 1;
254 	}
255 
256 	dt_shift_128(subtrahend, 128 - log);
257 	dt_shift_128(mask, 128 - log);
258 
259 	while (dt_ge_128(remainder, divisor_128)) {
260 		if (dt_ge_128(remainder, subtrahend)) {
261 			dt_subtract_128(remainder, subtrahend, remainder);
262 			result[0] |= mask[0];
263 			result[1] |= mask[1];
264 		}
265 
266 		dt_shift_128(subtrahend, -1);
267 		dt_shift_128(mask, -1);
268 	}
269 
270 	quotient[0] = result[0];
271 	quotient[1] = result[1];
272 }
273 
274 /*
275  * This is the long-hand method of calculating a square root.
276  * The algorithm is as follows:
277  *
278  * 1. Group the digits by 2 from the right.
279  * 2. Over the leftmost group, find the largest single-digit number
280  *    whose square is less than that group.
281  * 3. Subtract the result of the previous step (2 or 4, depending) and
282  *    bring down the next two-digit group.
283  * 4. For the result R we have so far, find the largest single-digit number
284  *    x such that 2 * R * 10 * x + x^2 is less than the result from step 3.
285  *    (Note that this is doubling R and performing a decimal left-shift by 1
286  *    and searching for the appropriate decimal to fill the one's place.)
287  *    The value x is the next digit in the square root.
288  * Repeat steps 3 and 4 until the desired precision is reached.  (We're
289  * dealing with integers, so the above is sufficient.)
290  *
291  * In decimal, the square root of 582,734 would be calculated as so:
292  *
293  *     __7__6__3
294  *    | 58 27 34
295  *     -49       (7^2 == 49 => 7 is the first digit in the square root)
296  *      --
297  *       9 27    (Subtract and bring down the next group.)
298  * 146   8 76    (2 * 7 * 10 * 6 + 6^2 == 876 => 6 is the next digit in
299  *      -----     the square root)
300  *         51 34 (Subtract and bring down the next group.)
301  * 1523    45 69 (2 * 76 * 10 * 3 + 3^2 == 4569 => 3 is the next digit in
302  *         -----  the square root)
303  *          5 65 (remainder)
304  *
305  * The above algorithm applies similarly in binary, but note that the
306  * only possible non-zero value for x in step 4 is 1, so step 4 becomes a
307  * simple decision: is 2 * R * 2 * 1 + 1^2 (aka R << 2 + 1) less than the
308  * preceding difference?
309  *
310  * In binary, the square root of 11011011 would be calculated as so:
311  *
312  *     __1__1__1__0
313  *    | 11 01 10 11
314  *      01          (0 << 2 + 1 == 1 < 11 => this bit is 1)
315  *      --
316  *      10 01 10 11
317  * 101   1 01       (1 << 2 + 1 == 101 < 1001 => next bit is 1)
318  *      -----
319  *       1 00 10 11
320  * 1101    11 01    (11 << 2 + 1 == 1101 < 10010 => next bit is 1)
321  *       -------
322  *          1 01 11
323  * 11101    1 11 01 (111 << 2 + 1 == 11101 > 10111 => last bit is 0)
324  *
325  */
326 static uint64_t
327 dt_sqrt_128(uint64_t *square)
328 {
329 	uint64_t result[2] = { 0, 0 };
330 	uint64_t diff[2] = { 0, 0 };
331 	uint64_t one[2] = { 1, 0 };
332 	uint64_t next_pair[2];
333 	uint64_t next_try[2];
334 	uint64_t bit_pairs, pair_shift;
335 	int i;
336 
337 	bit_pairs = dt_nbits_128(square) / 2;
338 	pair_shift = bit_pairs * 2;
339 
340 	for (i = 0; i <= bit_pairs; i++) {
341 		/*
342 		 * Bring down the next pair of bits.
343 		 */
344 		next_pair[0] = square[0];
345 		next_pair[1] = square[1];
346 		dt_shift_128(next_pair, -pair_shift);
347 		next_pair[0] &= 0x3;
348 		next_pair[1] = 0;
349 
350 		dt_shift_128(diff, 2);
351 		dt_add_128(diff, next_pair, diff);
352 
353 		/*
354 		 * next_try = R << 2 + 1
355 		 */
356 		next_try[0] = result[0];
357 		next_try[1] = result[1];
358 		dt_shift_128(next_try, 2);
359 		dt_add_128(next_try, one, next_try);
360 
361 		if (dt_le_128(next_try, diff)) {
362 			dt_subtract_128(diff, next_try, diff);
363 			dt_shift_128(result, 1);
364 			dt_add_128(result, one, result);
365 		} else {
366 			dt_shift_128(result, 1);
367 		}
368 
369 		pair_shift -= 2;
370 	}
371 
372 	assert(result[1] == 0);
373 
374 	return (result[0]);
375 }
376 
377 uint64_t
378 dt_stddev(uint64_t *data, uint64_t normal)
379 {
380 	uint64_t avg_of_squares[2];
381 	uint64_t square_of_avg[2];
382 	int64_t norm_avg;
383 	uint64_t diff[2];
384 
385 	if (data[0] == 0)
386 		return (0);
387 
388 	/*
389 	 * The standard approximation for standard deviation is
390 	 * sqrt(average(x**2) - average(x)**2), i.e. the square root
391 	 * of the average of the squares minus the square of the average.
392 	 * When normalizing, we should divide the sum of x**2 by normal**2.
393 	 */
394 	dt_divide_128(data + 2, normal, avg_of_squares);
395 	dt_divide_128(avg_of_squares, normal, avg_of_squares);
396 	dt_divide_128(avg_of_squares, data[0], avg_of_squares);
397 
398 	norm_avg = (int64_t)data[1] / (int64_t)normal / (int64_t)data[0];
399 
400 	if (norm_avg < 0)
401 		norm_avg = -norm_avg;
402 
403 	dt_multiply_128((uint64_t)norm_avg, (uint64_t)norm_avg, square_of_avg);
404 
405 	dt_subtract_128(avg_of_squares, square_of_avg, diff);
406 
407 	return (dt_sqrt_128(diff));
408 }
409 
410 static int
411 dt_flowindent(dtrace_hdl_t *dtp, dtrace_probedata_t *data, dtrace_epid_t last,
412     dtrace_bufdesc_t *buf, size_t offs)
413 {
414 	dtrace_probedesc_t *pd = data->dtpda_pdesc, *npd;
415 	dtrace_eprobedesc_t *epd = data->dtpda_edesc, *nepd;
416 	char *p = pd->dtpd_provider, *n = pd->dtpd_name, *sub;
417 	dtrace_flowkind_t flow = DTRACEFLOW_NONE;
418 	const char *str = NULL;
419 	static const char *e_str[2] = { " -> ", " => " };
420 	static const char *r_str[2] = { " <- ", " <= " };
421 	static const char *ent = "entry", *ret = "return";
422 	static int entlen = 0, retlen = 0;
423 	dtrace_epid_t next, id = epd->dtepd_epid;
424 	int rval;
425 
426 	if (entlen == 0) {
427 		assert(retlen == 0);
428 		entlen = strlen(ent);
429 		retlen = strlen(ret);
430 	}
431 
432 	/*
433 	 * If the name of the probe is "entry" or ends with "-entry", we
434 	 * treat it as an entry; if it is "return" or ends with "-return",
435 	 * we treat it as a return.  (This allows application-provided probes
436 	 * like "method-entry" or "function-entry" to participate in flow
437 	 * indentation -- without accidentally misinterpreting popular probe
438 	 * names like "carpentry", "gentry" or "Coventry".)
439 	 */
440 	if ((sub = strstr(n, ent)) != NULL && sub[entlen] == '\0' &&
441 	    (sub == n || sub[-1] == '-')) {
442 		flow = DTRACEFLOW_ENTRY;
443 		str = e_str[strcmp(p, "syscall") == 0];
444 	} else if ((sub = strstr(n, ret)) != NULL && sub[retlen] == '\0' &&
445 	    (sub == n || sub[-1] == '-')) {
446 		flow = DTRACEFLOW_RETURN;
447 		str = r_str[strcmp(p, "syscall") == 0];
448 	}
449 
450 	/*
451 	 * If we're going to indent this, we need to check the ID of our last
452 	 * call.  If we're looking at the same probe ID but a different EPID,
453 	 * we _don't_ want to indent.  (Yes, there are some minor holes in
454 	 * this scheme -- it's a heuristic.)
455 	 */
456 	if (flow == DTRACEFLOW_ENTRY) {
457 		if ((last != DTRACE_EPIDNONE && id != last &&
458 		    pd->dtpd_id == dtp->dt_pdesc[last]->dtpd_id))
459 			flow = DTRACEFLOW_NONE;
460 	}
461 
462 	/*
463 	 * If we're going to unindent this, it's more difficult to see if
464 	 * we don't actually want to unindent it -- we need to look at the
465 	 * _next_ EPID.
466 	 */
467 	if (flow == DTRACEFLOW_RETURN) {
468 		offs += epd->dtepd_size;
469 
470 		do {
471 			if (offs >= buf->dtbd_size)
472 				goto out;
473 
474 			next = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
475 
476 			if (next == DTRACE_EPIDNONE)
477 				offs += sizeof (id);
478 		} while (next == DTRACE_EPIDNONE);
479 
480 		if ((rval = dt_epid_lookup(dtp, next, &nepd, &npd)) != 0)
481 			return (rval);
482 
483 		if (next != id && npd->dtpd_id == pd->dtpd_id)
484 			flow = DTRACEFLOW_NONE;
485 	}
486 
487 out:
488 	if (flow == DTRACEFLOW_ENTRY || flow == DTRACEFLOW_RETURN) {
489 		data->dtpda_prefix = str;
490 	} else {
491 		data->dtpda_prefix = "| ";
492 	}
493 
494 	if (flow == DTRACEFLOW_RETURN && data->dtpda_indent > 0)
495 		data->dtpda_indent -= 2;
496 
497 	data->dtpda_flow = flow;
498 
499 	return (0);
500 }
501 
502 static int
503 dt_nullprobe()
504 {
505 	return (DTRACE_CONSUME_THIS);
506 }
507 
508 static int
509 dt_nullrec()
510 {
511 	return (DTRACE_CONSUME_NEXT);
512 }
513 
514 static void
515 dt_quantize_total(dtrace_hdl_t *dtp, int64_t datum, long double *total)
516 {
517 	long double val = dt_fabsl((long double)datum);
518 
519 	if (dtp->dt_options[DTRACEOPT_AGGZOOM] == DTRACEOPT_UNSET) {
520 		*total += val;
521 		return;
522 	}
523 
524 	/*
525 	 * If we're zooming in on an aggregation, we want the height of the
526 	 * highest value to be approximately 95% of total bar height -- so we
527 	 * adjust up by the reciprocal of DTRACE_AGGZOOM_MAX when comparing to
528 	 * our highest value.
529 	 */
530 	val *= 1 / DTRACE_AGGZOOM_MAX;
531 
532 	if (*total < val)
533 		*total = val;
534 }
535 
536 static int
537 dt_print_quanthdr(dtrace_hdl_t *dtp, FILE *fp, int width)
538 {
539 	return (dt_printf(dtp, fp, "\n%*s %41s %-9s\n",
540 	    width ? width : 16, width ? "key" : "value",
541 	    "------------- Distribution -------------", "count"));
542 }
543 
544 static int
545 dt_print_quanthdr_packed(dtrace_hdl_t *dtp, FILE *fp, int width,
546     const dtrace_aggdata_t *aggdata, dtrace_actkind_t action)
547 {
548 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin;
549 	int minwidth, maxwidth, i;
550 
551 	assert(action == DTRACEAGG_QUANTIZE || action == DTRACEAGG_LQUANTIZE);
552 
553 	if (action == DTRACEAGG_QUANTIZE) {
554 		if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
555 			min--;
556 
557 		if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
558 			max++;
559 
560 		minwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(min));
561 		maxwidth = dt_ndigits(DTRACE_QUANTIZE_BUCKETVAL(max));
562 	} else {
563 		maxwidth = 8;
564 		minwidth = maxwidth - 1;
565 		max++;
566 	}
567 
568 	if (dt_printf(dtp, fp, "\n%*s %*s .",
569 	    width, width > 0 ? "key" : "", minwidth, "min") < 0)
570 		return (-1);
571 
572 	for (i = min; i <= max; i++) {
573 		if (dt_printf(dtp, fp, "-") < 0)
574 			return (-1);
575 	}
576 
577 	return (dt_printf(dtp, fp, ". %*s | count\n", -maxwidth, "max"));
578 }
579 
580 /*
581  * We use a subset of the Unicode Block Elements (U+2588 through U+258F,
582  * inclusive) to represent aggregations via UTF-8 -- which are expressed via
583  * 3-byte UTF-8 sequences.
584  */
585 #define	DTRACE_AGGUTF8_FULL	0x2588
586 #define	DTRACE_AGGUTF8_BASE	0x258f
587 #define	DTRACE_AGGUTF8_LEVELS	8
588 
589 #define	DTRACE_AGGUTF8_BYTE0(val)	(0xe0 | ((val) >> 12))
590 #define	DTRACE_AGGUTF8_BYTE1(val)	(0x80 | (((val) >> 6) & 0x3f))
591 #define	DTRACE_AGGUTF8_BYTE2(val)	(0x80 | ((val) & 0x3f))
592 
593 static int
594 dt_print_quantline_utf8(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
595     uint64_t normal, long double total)
596 {
597 	uint_t len = 40, i, whole, partial;
598 	long double f = (dt_fabsl((long double)val) * len) / total;
599 	const char *spaces = "                                        ";
600 
601 	whole = (uint_t)f;
602 	partial = (uint_t)((f - (long double)(uint_t)f) *
603 	    (long double)DTRACE_AGGUTF8_LEVELS);
604 
605 	if (dt_printf(dtp, fp, "|") < 0)
606 		return (-1);
607 
608 	for (i = 0; i < whole; i++) {
609 		if (dt_printf(dtp, fp, "%c%c%c",
610 		    DTRACE_AGGUTF8_BYTE0(DTRACE_AGGUTF8_FULL),
611 		    DTRACE_AGGUTF8_BYTE1(DTRACE_AGGUTF8_FULL),
612 		    DTRACE_AGGUTF8_BYTE2(DTRACE_AGGUTF8_FULL)) < 0)
613 			return (-1);
614 	}
615 
616 	if (partial != 0) {
617 		partial = DTRACE_AGGUTF8_BASE - (partial - 1);
618 
619 		if (dt_printf(dtp, fp, "%c%c%c",
620 		    DTRACE_AGGUTF8_BYTE0(partial),
621 		    DTRACE_AGGUTF8_BYTE1(partial),
622 		    DTRACE_AGGUTF8_BYTE2(partial)) < 0)
623 			return (-1);
624 
625 		i++;
626 	}
627 
628 	return (dt_printf(dtp, fp, "%s %-9lld\n", spaces + i,
629 	    (long long)val / normal));
630 }
631 
632 static int
633 dt_print_quantline(dtrace_hdl_t *dtp, FILE *fp, int64_t val,
634     uint64_t normal, long double total, char positives, char negatives)
635 {
636 	long double f;
637 	uint_t depth, len = 40;
638 
639 	const char *ats = "@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@";
640 	const char *spaces = "                                        ";
641 
642 	assert(strlen(ats) == len && strlen(spaces) == len);
643 	assert(!(total == 0 && (positives || negatives)));
644 	assert(!(val < 0 && !negatives));
645 	assert(!(val > 0 && !positives));
646 	assert(!(val != 0 && total == 0));
647 
648 	if (!negatives) {
649 		if (positives) {
650 			if (dtp->dt_encoding == DT_ENCODING_UTF8) {
651 				return (dt_print_quantline_utf8(dtp, fp, val,
652 				    normal, total));
653 			}
654 
655 			f = (dt_fabsl((long double)val) * len) / total;
656 			depth = (uint_t)(f + 0.5);
657 		} else {
658 			depth = 0;
659 		}
660 
661 		return (dt_printf(dtp, fp, "|%s%s %-9lld\n", ats + len - depth,
662 		    spaces + depth, (long long)val / normal));
663 	}
664 
665 	if (!positives) {
666 		f = (dt_fabsl((long double)val) * len) / total;
667 		depth = (uint_t)(f + 0.5);
668 
669 		return (dt_printf(dtp, fp, "%s%s| %-9lld\n", spaces + depth,
670 		    ats + len - depth, (long long)val / normal));
671 	}
672 
673 	/*
674 	 * If we're here, we have both positive and negative bucket values.
675 	 * To express this graphically, we're going to generate both positive
676 	 * and negative bars separated by a centerline.  These bars are half
677 	 * the size of normal quantize()/lquantize() bars, so we divide the
678 	 * length in half before calculating the bar length.
679 	 */
680 	len /= 2;
681 	ats = &ats[len];
682 	spaces = &spaces[len];
683 
684 	f = (dt_fabsl((long double)val) * len) / total;
685 	depth = (uint_t)(f + 0.5);
686 
687 	if (val <= 0) {
688 		return (dt_printf(dtp, fp, "%s%s|%*s %-9lld\n", spaces + depth,
689 		    ats + len - depth, len, "", (long long)val / normal));
690 	} else {
691 		return (dt_printf(dtp, fp, "%20s|%s%s %-9lld\n", "",
692 		    ats + len - depth, spaces + depth,
693 		    (long long)val / normal));
694 	}
695 }
696 
697 /*
698  * As with UTF-8 printing of aggregations, we use a subset of the Unicode
699  * Block Elements (U+2581 through U+2588, inclusive) to represent our packed
700  * aggregation.
701  */
702 #define	DTRACE_AGGPACK_BASE	0x2581
703 #define	DTRACE_AGGPACK_LEVELS	8
704 
705 static int
706 dt_print_packed(dtrace_hdl_t *dtp, FILE *fp,
707     long double datum, long double total)
708 {
709 	static boolean_t utf8_checked = B_FALSE;
710 	static boolean_t utf8;
711 	char *ascii = "__xxxxXX";
712 	char *neg = "vvvvVV";
713 	unsigned int len;
714 	long double val;
715 
716 	if (!utf8_checked) {
717 		char *term;
718 
719 		/*
720 		 * We want to determine if we can reasonably emit UTF-8 for our
721 		 * packed aggregation.  To do this, we will check for terminals
722 		 * that are known to be primitive to emit UTF-8 on these.
723 		 */
724 		utf8_checked = B_TRUE;
725 
726 		if (dtp->dt_encoding == DT_ENCODING_ASCII) {
727 			utf8 = B_FALSE;
728 		} else if (dtp->dt_encoding == DT_ENCODING_UTF8) {
729 			utf8 = B_TRUE;
730 		} else if ((term = getenv("TERM")) != NULL &&
731 		    (strcmp(term, "sun") == 0 ||
732 		    strcmp(term, "sun-color") == 0 ||
733 		    strcmp(term, "dumb") == 0)) {
734 			utf8 = B_FALSE;
735 		} else {
736 			utf8 = B_TRUE;
737 		}
738 	}
739 
740 	if (datum == 0)
741 		return (dt_printf(dtp, fp, " "));
742 
743 	if (datum < 0) {
744 		len = strlen(neg);
745 		val = dt_fabsl(datum * (len - 1)) / total;
746 		return (dt_printf(dtp, fp, "%c", neg[(uint_t)(val + 0.5)]));
747 	}
748 
749 	if (utf8) {
750 		int block = DTRACE_AGGPACK_BASE + (unsigned int)(((datum *
751 		    (DTRACE_AGGPACK_LEVELS - 1)) / total) + 0.5);
752 
753 		return (dt_printf(dtp, fp, "%c%c%c",
754 		    DTRACE_AGGUTF8_BYTE0(block),
755 		    DTRACE_AGGUTF8_BYTE1(block),
756 		    DTRACE_AGGUTF8_BYTE2(block)));
757 	}
758 
759 	len = strlen(ascii);
760 	val = (datum * (len - 1)) / total;
761 	return (dt_printf(dtp, fp, "%c", ascii[(uint_t)(val + 0.5)]));
762 }
763 
764 int
765 dt_print_quantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
766     size_t size, uint64_t normal)
767 {
768 	const int64_t *data = addr;
769 	int i, first_bin = 0, last_bin = DTRACE_QUANTIZE_NBUCKETS - 1;
770 	long double total = 0;
771 	char positives = 0, negatives = 0;
772 
773 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
774 		return (dt_set_errno(dtp, EDT_DMISMATCH));
775 
776 	while (first_bin < DTRACE_QUANTIZE_NBUCKETS - 1 && data[first_bin] == 0)
777 		first_bin++;
778 
779 	if (first_bin == DTRACE_QUANTIZE_NBUCKETS - 1) {
780 		/*
781 		 * There isn't any data.  This is possible if the aggregation
782 		 * has been clear()'d or if negative increment values have been
783 		 * used.  Regardless, we'll print the buckets around 0.
784 		 */
785 		first_bin = DTRACE_QUANTIZE_ZEROBUCKET - 1;
786 		last_bin = DTRACE_QUANTIZE_ZEROBUCKET + 1;
787 	} else {
788 		if (first_bin > 0)
789 			first_bin--;
790 
791 		while (last_bin > 0 && data[last_bin] == 0)
792 			last_bin--;
793 
794 		if (last_bin < DTRACE_QUANTIZE_NBUCKETS - 1)
795 			last_bin++;
796 	}
797 
798 	for (i = first_bin; i <= last_bin; i++) {
799 		positives |= (data[i] > 0);
800 		negatives |= (data[i] < 0);
801 		dt_quantize_total(dtp, data[i], &total);
802 	}
803 
804 	if (dt_print_quanthdr(dtp, fp, 0) < 0)
805 		return (-1);
806 
807 	for (i = first_bin; i <= last_bin; i++) {
808 		if (dt_printf(dtp, fp, "%16lld ",
809 		    (long long)DTRACE_QUANTIZE_BUCKETVAL(i)) < 0)
810 			return (-1);
811 
812 		if (dt_print_quantline(dtp, fp, data[i], normal, total,
813 		    positives, negatives) < 0)
814 			return (-1);
815 	}
816 
817 	return (0);
818 }
819 
820 int
821 dt_print_quantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
822     size_t size, const dtrace_aggdata_t *aggdata)
823 {
824 	const int64_t *data = addr;
825 	long double total = 0, count = 0;
826 	int min = aggdata->dtada_minbin, max = aggdata->dtada_maxbin, i;
827 	int64_t minval, maxval;
828 
829 	if (size != DTRACE_QUANTIZE_NBUCKETS * sizeof (uint64_t))
830 		return (dt_set_errno(dtp, EDT_DMISMATCH));
831 
832 	if (min != 0 && min != DTRACE_QUANTIZE_ZEROBUCKET)
833 		min--;
834 
835 	if (max < DTRACE_QUANTIZE_NBUCKETS - 1)
836 		max++;
837 
838 	minval = DTRACE_QUANTIZE_BUCKETVAL(min);
839 	maxval = DTRACE_QUANTIZE_BUCKETVAL(max);
840 
841 	if (dt_printf(dtp, fp, " %*lld :", dt_ndigits(minval),
842 	    (long long)minval) < 0)
843 		return (-1);
844 
845 	for (i = min; i <= max; i++) {
846 		dt_quantize_total(dtp, data[i], &total);
847 		count += data[i];
848 	}
849 
850 	for (i = min; i <= max; i++) {
851 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
852 			return (-1);
853 	}
854 
855 	if (dt_printf(dtp, fp, ": %*lld | %lld\n",
856 	    -dt_ndigits(maxval), (long long)maxval, (long long)count) < 0)
857 		return (-1);
858 
859 	return (0);
860 }
861 
862 int
863 dt_print_lquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
864     size_t size, uint64_t normal)
865 {
866 	const int64_t *data = addr;
867 	int i, first_bin, last_bin, base;
868 	uint64_t arg;
869 	long double total = 0;
870 	uint16_t step, levels;
871 	char positives = 0, negatives = 0;
872 
873 	if (size < sizeof (uint64_t))
874 		return (dt_set_errno(dtp, EDT_DMISMATCH));
875 
876 	arg = *data++;
877 	size -= sizeof (uint64_t);
878 
879 	base = DTRACE_LQUANTIZE_BASE(arg);
880 	step = DTRACE_LQUANTIZE_STEP(arg);
881 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
882 
883 	first_bin = 0;
884 	last_bin = levels + 1;
885 
886 	if (size != sizeof (uint64_t) * (levels + 2))
887 		return (dt_set_errno(dtp, EDT_DMISMATCH));
888 
889 	while (first_bin <= levels + 1 && data[first_bin] == 0)
890 		first_bin++;
891 
892 	if (first_bin > levels + 1) {
893 		first_bin = 0;
894 		last_bin = 2;
895 	} else {
896 		if (first_bin > 0)
897 			first_bin--;
898 
899 		while (last_bin > 0 && data[last_bin] == 0)
900 			last_bin--;
901 
902 		if (last_bin < levels + 1)
903 			last_bin++;
904 	}
905 
906 	for (i = first_bin; i <= last_bin; i++) {
907 		positives |= (data[i] > 0);
908 		negatives |= (data[i] < 0);
909 		dt_quantize_total(dtp, data[i], &total);
910 	}
911 
912 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
913 	    "------------- Distribution -------------", "count") < 0)
914 		return (-1);
915 
916 	for (i = first_bin; i <= last_bin; i++) {
917 		char c[32];
918 		int err;
919 
920 		if (i == 0) {
921 			(void) snprintf(c, sizeof (c), "< %d", base);
922 			err = dt_printf(dtp, fp, "%16s ", c);
923 		} else if (i == levels + 1) {
924 			(void) snprintf(c, sizeof (c), ">= %d",
925 			    base + (levels * step));
926 			err = dt_printf(dtp, fp, "%16s ", c);
927 		} else {
928 			err = dt_printf(dtp, fp, "%16d ",
929 			    base + (i - 1) * step);
930 		}
931 
932 		if (err < 0 || dt_print_quantline(dtp, fp, data[i], normal,
933 		    total, positives, negatives) < 0)
934 			return (-1);
935 	}
936 
937 	return (0);
938 }
939 
940 /*ARGSUSED*/
941 int
942 dt_print_lquantize_packed(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
943     size_t size, const dtrace_aggdata_t *aggdata)
944 {
945 	const int64_t *data = addr;
946 	long double total = 0, count = 0;
947 	int min, max, base, err;
948 	uint64_t arg;
949 	uint16_t step, levels;
950 	char c[32];
951 	unsigned int i;
952 
953 	if (size < sizeof (uint64_t))
954 		return (dt_set_errno(dtp, EDT_DMISMATCH));
955 
956 	arg = *data++;
957 	size -= sizeof (uint64_t);
958 
959 	base = DTRACE_LQUANTIZE_BASE(arg);
960 	step = DTRACE_LQUANTIZE_STEP(arg);
961 	levels = DTRACE_LQUANTIZE_LEVELS(arg);
962 
963 	if (size != sizeof (uint64_t) * (levels + 2))
964 		return (dt_set_errno(dtp, EDT_DMISMATCH));
965 
966 	min = 0;
967 	max = levels + 1;
968 
969 	if (min == 0) {
970 		(void) snprintf(c, sizeof (c), "< %d", base);
971 		err = dt_printf(dtp, fp, "%8s :", c);
972 	} else {
973 		err = dt_printf(dtp, fp, "%8d :", base + (min - 1) * step);
974 	}
975 
976 	if (err < 0)
977 		return (-1);
978 
979 	for (i = min; i <= max; i++) {
980 		dt_quantize_total(dtp, data[i], &total);
981 		count += data[i];
982 	}
983 
984 	for (i = min; i <= max; i++) {
985 		if (dt_print_packed(dtp, fp, data[i], total) < 0)
986 			return (-1);
987 	}
988 
989 	(void) snprintf(c, sizeof (c), ">= %d", base + (levels * step));
990 	return (dt_printf(dtp, fp, ": %-8s | %lld\n", c, (long long)count));
991 }
992 
993 int
994 dt_print_llquantize(dtrace_hdl_t *dtp, FILE *fp, const void *addr,
995     size_t size, uint64_t normal)
996 {
997 	int i, first_bin, last_bin, bin = 1, order, levels;
998 	uint16_t factor, low, high, nsteps;
999 	const int64_t *data = addr;
1000 	int64_t value = 1, next, step;
1001 	char positives = 0, negatives = 0;
1002 	long double total = 0;
1003 	uint64_t arg;
1004 	char c[32];
1005 
1006 	if (size < sizeof (uint64_t))
1007 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1008 
1009 	arg = *data++;
1010 	size -= sizeof (uint64_t);
1011 
1012 	factor = DTRACE_LLQUANTIZE_FACTOR(arg);
1013 	low = DTRACE_LLQUANTIZE_LOW(arg);
1014 	high = DTRACE_LLQUANTIZE_HIGH(arg);
1015 	nsteps = DTRACE_LLQUANTIZE_NSTEP(arg);
1016 
1017 	/*
1018 	 * We don't expect to be handed invalid llquantize() parameters here,
1019 	 * but sanity check them (to a degree) nonetheless.
1020 	 */
1021 	if (size > INT32_MAX || factor < 2 || low >= high ||
1022 	    nsteps == 0 || factor > nsteps)
1023 		return (dt_set_errno(dtp, EDT_DMISMATCH));
1024 
1025 	levels = (int)size / sizeof (uint64_t);
1026 
1027 	first_bin = 0;
1028 	last_bin = levels - 1;
1029 
1030 	while (first_bin < levels && data[first_bin] == 0)
1031 		first_bin++;
1032 
1033 	if (first_bin == levels) {
1034 		first_bin = 0;
1035 		last_bin = 1;
1036 	} else {
1037 		if (first_bin > 0)
1038 			first_bin--;
1039 
1040 		while (last_bin > 0 && data[last_bin] == 0)
1041 			last_bin--;
1042 
1043 		if (last_bin < levels - 1)
1044 			last_bin++;
1045 	}
1046 
1047 	for (i = first_bin; i <= last_bin; i++) {
1048 		positives |= (data[i] > 0);
1049 		negatives |= (data[i] < 0);
1050 		dt_quantize_total(dtp, data[i], &total);
1051 	}
1052 
1053 	if (dt_printf(dtp, fp, "\n%16s %41s %-9s\n", "value",
1054 	    "------------- Distribution -------------", "count") < 0)
1055 		return (-1);
1056 
1057 	for (order = 0; order < low; order++)
1058 		value *= factor;
1059 
1060 	next = value * factor;
1061 	step = next > nsteps ? next / nsteps : 1;
1062 
1063 	if (first_bin == 0) {
1064 		(void) snprintf(c, sizeof (c), "< %lld", (long long)value);
1065 
1066 		if (dt_printf(dtp, fp, "%16s ", c) < 0)
1067 			return (-1);
1068 
1069 		if (dt_print_quantline(dtp, fp, data[0], normal,
1070 		    total, positives, negatives) < 0)
1071 			return (-1);
1072 	}
1073 
1074 	while (order <= high) {
1075 		if (bin >= first_bin && bin <= last_bin) {
1076 			if (dt_printf(dtp, fp, "%16lld ", (long long)value) < 0)
1077 				return (-1);
1078 
1079 			if (dt_print_quantline(dtp, fp, data[bin],
1080 			    normal, total, positives, negatives) < 0)
1081 				return (-1);
1082 		}
1083 
1084 		assert(value < next);
1085 		bin++;
1086 
1087 		if ((value += step) != next)
1088 			continue;
1089 
1090 		next = value * factor;
1091 		step = next > nsteps ? next / nsteps : 1;
1092 		order++;
1093 	}
1094 
1095 	if (last_bin < bin)
1096 		return (0);
1097 
1098 	assert(last_bin == bin);
1099 	(void) snprintf(c, sizeof (c), ">= %lld", (long long)value);
1100 
1101 	if (dt_printf(dtp, fp, "%16s ", c) < 0)
1102 		return (-1);
1103 
1104 	return (dt_print_quantline(dtp, fp, data[bin], normal,
1105 	    total, positives, negatives));
1106 }
1107 
1108 /*ARGSUSED*/
1109 static int
1110 dt_print_average(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1111     size_t size, uint64_t normal)
1112 {
1113 	/* LINTED - alignment */
1114 	int64_t *data = (int64_t *)addr;
1115 
1116 	return (dt_printf(dtp, fp, " %16lld", data[0] ?
1117 	    (long long)(data[1] / (int64_t)normal / data[0]) : 0));
1118 }
1119 
1120 /*ARGSUSED*/
1121 static int
1122 dt_print_stddev(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1123     size_t size, uint64_t normal)
1124 {
1125 	/* LINTED - alignment */
1126 	uint64_t *data = (uint64_t *)addr;
1127 
1128 	return (dt_printf(dtp, fp, " %16llu", data[0] ?
1129 	    (unsigned long long) dt_stddev(data, normal) : 0));
1130 }
1131 
1132 /*ARGSUSED*/
1133 static int
1134 dt_print_bytes(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr,
1135     size_t nbytes, int width, int quiet, int forceraw)
1136 {
1137 	/*
1138 	 * If the byte stream is a series of printable characters, followed by
1139 	 * a terminating byte, we print it out as a string.  Otherwise, we
1140 	 * assume that it's something else and just print the bytes.
1141 	 */
1142 	int i, j, margin = 5;
1143 	char *c = (char *)addr;
1144 
1145 	if (nbytes == 0)
1146 		return (0);
1147 
1148 	if (forceraw)
1149 		goto raw;
1150 
1151 	if (dtp->dt_options[DTRACEOPT_RAWBYTES] != DTRACEOPT_UNSET)
1152 		goto raw;
1153 
1154 	for (i = 0; i < nbytes; i++) {
1155 		/*
1156 		 * We define a "printable character" to be one for which
1157 		 * isprint(3C) returns non-zero, isspace(3C) returns non-zero,
1158 		 * or a character which is either backspace or the bell.
1159 		 * Backspace and the bell are regrettably special because
1160 		 * they fail the first two tests -- and yet they are entirely
1161 		 * printable.  These are the only two control characters that
1162 		 * have meaning for the terminal and for which isprint(3C) and
1163 		 * isspace(3C) return 0.
1164 		 */
1165 		if (isprint(c[i]) || isspace(c[i]) ||
1166 		    c[i] == '\b' || c[i] == '\a')
1167 			continue;
1168 
1169 		if (c[i] == '\0' && i > 0) {
1170 			/*
1171 			 * This looks like it might be a string.  Before we
1172 			 * assume that it is indeed a string, check the
1173 			 * remainder of the byte range; if it contains
1174 			 * additional non-nul characters, we'll assume that
1175 			 * it's a binary stream that just happens to look like
1176 			 * a string, and we'll print out the individual bytes.
1177 			 */
1178 			for (j = i + 1; j < nbytes; j++) {
1179 				if (c[j] != '\0')
1180 					break;
1181 			}
1182 
1183 			if (j != nbytes)
1184 				break;
1185 
1186 			if (quiet) {
1187 				return (dt_printf(dtp, fp, "%s", c));
1188 			} else {
1189 				return (dt_printf(dtp, fp, " %s%*s",
1190 				    width < 0 ? " " : "", width, c));
1191 			}
1192 		}
1193 
1194 		break;
1195 	}
1196 
1197 	if (i == nbytes) {
1198 		/*
1199 		 * The byte range is all printable characters, but there is
1200 		 * no trailing nul byte.  We'll assume that it's a string and
1201 		 * print it as such.
1202 		 */
1203 		char *s = alloca(nbytes + 1);
1204 		bcopy(c, s, nbytes);
1205 		s[nbytes] = '\0';
1206 		return (dt_printf(dtp, fp, "  %-*s", width, s));
1207 	}
1208 
1209 raw:
1210 	if (dt_printf(dtp, fp, "\n%*s      ", margin, "") < 0)
1211 		return (-1);
1212 
1213 	for (i = 0; i < 16; i++)
1214 		if (dt_printf(dtp, fp, "  %c", "0123456789abcdef"[i]) < 0)
1215 			return (-1);
1216 
1217 	if (dt_printf(dtp, fp, "  0123456789abcdef\n") < 0)
1218 		return (-1);
1219 
1220 
1221 	for (i = 0; i < nbytes; i += 16) {
1222 		if (dt_printf(dtp, fp, "%*s%5x:", margin, "", i) < 0)
1223 			return (-1);
1224 
1225 		for (j = i; j < i + 16 && j < nbytes; j++) {
1226 			if (dt_printf(dtp, fp, " %02x", (uchar_t)c[j]) < 0)
1227 				return (-1);
1228 		}
1229 
1230 		while (j++ % 16) {
1231 			if (dt_printf(dtp, fp, "   ") < 0)
1232 				return (-1);
1233 		}
1234 
1235 		if (dt_printf(dtp, fp, "  ") < 0)
1236 			return (-1);
1237 
1238 		for (j = i; j < i + 16 && j < nbytes; j++) {
1239 			if (dt_printf(dtp, fp, "%c",
1240 			    c[j] < ' ' || c[j] > '~' ? '.' : c[j]) < 0)
1241 				return (-1);
1242 		}
1243 
1244 		if (dt_printf(dtp, fp, "\n") < 0)
1245 			return (-1);
1246 	}
1247 
1248 	return (0);
1249 }
1250 
1251 int
1252 dt_print_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1253     caddr_t addr, int depth, int size)
1254 {
1255 	dtrace_syminfo_t dts;
1256 	GElf_Sym sym;
1257 	int i, indent;
1258 	char c[PATH_MAX * 2];
1259 	uint64_t pc;
1260 
1261 	if (dt_printf(dtp, fp, "\n") < 0)
1262 		return (-1);
1263 
1264 	if (format == NULL)
1265 		format = "%s";
1266 
1267 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1268 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1269 	else
1270 		indent = _dtrace_stkindent;
1271 
1272 	for (i = 0; i < depth; i++) {
1273 		switch (size) {
1274 		case sizeof (uint32_t):
1275 			/* LINTED - alignment */
1276 			pc = *((uint32_t *)addr);
1277 			break;
1278 
1279 		case sizeof (uint64_t):
1280 			/* LINTED - alignment */
1281 			pc = *((uint64_t *)addr);
1282 			break;
1283 
1284 		default:
1285 			return (dt_set_errno(dtp, EDT_BADSTACKPC));
1286 		}
1287 
1288 		if (pc == 0)
1289 			break;
1290 
1291 		addr += size;
1292 
1293 		if (dt_printf(dtp, fp, "%*s", indent, "") < 0)
1294 			return (-1);
1295 
1296 		if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1297 			if (pc > sym.st_value) {
1298 				(void) snprintf(c, sizeof (c), "%s`%s+0x%llx",
1299 				    dts.dts_object, dts.dts_name,
1300 				    (u_longlong_t)(pc - sym.st_value));
1301 			} else {
1302 				(void) snprintf(c, sizeof (c), "%s`%s",
1303 				    dts.dts_object, dts.dts_name);
1304 			}
1305 		} else {
1306 			/*
1307 			 * We'll repeat the lookup, but this time we'll specify
1308 			 * a NULL GElf_Sym -- indicating that we're only
1309 			 * interested in the containing module.
1310 			 */
1311 			if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1312 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1313 				    dts.dts_object, (u_longlong_t)pc);
1314 			} else {
1315 				(void) snprintf(c, sizeof (c), "0x%llx",
1316 				    (u_longlong_t)pc);
1317 			}
1318 		}
1319 
1320 		if (dt_printf(dtp, fp, format, c) < 0)
1321 			return (-1);
1322 
1323 		if (dt_printf(dtp, fp, "\n") < 0)
1324 			return (-1);
1325 	}
1326 
1327 	return (0);
1328 }
1329 
1330 int
1331 dt_print_ustack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
1332     caddr_t addr, uint64_t arg)
1333 {
1334 	/* LINTED - alignment */
1335 	uint64_t *pc = (uint64_t *)addr;
1336 	uint32_t depth = DTRACE_USTACK_NFRAMES(arg);
1337 	uint32_t strsize = DTRACE_USTACK_STRSIZE(arg);
1338 	const char *strbase = addr + (depth + 1) * sizeof (uint64_t);
1339 	const char *str = strsize ? strbase : NULL;
1340 	int err = 0;
1341 
1342 	char name[PATH_MAX], objname[PATH_MAX], c[PATH_MAX * 2];
1343 	struct ps_prochandle *P;
1344 	GElf_Sym sym;
1345 	int i, indent;
1346 	pid_t pid;
1347 
1348 	if (depth == 0)
1349 		return (0);
1350 
1351 	pid = (pid_t)*pc++;
1352 
1353 	if (dt_printf(dtp, fp, "\n") < 0)
1354 		return (-1);
1355 
1356 	if (format == NULL)
1357 		format = "%s";
1358 
1359 	if (dtp->dt_options[DTRACEOPT_STACKINDENT] != DTRACEOPT_UNSET)
1360 		indent = (int)dtp->dt_options[DTRACEOPT_STACKINDENT];
1361 	else
1362 		indent = _dtrace_stkindent;
1363 
1364 	/*
1365 	 * Ultimately, we need to add an entry point in the library vector for
1366 	 * determining <symbol, offset> from <pid, address>.  For now, if
1367 	 * this is a vector open, we just print the raw address or string.
1368 	 */
1369 	if (dtp->dt_vector == NULL)
1370 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1371 	else
1372 		P = NULL;
1373 
1374 	if (P != NULL)
1375 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1376 
1377 	for (i = 0; i < depth && pc[i] != 0; i++) {
1378 		const prmap_t *map;
1379 
1380 		if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1381 			break;
1382 
1383 		if (P != NULL && Plookup_by_addr(P, pc[i],
1384 		    name, sizeof (name), &sym) == 0) {
1385 			(void) Pobjname(P, pc[i], objname, sizeof (objname));
1386 
1387 			if (pc[i] > sym.st_value) {
1388 				(void) snprintf(c, sizeof (c),
1389 				    "%s`%s+0x%llx", dt_basename(objname), name,
1390 				    (u_longlong_t)(pc[i] - sym.st_value));
1391 			} else {
1392 				(void) snprintf(c, sizeof (c),
1393 				    "%s`%s", dt_basename(objname), name);
1394 			}
1395 		} else if (str != NULL && str[0] != '\0' && str[0] != '@' &&
1396 		    (P != NULL && ((map = Paddr_to_map(P, pc[i])) == NULL ||
1397 		    (map->pr_mflags & MA_WRITE)))) {
1398 			/*
1399 			 * If the current string pointer in the string table
1400 			 * does not point to an empty string _and_ the program
1401 			 * counter falls in a writable region, we'll use the
1402 			 * string from the string table instead of the raw
1403 			 * address.  This last condition is necessary because
1404 			 * some (broken) ustack helpers will return a string
1405 			 * even for a program counter that they can't
1406 			 * identify.  If we have a string for a program
1407 			 * counter that falls in a segment that isn't
1408 			 * writable, we assume that we have fallen into this
1409 			 * case and we refuse to use the string.
1410 			 */
1411 			(void) snprintf(c, sizeof (c), "%s", str);
1412 		} else {
1413 			if (P != NULL && Pobjname(P, pc[i], objname,
1414 			    sizeof (objname)) != 0) {
1415 				(void) snprintf(c, sizeof (c), "%s`0x%llx",
1416 				    dt_basename(objname), (u_longlong_t)pc[i]);
1417 			} else {
1418 				(void) snprintf(c, sizeof (c), "0x%llx",
1419 				    (u_longlong_t)pc[i]);
1420 			}
1421 		}
1422 
1423 		if ((err = dt_printf(dtp, fp, format, c)) < 0)
1424 			break;
1425 
1426 		if ((err = dt_printf(dtp, fp, "\n")) < 0)
1427 			break;
1428 
1429 		if (str != NULL && str[0] == '@') {
1430 			/*
1431 			 * If the first character of the string is an "at" sign,
1432 			 * then the string is inferred to be an annotation --
1433 			 * and it is printed out beneath the frame and offset
1434 			 * with brackets.
1435 			 */
1436 			if ((err = dt_printf(dtp, fp, "%*s", indent, "")) < 0)
1437 				break;
1438 
1439 			(void) snprintf(c, sizeof (c), "  [ %s ]", &str[1]);
1440 
1441 			if ((err = dt_printf(dtp, fp, format, c)) < 0)
1442 				break;
1443 
1444 			if ((err = dt_printf(dtp, fp, "\n")) < 0)
1445 				break;
1446 		}
1447 
1448 		if (str != NULL) {
1449 			str += strlen(str) + 1;
1450 			if (str - strbase >= strsize)
1451 				str = NULL;
1452 		}
1453 	}
1454 
1455 	if (P != NULL) {
1456 		dt_proc_unlock(dtp, P);
1457 		dt_proc_release(dtp, P);
1458 	}
1459 
1460 	return (err);
1461 }
1462 
1463 static int
1464 dt_print_usym(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr, dtrace_actkind_t act)
1465 {
1466 	/* LINTED - alignment */
1467 	uint64_t pid = ((uint64_t *)addr)[0];
1468 	/* LINTED - alignment */
1469 	uint64_t pc = ((uint64_t *)addr)[1];
1470 	const char *format = "  %-50s";
1471 	char *s;
1472 	int n, len = 256;
1473 
1474 	if (act == DTRACEACT_USYM && dtp->dt_vector == NULL) {
1475 		struct ps_prochandle *P;
1476 
1477 		if ((P = dt_proc_grab(dtp, pid,
1478 		    PGRAB_RDONLY | PGRAB_FORCE, 0)) != NULL) {
1479 			GElf_Sym sym;
1480 
1481 			dt_proc_lock(dtp, P);
1482 
1483 			if (Plookup_by_addr(P, pc, NULL, 0, &sym) == 0)
1484 				pc = sym.st_value;
1485 
1486 			dt_proc_unlock(dtp, P);
1487 			dt_proc_release(dtp, P);
1488 		}
1489 	}
1490 
1491 	do {
1492 		n = len;
1493 		s = alloca(n);
1494 	} while ((len = dtrace_uaddr2str(dtp, pid, pc, s, n)) > n);
1495 
1496 	return (dt_printf(dtp, fp, format, s));
1497 }
1498 
1499 int
1500 dt_print_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1501 {
1502 	/* LINTED - alignment */
1503 	uint64_t pid = ((uint64_t *)addr)[0];
1504 	/* LINTED - alignment */
1505 	uint64_t pc = ((uint64_t *)addr)[1];
1506 	int err = 0;
1507 
1508 	char objname[PATH_MAX], c[PATH_MAX * 2];
1509 	struct ps_prochandle *P;
1510 
1511 	if (format == NULL)
1512 		format = "  %-50s";
1513 
1514 	/*
1515 	 * See the comment in dt_print_ustack() for the rationale for
1516 	 * printing raw addresses in the vectored case.
1517 	 */
1518 	if (dtp->dt_vector == NULL)
1519 		P = dt_proc_grab(dtp, pid, PGRAB_RDONLY | PGRAB_FORCE, 0);
1520 	else
1521 		P = NULL;
1522 
1523 	if (P != NULL)
1524 		dt_proc_lock(dtp, P); /* lock handle while we perform lookups */
1525 
1526 	if (P != NULL && Pobjname(P, pc, objname, sizeof (objname)) != 0) {
1527 		(void) snprintf(c, sizeof (c), "%s", dt_basename(objname));
1528 	} else {
1529 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1530 	}
1531 
1532 	err = dt_printf(dtp, fp, format, c);
1533 
1534 	if (P != NULL) {
1535 		dt_proc_unlock(dtp, P);
1536 		dt_proc_release(dtp, P);
1537 	}
1538 
1539 	return (err);
1540 }
1541 
1542 static int
1543 dt_print_sym(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1544 {
1545 	/* LINTED - alignment */
1546 	uint64_t pc = *((uint64_t *)addr);
1547 	dtrace_syminfo_t dts;
1548 	GElf_Sym sym;
1549 	char c[PATH_MAX * 2];
1550 
1551 	if (format == NULL)
1552 		format = "  %-50s";
1553 
1554 	if (dtrace_lookup_by_addr(dtp, pc, &sym, &dts) == 0) {
1555 		(void) snprintf(c, sizeof (c), "%s`%s",
1556 		    dts.dts_object, dts.dts_name);
1557 	} else {
1558 		/*
1559 		 * We'll repeat the lookup, but this time we'll specify a
1560 		 * NULL GElf_Sym -- indicating that we're only interested in
1561 		 * the containing module.
1562 		 */
1563 		if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1564 			(void) snprintf(c, sizeof (c), "%s`0x%llx",
1565 			    dts.dts_object, (u_longlong_t)pc);
1566 		} else {
1567 			(void) snprintf(c, sizeof (c), "0x%llx",
1568 			    (u_longlong_t)pc);
1569 		}
1570 	}
1571 
1572 	if (dt_printf(dtp, fp, format, c) < 0)
1573 		return (-1);
1574 
1575 	return (0);
1576 }
1577 
1578 int
1579 dt_print_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format, caddr_t addr)
1580 {
1581 	/* LINTED - alignment */
1582 	uint64_t pc = *((uint64_t *)addr);
1583 	dtrace_syminfo_t dts;
1584 	char c[PATH_MAX * 2];
1585 
1586 	if (format == NULL)
1587 		format = "  %-50s";
1588 
1589 	if (dtrace_lookup_by_addr(dtp, pc, NULL, &dts) == 0) {
1590 		(void) snprintf(c, sizeof (c), "%s", dts.dts_object);
1591 	} else {
1592 		(void) snprintf(c, sizeof (c), "0x%llx", (u_longlong_t)pc);
1593 	}
1594 
1595 	if (dt_printf(dtp, fp, format, c) < 0)
1596 		return (-1);
1597 
1598 	return (0);
1599 }
1600 
1601 static int
1602 dt_print_memory(dtrace_hdl_t *dtp, FILE *fp, caddr_t addr)
1603 {
1604 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
1605 	size_t nbytes = *((uintptr_t *) addr);
1606 
1607 	return (dt_print_bytes(dtp, fp, addr + sizeof(uintptr_t),
1608 	    nbytes, 50, quiet, 1));
1609 }
1610 
1611 typedef struct dt_normal {
1612 	dtrace_aggvarid_t dtnd_id;
1613 	uint64_t dtnd_normal;
1614 } dt_normal_t;
1615 
1616 static int
1617 dt_normalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1618 {
1619 	dt_normal_t *normal = arg;
1620 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1621 	dtrace_aggvarid_t id = normal->dtnd_id;
1622 
1623 	if (agg->dtagd_nrecs == 0)
1624 		return (DTRACE_AGGWALK_NEXT);
1625 
1626 	if (agg->dtagd_varid != id)
1627 		return (DTRACE_AGGWALK_NEXT);
1628 
1629 	((dtrace_aggdata_t *)aggdata)->dtada_normal = normal->dtnd_normal;
1630 	return (DTRACE_AGGWALK_NORMALIZE);
1631 }
1632 
1633 static int
1634 dt_normalize(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1635 {
1636 	dt_normal_t normal;
1637 	caddr_t addr;
1638 
1639 	/*
1640 	 * We (should) have two records:  the aggregation ID followed by the
1641 	 * normalization value.
1642 	 */
1643 	addr = base + rec->dtrd_offset;
1644 
1645 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1646 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1647 
1648 	/* LINTED - alignment */
1649 	normal.dtnd_id = *((dtrace_aggvarid_t *)addr);
1650 	rec++;
1651 
1652 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1653 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1654 
1655 	if (rec->dtrd_arg != DT_ACT_NORMALIZE)
1656 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1657 
1658 	addr = base + rec->dtrd_offset;
1659 
1660 	switch (rec->dtrd_size) {
1661 	case sizeof (uint64_t):
1662 		/* LINTED - alignment */
1663 		normal.dtnd_normal = *((uint64_t *)addr);
1664 		break;
1665 	case sizeof (uint32_t):
1666 		/* LINTED - alignment */
1667 		normal.dtnd_normal = *((uint32_t *)addr);
1668 		break;
1669 	case sizeof (uint16_t):
1670 		/* LINTED - alignment */
1671 		normal.dtnd_normal = *((uint16_t *)addr);
1672 		break;
1673 	case sizeof (uint8_t):
1674 		normal.dtnd_normal = *((uint8_t *)addr);
1675 		break;
1676 	default:
1677 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1678 	}
1679 
1680 	(void) dtrace_aggregate_walk(dtp, dt_normalize_agg, &normal);
1681 
1682 	return (0);
1683 }
1684 
1685 static int
1686 dt_denormalize_agg(const dtrace_aggdata_t *aggdata, void *arg)
1687 {
1688 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1689 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1690 
1691 	if (agg->dtagd_nrecs == 0)
1692 		return (DTRACE_AGGWALK_NEXT);
1693 
1694 	if (agg->dtagd_varid != id)
1695 		return (DTRACE_AGGWALK_NEXT);
1696 
1697 	return (DTRACE_AGGWALK_DENORMALIZE);
1698 }
1699 
1700 static int
1701 dt_clear_agg(const dtrace_aggdata_t *aggdata, void *arg)
1702 {
1703 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1704 	dtrace_aggvarid_t id = *((dtrace_aggvarid_t *)arg);
1705 
1706 	if (agg->dtagd_nrecs == 0)
1707 		return (DTRACE_AGGWALK_NEXT);
1708 
1709 	if (agg->dtagd_varid != id)
1710 		return (DTRACE_AGGWALK_NEXT);
1711 
1712 	return (DTRACE_AGGWALK_CLEAR);
1713 }
1714 
1715 typedef struct dt_trunc {
1716 	dtrace_aggvarid_t dttd_id;
1717 	uint64_t dttd_remaining;
1718 } dt_trunc_t;
1719 
1720 static int
1721 dt_trunc_agg(const dtrace_aggdata_t *aggdata, void *arg)
1722 {
1723 	dt_trunc_t *trunc = arg;
1724 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1725 	dtrace_aggvarid_t id = trunc->dttd_id;
1726 
1727 	if (agg->dtagd_nrecs == 0)
1728 		return (DTRACE_AGGWALK_NEXT);
1729 
1730 	if (agg->dtagd_varid != id)
1731 		return (DTRACE_AGGWALK_NEXT);
1732 
1733 	if (trunc->dttd_remaining == 0)
1734 		return (DTRACE_AGGWALK_REMOVE);
1735 
1736 	trunc->dttd_remaining--;
1737 	return (DTRACE_AGGWALK_NEXT);
1738 }
1739 
1740 static int
1741 dt_trunc(dtrace_hdl_t *dtp, caddr_t base, dtrace_recdesc_t *rec)
1742 {
1743 	dt_trunc_t trunc;
1744 	caddr_t addr;
1745 	int64_t remaining;
1746 	int (*func)(dtrace_hdl_t *, dtrace_aggregate_f *, void *);
1747 
1748 	/*
1749 	 * We (should) have two records:  the aggregation ID followed by the
1750 	 * number of aggregation entries after which the aggregation is to be
1751 	 * truncated.
1752 	 */
1753 	addr = base + rec->dtrd_offset;
1754 
1755 	if (rec->dtrd_size != sizeof (dtrace_aggvarid_t))
1756 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1757 
1758 	/* LINTED - alignment */
1759 	trunc.dttd_id = *((dtrace_aggvarid_t *)addr);
1760 	rec++;
1761 
1762 	if (rec->dtrd_action != DTRACEACT_LIBACT)
1763 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1764 
1765 	if (rec->dtrd_arg != DT_ACT_TRUNC)
1766 		return (dt_set_errno(dtp, EDT_BADTRUNC));
1767 
1768 	addr = base + rec->dtrd_offset;
1769 
1770 	switch (rec->dtrd_size) {
1771 	case sizeof (uint64_t):
1772 		/* LINTED - alignment */
1773 		remaining = *((int64_t *)addr);
1774 		break;
1775 	case sizeof (uint32_t):
1776 		/* LINTED - alignment */
1777 		remaining = *((int32_t *)addr);
1778 		break;
1779 	case sizeof (uint16_t):
1780 		/* LINTED - alignment */
1781 		remaining = *((int16_t *)addr);
1782 		break;
1783 	case sizeof (uint8_t):
1784 		remaining = *((int8_t *)addr);
1785 		break;
1786 	default:
1787 		return (dt_set_errno(dtp, EDT_BADNORMAL));
1788 	}
1789 
1790 	if (remaining < 0) {
1791 		func = dtrace_aggregate_walk_valsorted;
1792 		remaining = -remaining;
1793 	} else {
1794 		func = dtrace_aggregate_walk_valrevsorted;
1795 	}
1796 
1797 	assert(remaining >= 0);
1798 	trunc.dttd_remaining = remaining;
1799 
1800 	(void) func(dtp, dt_trunc_agg, &trunc);
1801 
1802 	return (0);
1803 }
1804 
1805 static int
1806 dt_print_datum(dtrace_hdl_t *dtp, FILE *fp, dtrace_recdesc_t *rec,
1807     caddr_t addr, size_t size, const dtrace_aggdata_t *aggdata,
1808     uint64_t normal, dt_print_aggdata_t *pd)
1809 {
1810 	int err, width;
1811 	dtrace_actkind_t act = rec->dtrd_action;
1812 	boolean_t packed = pd->dtpa_agghist || pd->dtpa_aggpack;
1813 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1814 
1815 	static struct {
1816 		size_t size;
1817 		int width;
1818 		int packedwidth;
1819 	} *fmt, fmttab[] = {
1820 		{ sizeof (uint8_t),	3,	3 },
1821 		{ sizeof (uint16_t),	5,	5 },
1822 		{ sizeof (uint32_t),	8,	8 },
1823 		{ sizeof (uint64_t),	16,	16 },
1824 		{ 0,			-50,	16 }
1825 	};
1826 
1827 	if (packed && pd->dtpa_agghisthdr != agg->dtagd_varid) {
1828 		dtrace_recdesc_t *r;
1829 
1830 		width = 0;
1831 
1832 		/*
1833 		 * To print our quantization header for either an agghist or
1834 		 * aggpack aggregation, we need to iterate through all of our
1835 		 * of our records to determine their width.
1836 		 */
1837 		for (r = rec; !DTRACEACT_ISAGG(r->dtrd_action); r++) {
1838 			for (fmt = fmttab; fmt->size &&
1839 			    fmt->size != r->dtrd_size; fmt++)
1840 				continue;
1841 
1842 			width += fmt->packedwidth + 1;
1843 		}
1844 
1845 		if (pd->dtpa_agghist) {
1846 			if (dt_print_quanthdr(dtp, fp, width) < 0)
1847 				return (-1);
1848 		} else {
1849 			if (dt_print_quanthdr_packed(dtp, fp,
1850 			    width, aggdata, r->dtrd_action) < 0)
1851 				return (-1);
1852 		}
1853 
1854 		pd->dtpa_agghisthdr = agg->dtagd_varid;
1855 	}
1856 
1857 	if (pd->dtpa_agghist && DTRACEACT_ISAGG(act)) {
1858 		char positives = aggdata->dtada_flags & DTRACE_A_HASPOSITIVES;
1859 		char negatives = aggdata->dtada_flags & DTRACE_A_HASNEGATIVES;
1860 		int64_t val;
1861 
1862 		assert(act == DTRACEAGG_SUM || act == DTRACEAGG_COUNT);
1863 		val = (long long)*((uint64_t *)addr);
1864 
1865 		if (dt_printf(dtp, fp, " ") < 0)
1866 			return (-1);
1867 
1868 		return (dt_print_quantline(dtp, fp, val, normal,
1869 		    aggdata->dtada_total, positives, negatives));
1870 	}
1871 
1872 	if (pd->dtpa_aggpack && DTRACEACT_ISAGG(act)) {
1873 		switch (act) {
1874 		case DTRACEAGG_QUANTIZE:
1875 			return (dt_print_quantize_packed(dtp,
1876 			    fp, addr, size, aggdata));
1877 		case DTRACEAGG_LQUANTIZE:
1878 			return (dt_print_lquantize_packed(dtp,
1879 			    fp, addr, size, aggdata));
1880 		default:
1881 			break;
1882 		}
1883 	}
1884 
1885 	switch (act) {
1886 	case DTRACEACT_STACK:
1887 		return (dt_print_stack(dtp, fp, NULL, addr,
1888 		    rec->dtrd_arg, rec->dtrd_size / rec->dtrd_arg));
1889 
1890 	case DTRACEACT_USTACK:
1891 	case DTRACEACT_JSTACK:
1892 		return (dt_print_ustack(dtp, fp, NULL, addr, rec->dtrd_arg));
1893 
1894 	case DTRACEACT_USYM:
1895 	case DTRACEACT_UADDR:
1896 		return (dt_print_usym(dtp, fp, addr, act));
1897 
1898 	case DTRACEACT_UMOD:
1899 		return (dt_print_umod(dtp, fp, NULL, addr));
1900 
1901 	case DTRACEACT_SYM:
1902 		return (dt_print_sym(dtp, fp, NULL, addr));
1903 
1904 	case DTRACEACT_MOD:
1905 		return (dt_print_mod(dtp, fp, NULL, addr));
1906 
1907 	case DTRACEAGG_QUANTIZE:
1908 		return (dt_print_quantize(dtp, fp, addr, size, normal));
1909 
1910 	case DTRACEAGG_LQUANTIZE:
1911 		return (dt_print_lquantize(dtp, fp, addr, size, normal));
1912 
1913 	case DTRACEAGG_LLQUANTIZE:
1914 		return (dt_print_llquantize(dtp, fp, addr, size, normal));
1915 
1916 	case DTRACEAGG_AVG:
1917 		return (dt_print_average(dtp, fp, addr, size, normal));
1918 
1919 	case DTRACEAGG_STDDEV:
1920 		return (dt_print_stddev(dtp, fp, addr, size, normal));
1921 
1922 	default:
1923 		break;
1924 	}
1925 
1926 	for (fmt = fmttab; fmt->size && fmt->size != size; fmt++)
1927 		continue;
1928 
1929 	width = packed ? fmt->packedwidth : fmt->width;
1930 
1931 	switch (size) {
1932 	case sizeof (uint64_t):
1933 		err = dt_printf(dtp, fp, " %*lld", width,
1934 		    /* LINTED - alignment */
1935 		    (long long)*((uint64_t *)addr) / normal);
1936 		break;
1937 	case sizeof (uint32_t):
1938 		/* LINTED - alignment */
1939 		err = dt_printf(dtp, fp, " %*d", width, *((uint32_t *)addr) /
1940 		    (uint32_t)normal);
1941 		break;
1942 	case sizeof (uint16_t):
1943 		/* LINTED - alignment */
1944 		err = dt_printf(dtp, fp, " %*d", width, *((uint16_t *)addr) /
1945 		    (uint32_t)normal);
1946 		break;
1947 	case sizeof (uint8_t):
1948 		err = dt_printf(dtp, fp, " %*d", width, *((uint8_t *)addr) /
1949 		    (uint32_t)normal);
1950 		break;
1951 	default:
1952 		err = dt_print_bytes(dtp, fp, addr, size, width, 0, 0);
1953 		break;
1954 	}
1955 
1956 	return (err);
1957 }
1958 
1959 int
1960 dt_print_aggs(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
1961 {
1962 	int i, aggact = 0;
1963 	dt_print_aggdata_t *pd = arg;
1964 	const dtrace_aggdata_t *aggdata = aggsdata[0];
1965 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
1966 	FILE *fp = pd->dtpa_fp;
1967 	dtrace_hdl_t *dtp = pd->dtpa_dtp;
1968 	dtrace_recdesc_t *rec;
1969 	dtrace_actkind_t act;
1970 	caddr_t addr;
1971 	size_t size;
1972 
1973 	pd->dtpa_agghist = (aggdata->dtada_flags & DTRACE_A_TOTAL);
1974 	pd->dtpa_aggpack = (aggdata->dtada_flags & DTRACE_A_MINMAXBIN);
1975 
1976 	/*
1977 	 * Iterate over each record description in the key, printing the traced
1978 	 * data, skipping the first datum (the tuple member created by the
1979 	 * compiler).
1980 	 */
1981 	for (i = 1; i < agg->dtagd_nrecs; i++) {
1982 		rec = &agg->dtagd_rec[i];
1983 		act = rec->dtrd_action;
1984 		addr = aggdata->dtada_data + rec->dtrd_offset;
1985 		size = rec->dtrd_size;
1986 
1987 		if (DTRACEACT_ISAGG(act)) {
1988 			aggact = i;
1989 			break;
1990 		}
1991 
1992 		if (dt_print_datum(dtp, fp, rec, addr,
1993 		    size, aggdata, 1, pd) < 0)
1994 			return (-1);
1995 
1996 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
1997 		    DTRACE_BUFDATA_AGGKEY) < 0)
1998 			return (-1);
1999 	}
2000 
2001 	assert(aggact != 0);
2002 
2003 	for (i = (naggvars == 1 ? 0 : 1); i < naggvars; i++) {
2004 		uint64_t normal;
2005 
2006 		aggdata = aggsdata[i];
2007 		agg = aggdata->dtada_desc;
2008 		rec = &agg->dtagd_rec[aggact];
2009 		act = rec->dtrd_action;
2010 		addr = aggdata->dtada_data + rec->dtrd_offset;
2011 		size = rec->dtrd_size;
2012 
2013 		assert(DTRACEACT_ISAGG(act));
2014 		normal = aggdata->dtada_normal;
2015 
2016 		if (dt_print_datum(dtp, fp, rec, addr,
2017 		    size, aggdata, normal, pd) < 0)
2018 			return (-1);
2019 
2020 		if (dt_buffered_flush(dtp, NULL, rec, aggdata,
2021 		    DTRACE_BUFDATA_AGGVAL) < 0)
2022 			return (-1);
2023 
2024 		if (!pd->dtpa_allunprint)
2025 			agg->dtagd_flags |= DTRACE_AGD_PRINTED;
2026 	}
2027 
2028 	if (!pd->dtpa_agghist && !pd->dtpa_aggpack) {
2029 		if (dt_printf(dtp, fp, "\n") < 0)
2030 			return (-1);
2031 	}
2032 
2033 	if (dt_buffered_flush(dtp, NULL, NULL, aggdata,
2034 	    DTRACE_BUFDATA_AGGFORMAT | DTRACE_BUFDATA_AGGLAST) < 0)
2035 		return (-1);
2036 
2037 	return (0);
2038 }
2039 
2040 int
2041 dt_print_agg(const dtrace_aggdata_t *aggdata, void *arg)
2042 {
2043 	dt_print_aggdata_t *pd = arg;
2044 	dtrace_aggdesc_t *agg = aggdata->dtada_desc;
2045 	dtrace_aggvarid_t aggvarid = pd->dtpa_id;
2046 
2047 	if (pd->dtpa_allunprint) {
2048 		if (agg->dtagd_flags & DTRACE_AGD_PRINTED)
2049 			return (0);
2050 	} else {
2051 		/*
2052 		 * If we're not printing all unprinted aggregations, then the
2053 		 * aggregation variable ID denotes a specific aggregation
2054 		 * variable that we should print -- skip any other aggregations
2055 		 * that we encounter.
2056 		 */
2057 		if (agg->dtagd_nrecs == 0)
2058 			return (0);
2059 
2060 		if (aggvarid != agg->dtagd_varid)
2061 			return (0);
2062 	}
2063 
2064 	return (dt_print_aggs(&aggdata, 1, arg));
2065 }
2066 
2067 int
2068 dt_setopt(dtrace_hdl_t *dtp, const dtrace_probedata_t *data,
2069     const char *option, const char *value)
2070 {
2071 	int len, rval;
2072 	char *msg;
2073 	const char *errstr;
2074 	dtrace_setoptdata_t optdata;
2075 
2076 	bzero(&optdata, sizeof (optdata));
2077 	(void) dtrace_getopt(dtp, option, &optdata.dtsda_oldval);
2078 
2079 	if (dtrace_setopt(dtp, option, value) == 0) {
2080 		(void) dtrace_getopt(dtp, option, &optdata.dtsda_newval);
2081 		optdata.dtsda_probe = data;
2082 		optdata.dtsda_option = option;
2083 		optdata.dtsda_handle = dtp;
2084 
2085 		if ((rval = dt_handle_setopt(dtp, &optdata)) != 0)
2086 			return (rval);
2087 
2088 		return (0);
2089 	}
2090 
2091 	errstr = dtrace_errmsg(dtp, dtrace_errno(dtp));
2092 	len = strlen(option) + strlen(value) + strlen(errstr) + 80;
2093 	msg = alloca(len);
2094 
2095 	(void) snprintf(msg, len, "couldn't set option \"%s\" to \"%s\": %s\n",
2096 	    option, value, errstr);
2097 
2098 	if ((rval = dt_handle_liberr(dtp, data, msg)) == 0)
2099 		return (0);
2100 
2101 	return (rval);
2102 }
2103 
2104 static int
2105 dt_consume_cpu(dtrace_hdl_t *dtp, FILE *fp, int cpu,
2106     dtrace_bufdesc_t *buf, boolean_t just_one,
2107     dtrace_consume_probe_f *efunc, dtrace_consume_rec_f *rfunc, void *arg)
2108 {
2109 	dtrace_epid_t id;
2110 	size_t offs;
2111 	int flow = (dtp->dt_options[DTRACEOPT_FLOWINDENT] != DTRACEOPT_UNSET);
2112 	int quiet = (dtp->dt_options[DTRACEOPT_QUIET] != DTRACEOPT_UNSET);
2113 	int rval, i, n;
2114 	uint64_t tracememsize = 0;
2115 	dtrace_probedata_t data;
2116 	uint64_t drops;
2117 
2118 	bzero(&data, sizeof (data));
2119 	data.dtpda_handle = dtp;
2120 	data.dtpda_cpu = cpu;
2121 	data.dtpda_flow = dtp->dt_flow;
2122 	data.dtpda_indent = dtp->dt_indent;
2123 	data.dtpda_prefix = dtp->dt_prefix;
2124 
2125 	for (offs = buf->dtbd_oldest; offs < buf->dtbd_size; ) {
2126 		dtrace_eprobedesc_t *epd;
2127 
2128 		/*
2129 		 * We're guaranteed to have an ID.
2130 		 */
2131 		id = *(uint32_t *)((uintptr_t)buf->dtbd_data + offs);
2132 
2133 		if (id == DTRACE_EPIDNONE) {
2134 			/*
2135 			 * This is filler to assure proper alignment of the
2136 			 * next record; we simply ignore it.
2137 			 */
2138 			offs += sizeof (id);
2139 			continue;
2140 		}
2141 
2142 		if ((rval = dt_epid_lookup(dtp, id, &data.dtpda_edesc,
2143 		    &data.dtpda_pdesc)) != 0)
2144 			return (rval);
2145 
2146 		epd = data.dtpda_edesc;
2147 		data.dtpda_data = buf->dtbd_data + offs;
2148 
2149 		if (data.dtpda_edesc->dtepd_uarg != DT_ECB_DEFAULT) {
2150 			rval = dt_handle(dtp, &data);
2151 
2152 			if (rval == DTRACE_CONSUME_NEXT)
2153 				goto nextepid;
2154 
2155 			if (rval == DTRACE_CONSUME_ERROR)
2156 				return (-1);
2157 		}
2158 
2159 		if (flow)
2160 			(void) dt_flowindent(dtp, &data, dtp->dt_last_epid,
2161 			    buf, offs);
2162 
2163 		rval = (*efunc)(&data, arg);
2164 
2165 		if (flow) {
2166 			if (data.dtpda_flow == DTRACEFLOW_ENTRY)
2167 				data.dtpda_indent += 2;
2168 		}
2169 
2170 		if (rval == DTRACE_CONSUME_NEXT)
2171 			goto nextepid;
2172 
2173 		if (rval == DTRACE_CONSUME_ABORT)
2174 			return (dt_set_errno(dtp, EDT_DIRABORT));
2175 
2176 		if (rval != DTRACE_CONSUME_THIS)
2177 			return (dt_set_errno(dtp, EDT_BADRVAL));
2178 
2179 		for (i = 0; i < epd->dtepd_nrecs; i++) {
2180 			caddr_t addr;
2181 			dtrace_recdesc_t *rec = &epd->dtepd_rec[i];
2182 			dtrace_actkind_t act = rec->dtrd_action;
2183 
2184 			data.dtpda_data = buf->dtbd_data + offs +
2185 			    rec->dtrd_offset;
2186 			addr = data.dtpda_data;
2187 
2188 			if (act == DTRACEACT_LIBACT) {
2189 				uint64_t arg = rec->dtrd_arg;
2190 				dtrace_aggvarid_t id;
2191 
2192 				switch (arg) {
2193 				case DT_ACT_CLEAR:
2194 					/* LINTED - alignment */
2195 					id = *((dtrace_aggvarid_t *)addr);
2196 					(void) dtrace_aggregate_walk(dtp,
2197 					    dt_clear_agg, &id);
2198 					continue;
2199 
2200 				case DT_ACT_DENORMALIZE:
2201 					/* LINTED - alignment */
2202 					id = *((dtrace_aggvarid_t *)addr);
2203 					(void) dtrace_aggregate_walk(dtp,
2204 					    dt_denormalize_agg, &id);
2205 					continue;
2206 
2207 				case DT_ACT_FTRUNCATE:
2208 					if (fp == NULL)
2209 						continue;
2210 
2211 					(void) fflush(fp);
2212 					(void) ftruncate(fileno(fp), 0);
2213 					(void) fseeko(fp, 0, SEEK_SET);
2214 					continue;
2215 
2216 				case DT_ACT_NORMALIZE:
2217 					if (i == epd->dtepd_nrecs - 1)
2218 						return (dt_set_errno(dtp,
2219 						    EDT_BADNORMAL));
2220 
2221 					if (dt_normalize(dtp,
2222 					    buf->dtbd_data + offs, rec) != 0)
2223 						return (-1);
2224 
2225 					i++;
2226 					continue;
2227 
2228 				case DT_ACT_SETOPT: {
2229 					uint64_t *opts = dtp->dt_options;
2230 					dtrace_recdesc_t *valrec;
2231 					uint32_t valsize;
2232 					caddr_t val;
2233 					int rv;
2234 
2235 					if (i == epd->dtepd_nrecs - 1) {
2236 						return (dt_set_errno(dtp,
2237 						    EDT_BADSETOPT));
2238 					}
2239 
2240 					valrec = &epd->dtepd_rec[++i];
2241 					valsize = valrec->dtrd_size;
2242 
2243 					if (valrec->dtrd_action != act ||
2244 					    valrec->dtrd_arg != arg) {
2245 						return (dt_set_errno(dtp,
2246 						    EDT_BADSETOPT));
2247 					}
2248 
2249 					if (valsize > sizeof (uint64_t)) {
2250 						val = buf->dtbd_data + offs +
2251 						    valrec->dtrd_offset;
2252 					} else {
2253 						val = "1";
2254 					}
2255 
2256 					rv = dt_setopt(dtp, &data, addr, val);
2257 
2258 					if (rv != 0)
2259 						return (-1);
2260 
2261 					flow = (opts[DTRACEOPT_FLOWINDENT] !=
2262 					    DTRACEOPT_UNSET);
2263 					quiet = (opts[DTRACEOPT_QUIET] !=
2264 					    DTRACEOPT_UNSET);
2265 
2266 					continue;
2267 				}
2268 
2269 				case DT_ACT_TRUNC:
2270 					if (i == epd->dtepd_nrecs - 1)
2271 						return (dt_set_errno(dtp,
2272 						    EDT_BADTRUNC));
2273 
2274 					if (dt_trunc(dtp,
2275 					    buf->dtbd_data + offs, rec) != 0)
2276 						return (-1);
2277 
2278 					i++;
2279 					continue;
2280 
2281 				default:
2282 					continue;
2283 				}
2284 			}
2285 
2286 			if (act == DTRACEACT_TRACEMEM_DYNSIZE &&
2287 			    rec->dtrd_size == sizeof (uint64_t)) {
2288 			    	/* LINTED - alignment */
2289 				tracememsize = *((unsigned long long *)addr);
2290 				continue;
2291 			}
2292 
2293 			rval = (*rfunc)(&data, rec, arg);
2294 
2295 			if (rval == DTRACE_CONSUME_NEXT)
2296 				continue;
2297 
2298 			if (rval == DTRACE_CONSUME_ABORT)
2299 				return (dt_set_errno(dtp, EDT_DIRABORT));
2300 
2301 			if (rval != DTRACE_CONSUME_THIS)
2302 				return (dt_set_errno(dtp, EDT_BADRVAL));
2303 
2304 			if (act == DTRACEACT_STACK) {
2305 				int depth = rec->dtrd_arg;
2306 
2307 				if (dt_print_stack(dtp, fp, NULL, addr, depth,
2308 				    rec->dtrd_size / depth) < 0)
2309 					return (-1);
2310 				goto nextrec;
2311 			}
2312 
2313 			if (act == DTRACEACT_USTACK ||
2314 			    act == DTRACEACT_JSTACK) {
2315 				if (dt_print_ustack(dtp, fp, NULL,
2316 				    addr, rec->dtrd_arg) < 0)
2317 					return (-1);
2318 				goto nextrec;
2319 			}
2320 
2321 			if (act == DTRACEACT_SYM) {
2322 				if (dt_print_sym(dtp, fp, NULL, addr) < 0)
2323 					return (-1);
2324 				goto nextrec;
2325 			}
2326 
2327 			if (act == DTRACEACT_MOD) {
2328 				if (dt_print_mod(dtp, fp, NULL, addr) < 0)
2329 					return (-1);
2330 				goto nextrec;
2331 			}
2332 
2333 			if (act == DTRACEACT_USYM || act == DTRACEACT_UADDR) {
2334 				if (dt_print_usym(dtp, fp, addr, act) < 0)
2335 					return (-1);
2336 				goto nextrec;
2337 			}
2338 
2339 			if (act == DTRACEACT_UMOD) {
2340 				if (dt_print_umod(dtp, fp, NULL, addr) < 0)
2341 					return (-1);
2342 				goto nextrec;
2343 			}
2344 
2345 			if (act == DTRACEACT_PRINTM) {
2346 				if (dt_print_memory(dtp, fp, addr) < 0)
2347 					return (-1);
2348 				goto nextrec;
2349 			}
2350 
2351 			if (DTRACEACT_ISPRINTFLIKE(act)) {
2352 				void *fmtdata;
2353 				int (*func)(dtrace_hdl_t *, FILE *, void *,
2354 				    const dtrace_probedata_t *,
2355 				    const dtrace_recdesc_t *, uint_t,
2356 				    const void *buf, size_t);
2357 
2358 				if ((fmtdata = dt_format_lookup(dtp,
2359 				    rec->dtrd_format)) == NULL)
2360 					goto nofmt;
2361 
2362 				switch (act) {
2363 				case DTRACEACT_PRINTF:
2364 					func = dtrace_fprintf;
2365 					break;
2366 				case DTRACEACT_PRINTA:
2367 					func = dtrace_fprinta;
2368 					break;
2369 				case DTRACEACT_SYSTEM:
2370 					func = dtrace_system;
2371 					break;
2372 				case DTRACEACT_FREOPEN:
2373 					func = dtrace_freopen;
2374 					break;
2375 				}
2376 
2377 				n = (*func)(dtp, fp, fmtdata, &data,
2378 				    rec, epd->dtepd_nrecs - i,
2379 				    (uchar_t *)buf->dtbd_data + offs,
2380 				    buf->dtbd_size - offs);
2381 
2382 				if (n < 0)
2383 					return (-1); /* errno is set for us */
2384 
2385 				if (n > 0)
2386 					i += n - 1;
2387 				goto nextrec;
2388 			}
2389 
2390 			/*
2391 			 * If this is a DIF expression, and the record has a
2392 			 * format set, this indicates we have a CTF type name
2393 			 * associated with the data and we should try to print
2394 			 * it out by type.
2395 			 */
2396 			if (act == DTRACEACT_DIFEXPR) {
2397 				const char *strdata = dt_strdata_lookup(dtp,
2398 				    rec->dtrd_format);
2399 				if (strdata != NULL) {
2400 					n = dtrace_print(dtp, fp, strdata,
2401 					    addr, rec->dtrd_size);
2402 
2403 					/*
2404 					 * dtrace_print() will return -1 on
2405 					 * error, or return the number of bytes
2406 					 * consumed.  It will return 0 if the
2407 					 * type couldn't be determined, and we
2408 					 * should fall through to the normal
2409 					 * trace method.
2410 					 */
2411 					if (n < 0)
2412 						return (-1);
2413 
2414 					if (n > 0)
2415 						goto nextrec;
2416 				}
2417 			}
2418 
2419 nofmt:
2420 			if (act == DTRACEACT_PRINTA) {
2421 				dt_print_aggdata_t pd;
2422 				dtrace_aggvarid_t *aggvars;
2423 				int j, naggvars = 0;
2424 				size_t size = ((epd->dtepd_nrecs - i) *
2425 				    sizeof (dtrace_aggvarid_t));
2426 
2427 				if ((aggvars = dt_alloc(dtp, size)) == NULL)
2428 					return (-1);
2429 
2430 				/*
2431 				 * This might be a printa() with multiple
2432 				 * aggregation variables.  We need to scan
2433 				 * forward through the records until we find
2434 				 * a record from a different statement.
2435 				 */
2436 				for (j = i; j < epd->dtepd_nrecs; j++) {
2437 					dtrace_recdesc_t *nrec;
2438 					caddr_t naddr;
2439 
2440 					nrec = &epd->dtepd_rec[j];
2441 
2442 					if (nrec->dtrd_uarg != rec->dtrd_uarg)
2443 						break;
2444 
2445 					if (nrec->dtrd_action != act) {
2446 						return (dt_set_errno(dtp,
2447 						    EDT_BADAGG));
2448 					}
2449 
2450 					naddr = buf->dtbd_data + offs +
2451 					    nrec->dtrd_offset;
2452 
2453 					aggvars[naggvars++] =
2454 					    /* LINTED - alignment */
2455 					    *((dtrace_aggvarid_t *)naddr);
2456 				}
2457 
2458 				i = j - 1;
2459 				bzero(&pd, sizeof (pd));
2460 				pd.dtpa_dtp = dtp;
2461 				pd.dtpa_fp = fp;
2462 
2463 				assert(naggvars >= 1);
2464 
2465 				if (naggvars == 1) {
2466 					pd.dtpa_id = aggvars[0];
2467 					dt_free(dtp, aggvars);
2468 
2469 					if (dt_printf(dtp, fp, "\n") < 0 ||
2470 					    dtrace_aggregate_walk_sorted(dtp,
2471 					    dt_print_agg, &pd) < 0)
2472 						return (-1);
2473 					goto nextrec;
2474 				}
2475 
2476 				if (dt_printf(dtp, fp, "\n") < 0 ||
2477 				    dtrace_aggregate_walk_joined(dtp, aggvars,
2478 				    naggvars, dt_print_aggs, &pd) < 0) {
2479 					dt_free(dtp, aggvars);
2480 					return (-1);
2481 				}
2482 
2483 				dt_free(dtp, aggvars);
2484 				goto nextrec;
2485 			}
2486 
2487 			if (act == DTRACEACT_TRACEMEM) {
2488 				if (tracememsize == 0 ||
2489 				    tracememsize > rec->dtrd_size) {
2490 					tracememsize = rec->dtrd_size;
2491 				}
2492 
2493 				n = dt_print_bytes(dtp, fp, addr,
2494 				    tracememsize, -33, quiet, 1);
2495 
2496 				tracememsize = 0;
2497 
2498 				if (n < 0)
2499 					return (-1);
2500 
2501 				goto nextrec;
2502 			}
2503 
2504 			switch (rec->dtrd_size) {
2505 			case sizeof (uint64_t):
2506 				n = dt_printf(dtp, fp,
2507 				    quiet ? "%lld" : " %16lld",
2508 				    /* LINTED - alignment */
2509 				    *((unsigned long long *)addr));
2510 				break;
2511 			case sizeof (uint32_t):
2512 				n = dt_printf(dtp, fp, quiet ? "%d" : " %8d",
2513 				    /* LINTED - alignment */
2514 				    *((uint32_t *)addr));
2515 				break;
2516 			case sizeof (uint16_t):
2517 				n = dt_printf(dtp, fp, quiet ? "%d" : " %5d",
2518 				    /* LINTED - alignment */
2519 				    *((uint16_t *)addr));
2520 				break;
2521 			case sizeof (uint8_t):
2522 				n = dt_printf(dtp, fp, quiet ? "%d" : " %3d",
2523 				    *((uint8_t *)addr));
2524 				break;
2525 			default:
2526 				n = dt_print_bytes(dtp, fp, addr,
2527 				    rec->dtrd_size, -33, quiet, 0);
2528 				break;
2529 			}
2530 
2531 			if (n < 0)
2532 				return (-1); /* errno is set for us */
2533 
2534 nextrec:
2535 			if (dt_buffered_flush(dtp, &data, rec, NULL, 0) < 0)
2536 				return (-1); /* errno is set for us */
2537 		}
2538 
2539 		/*
2540 		 * Call the record callback with a NULL record to indicate
2541 		 * that we're done processing this EPID.
2542 		 */
2543 		rval = (*rfunc)(&data, NULL, arg);
2544 nextepid:
2545 		offs += epd->dtepd_size;
2546 		dtp->dt_last_epid = id;
2547 		if (just_one) {
2548 			buf->dtbd_oldest = offs;
2549 			break;
2550 		}
2551 	}
2552 
2553 	dtp->dt_flow = data.dtpda_flow;
2554 	dtp->dt_indent = data.dtpda_indent;
2555 	dtp->dt_prefix = data.dtpda_prefix;
2556 
2557 	if ((drops = buf->dtbd_drops) == 0)
2558 		return (0);
2559 
2560 	/*
2561 	 * Explicitly zero the drops to prevent us from processing them again.
2562 	 */
2563 	buf->dtbd_drops = 0;
2564 
2565 	return (dt_handle_cpudrop(dtp, cpu, DTRACEDROP_PRINCIPAL, drops));
2566 }
2567 
2568 /*
2569  * Reduce memory usage by shrinking the buffer if it's no more than half full.
2570  * Note, we need to preserve the alignment of the data at dtbd_oldest, which is
2571  * only 4-byte aligned.
2572  */
2573 static void
2574 dt_realloc_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf, int cursize)
2575 {
2576 	uint64_t used = buf->dtbd_size - buf->dtbd_oldest;
2577 	if (used < cursize / 2) {
2578 		int misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2579 		char *newdata = dt_alloc(dtp, used + misalign);
2580 		if (newdata == NULL)
2581 			return;
2582 		bzero(newdata, misalign);
2583 		bcopy(buf->dtbd_data + buf->dtbd_oldest,
2584 		    newdata + misalign, used);
2585 		dt_free(dtp, buf->dtbd_data);
2586 		buf->dtbd_oldest = misalign;
2587 		buf->dtbd_size = used + misalign;
2588 		buf->dtbd_data = newdata;
2589 	}
2590 }
2591 
2592 /*
2593  * If the ring buffer has wrapped, the data is not in order.  Rearrange it
2594  * so that it is.  Note, we need to preserve the alignment of the data at
2595  * dtbd_oldest, which is only 4-byte aligned.
2596  */
2597 static int
2598 dt_unring_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2599 {
2600 	int misalign;
2601 	char *newdata, *ndp;
2602 
2603 	if (buf->dtbd_oldest == 0)
2604 		return (0);
2605 
2606 	misalign = buf->dtbd_oldest & (sizeof (uint64_t) - 1);
2607 	newdata = ndp = dt_alloc(dtp, buf->dtbd_size + misalign);
2608 
2609 	if (newdata == NULL)
2610 		return (-1);
2611 
2612 	assert(0 == (buf->dtbd_size & (sizeof (uint64_t) - 1)));
2613 
2614 	bzero(ndp, misalign);
2615 	ndp += misalign;
2616 
2617 	bcopy(buf->dtbd_data + buf->dtbd_oldest, ndp,
2618 	    buf->dtbd_size - buf->dtbd_oldest);
2619 	ndp += buf->dtbd_size - buf->dtbd_oldest;
2620 
2621 	bcopy(buf->dtbd_data, ndp, buf->dtbd_oldest);
2622 
2623 	dt_free(dtp, buf->dtbd_data);
2624 	buf->dtbd_oldest = 0;
2625 	buf->dtbd_data = newdata;
2626 	buf->dtbd_size += misalign;
2627 
2628 	return (0);
2629 }
2630 
2631 static void
2632 dt_put_buf(dtrace_hdl_t *dtp, dtrace_bufdesc_t *buf)
2633 {
2634 	dt_free(dtp, buf->dtbd_data);
2635 	dt_free(dtp, buf);
2636 }
2637 
2638 /*
2639  * Returns 0 on success, in which case *cbp will be filled in if we retrieved
2640  * data, or NULL if there is no data for this CPU.
2641  * Returns -1 on failure and sets dt_errno.
2642  */
2643 static int
2644 dt_get_buf(dtrace_hdl_t *dtp, int cpu, dtrace_bufdesc_t **bufp)
2645 {
2646 	dtrace_optval_t size;
2647 	dtrace_bufdesc_t *buf = dt_zalloc(dtp, sizeof (*buf));
2648 	int error, rval;
2649 
2650 	if (buf == NULL)
2651 		return (-1);
2652 
2653 	(void) dtrace_getopt(dtp, "bufsize", &size);
2654 	buf->dtbd_data = dt_alloc(dtp, size);
2655 	if (buf->dtbd_data == NULL) {
2656 		dt_free(dtp, buf);
2657 		return (-1);
2658 	}
2659 	buf->dtbd_size = size;
2660 	buf->dtbd_cpu = cpu;
2661 
2662 #ifdef illumos
2663 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, buf) == -1) {
2664 #else
2665 	if (dt_ioctl(dtp, DTRACEIOC_BUFSNAP, &buf) == -1) {
2666 #endif
2667 		/*
2668 		 * If we failed with ENOENT, it may be because the
2669 		 * CPU was unconfigured -- this is okay.  Any other
2670 		 * error, however, is unexpected.
2671 		 */
2672 		if (errno == ENOENT) {
2673 			*bufp = NULL;
2674 			rval = 0;
2675 		} else
2676 			rval = dt_set_errno(dtp, errno);
2677 
2678 		dt_put_buf(dtp, buf);
2679 		return (rval);
2680 	}
2681 
2682 	error = dt_unring_buf(dtp, buf);
2683 	if (error != 0) {
2684 		dt_put_buf(dtp, buf);
2685 		return (error);
2686 	}
2687 	dt_realloc_buf(dtp, buf, size);
2688 
2689 	*bufp = buf;
2690 	return (0);
2691 }
2692 
2693 typedef struct dt_begin {
2694 	dtrace_consume_probe_f *dtbgn_probefunc;
2695 	dtrace_consume_rec_f *dtbgn_recfunc;
2696 	void *dtbgn_arg;
2697 	dtrace_handle_err_f *dtbgn_errhdlr;
2698 	void *dtbgn_errarg;
2699 	int dtbgn_beginonly;
2700 } dt_begin_t;
2701 
2702 static int
2703 dt_consume_begin_probe(const dtrace_probedata_t *data, void *arg)
2704 {
2705 	dt_begin_t *begin = arg;
2706 	dtrace_probedesc_t *pd = data->dtpda_pdesc;
2707 
2708 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2709 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2710 
2711 	if (begin->dtbgn_beginonly) {
2712 		if (!(r1 && r2))
2713 			return (DTRACE_CONSUME_NEXT);
2714 	} else {
2715 		if (r1 && r2)
2716 			return (DTRACE_CONSUME_NEXT);
2717 	}
2718 
2719 	/*
2720 	 * We have a record that we're interested in.  Now call the underlying
2721 	 * probe function...
2722 	 */
2723 	return (begin->dtbgn_probefunc(data, begin->dtbgn_arg));
2724 }
2725 
2726 static int
2727 dt_consume_begin_record(const dtrace_probedata_t *data,
2728     const dtrace_recdesc_t *rec, void *arg)
2729 {
2730 	dt_begin_t *begin = arg;
2731 
2732 	return (begin->dtbgn_recfunc(data, rec, begin->dtbgn_arg));
2733 }
2734 
2735 static int
2736 dt_consume_begin_error(const dtrace_errdata_t *data, void *arg)
2737 {
2738 	dt_begin_t *begin = (dt_begin_t *)arg;
2739 	dtrace_probedesc_t *pd = data->dteda_pdesc;
2740 
2741 	int r1 = (strcmp(pd->dtpd_provider, "dtrace") == 0);
2742 	int r2 = (strcmp(pd->dtpd_name, "BEGIN") == 0);
2743 
2744 	if (begin->dtbgn_beginonly) {
2745 		if (!(r1 && r2))
2746 			return (DTRACE_HANDLE_OK);
2747 	} else {
2748 		if (r1 && r2)
2749 			return (DTRACE_HANDLE_OK);
2750 	}
2751 
2752 	return (begin->dtbgn_errhdlr(data, begin->dtbgn_errarg));
2753 }
2754 
2755 static int
2756 dt_consume_begin(dtrace_hdl_t *dtp, FILE *fp,
2757     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2758 {
2759 	/*
2760 	 * There's this idea that the BEGIN probe should be processed before
2761 	 * everything else, and that the END probe should be processed after
2762 	 * anything else.  In the common case, this is pretty easy to deal
2763 	 * with.  However, a situation may arise where the BEGIN enabling and
2764 	 * END enabling are on the same CPU, and some enabling in the middle
2765 	 * occurred on a different CPU.  To deal with this (blech!) we need to
2766 	 * consume the BEGIN buffer up until the end of the BEGIN probe, and
2767 	 * then set it aside.  We will then process every other CPU, and then
2768 	 * we'll return to the BEGIN CPU and process the rest of the data
2769 	 * (which will inevitably include the END probe, if any).  Making this
2770 	 * even more complicated (!) is the library's ERROR enabling.  Because
2771 	 * this enabling is processed before we even get into the consume call
2772 	 * back, any ERROR firing would result in the library's ERROR enabling
2773 	 * being processed twice -- once in our first pass (for BEGIN probes),
2774 	 * and again in our second pass (for everything but BEGIN probes).  To
2775 	 * deal with this, we interpose on the ERROR handler to assure that we
2776 	 * only process ERROR enablings induced by BEGIN enablings in the
2777 	 * first pass, and that we only process ERROR enablings _not_ induced
2778 	 * by BEGIN enablings in the second pass.
2779 	 */
2780 
2781 	dt_begin_t begin;
2782 	processorid_t cpu = dtp->dt_beganon;
2783 	int rval, i;
2784 	static int max_ncpus;
2785 	dtrace_bufdesc_t *buf;
2786 
2787 	dtp->dt_beganon = -1;
2788 
2789 	if (dt_get_buf(dtp, cpu, &buf) != 0)
2790 		return (-1);
2791 	if (buf == NULL)
2792 		return (0);
2793 
2794 	if (!dtp->dt_stopped || buf->dtbd_cpu != dtp->dt_endedon) {
2795 		/*
2796 		 * This is the simple case.  We're either not stopped, or if
2797 		 * we are, we actually processed any END probes on another
2798 		 * CPU.  We can simply consume this buffer and return.
2799 		 */
2800 		rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2801 		    pf, rf, arg);
2802 		dt_put_buf(dtp, buf);
2803 		return (rval);
2804 	}
2805 
2806 	begin.dtbgn_probefunc = pf;
2807 	begin.dtbgn_recfunc = rf;
2808 	begin.dtbgn_arg = arg;
2809 	begin.dtbgn_beginonly = 1;
2810 
2811 	/*
2812 	 * We need to interpose on the ERROR handler to be sure that we
2813 	 * only process ERRORs induced by BEGIN.
2814 	 */
2815 	begin.dtbgn_errhdlr = dtp->dt_errhdlr;
2816 	begin.dtbgn_errarg = dtp->dt_errarg;
2817 	dtp->dt_errhdlr = dt_consume_begin_error;
2818 	dtp->dt_errarg = &begin;
2819 
2820 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2821 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2822 
2823 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2824 	dtp->dt_errarg = begin.dtbgn_errarg;
2825 
2826 	if (rval != 0) {
2827 		dt_put_buf(dtp, buf);
2828 		return (rval);
2829 	}
2830 
2831 	if (max_ncpus == 0)
2832 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2833 
2834 	for (i = 0; i < max_ncpus; i++) {
2835 		dtrace_bufdesc_t *nbuf;
2836 		if (i == cpu)
2837 			continue;
2838 
2839 		if (dt_get_buf(dtp, i, &nbuf) != 0) {
2840 			dt_put_buf(dtp, buf);
2841 			return (-1);
2842 		}
2843 		if (nbuf == NULL)
2844 			continue;
2845 
2846 		rval = dt_consume_cpu(dtp, fp, i, nbuf, B_FALSE,
2847 		    pf, rf, arg);
2848 		dt_put_buf(dtp, nbuf);
2849 		if (rval != 0) {
2850 			dt_put_buf(dtp, buf);
2851 			return (rval);
2852 		}
2853 	}
2854 
2855 	/*
2856 	 * Okay -- we're done with the other buffers.  Now we want to
2857 	 * reconsume the first buffer -- but this time we're looking for
2858 	 * everything _but_ BEGIN.  And of course, in order to only consume
2859 	 * those ERRORs _not_ associated with BEGIN, we need to reinstall our
2860 	 * ERROR interposition function...
2861 	 */
2862 	begin.dtbgn_beginonly = 0;
2863 
2864 	assert(begin.dtbgn_errhdlr == dtp->dt_errhdlr);
2865 	assert(begin.dtbgn_errarg == dtp->dt_errarg);
2866 	dtp->dt_errhdlr = dt_consume_begin_error;
2867 	dtp->dt_errarg = &begin;
2868 
2869 	rval = dt_consume_cpu(dtp, fp, cpu, buf, B_FALSE,
2870 	    dt_consume_begin_probe, dt_consume_begin_record, &begin);
2871 
2872 	dtp->dt_errhdlr = begin.dtbgn_errhdlr;
2873 	dtp->dt_errarg = begin.dtbgn_errarg;
2874 
2875 	return (rval);
2876 }
2877 
2878 /* ARGSUSED */
2879 static uint64_t
2880 dt_buf_oldest(void *elem, void *arg)
2881 {
2882 	dtrace_bufdesc_t *buf = elem;
2883 	size_t offs = buf->dtbd_oldest;
2884 
2885 	while (offs < buf->dtbd_size) {
2886 		dtrace_rechdr_t *dtrh =
2887 		    /* LINTED - alignment */
2888 		    (dtrace_rechdr_t *)(buf->dtbd_data + offs);
2889 		if (dtrh->dtrh_epid == DTRACE_EPIDNONE) {
2890 			offs += sizeof (dtrace_epid_t);
2891 		} else {
2892 			return (DTRACE_RECORD_LOAD_TIMESTAMP(dtrh));
2893 		}
2894 	}
2895 
2896 	/* There are no records left; use the time the buffer was retrieved. */
2897 	return (buf->dtbd_timestamp);
2898 }
2899 
2900 int
2901 dtrace_consume(dtrace_hdl_t *dtp, FILE *fp,
2902     dtrace_consume_probe_f *pf, dtrace_consume_rec_f *rf, void *arg)
2903 {
2904 	dtrace_optval_t size;
2905 	static int max_ncpus;
2906 	int i, rval;
2907 	dtrace_optval_t interval = dtp->dt_options[DTRACEOPT_SWITCHRATE];
2908 	hrtime_t now = gethrtime();
2909 
2910 	if (dtp->dt_lastswitch != 0) {
2911 		if (now - dtp->dt_lastswitch < interval)
2912 			return (0);
2913 
2914 		dtp->dt_lastswitch += interval;
2915 	} else {
2916 		dtp->dt_lastswitch = now;
2917 	}
2918 
2919 	if (!dtp->dt_active)
2920 		return (dt_set_errno(dtp, EINVAL));
2921 
2922 	if (max_ncpus == 0)
2923 		max_ncpus = dt_sysconf(dtp, _SC_CPUID_MAX) + 1;
2924 
2925 	if (pf == NULL)
2926 		pf = (dtrace_consume_probe_f *)dt_nullprobe;
2927 
2928 	if (rf == NULL)
2929 		rf = (dtrace_consume_rec_f *)dt_nullrec;
2930 
2931 	if (dtp->dt_options[DTRACEOPT_TEMPORAL] == DTRACEOPT_UNSET) {
2932 		/*
2933 		 * The output will not be in the order it was traced.  Rather,
2934 		 * we will consume all of the data from each CPU's buffer in
2935 		 * turn.  We apply special handling for the records from BEGIN
2936 		 * and END probes so that they are consumed first and last,
2937 		 * respectively.
2938 		 *
2939 		 * If we have just begun, we want to first process the CPU that
2940 		 * executed the BEGIN probe (if any).
2941 		 */
2942 		if (dtp->dt_active && dtp->dt_beganon != -1 &&
2943 		    (rval = dt_consume_begin(dtp, fp, pf, rf, arg)) != 0)
2944 			return (rval);
2945 
2946 		for (i = 0; i < max_ncpus; i++) {
2947 			dtrace_bufdesc_t *buf;
2948 
2949 			/*
2950 			 * If we have stopped, we want to process the CPU on
2951 			 * which the END probe was processed only _after_ we
2952 			 * have processed everything else.
2953 			 */
2954 			if (dtp->dt_stopped && (i == dtp->dt_endedon))
2955 				continue;
2956 
2957 			if (dt_get_buf(dtp, i, &buf) != 0)
2958 				return (-1);
2959 			if (buf == NULL)
2960 				continue;
2961 
2962 			dtp->dt_flow = 0;
2963 			dtp->dt_indent = 0;
2964 			dtp->dt_prefix = NULL;
2965 			rval = dt_consume_cpu(dtp, fp, i,
2966 			    buf, B_FALSE, pf, rf, arg);
2967 			dt_put_buf(dtp, buf);
2968 			if (rval != 0)
2969 				return (rval);
2970 		}
2971 		if (dtp->dt_stopped) {
2972 			dtrace_bufdesc_t *buf;
2973 
2974 			if (dt_get_buf(dtp, dtp->dt_endedon, &buf) != 0)
2975 				return (-1);
2976 			if (buf == NULL)
2977 				return (0);
2978 
2979 			rval = dt_consume_cpu(dtp, fp, dtp->dt_endedon,
2980 			    buf, B_FALSE, pf, rf, arg);
2981 			dt_put_buf(dtp, buf);
2982 			return (rval);
2983 		}
2984 	} else {
2985 		/*
2986 		 * The output will be in the order it was traced (or for
2987 		 * speculations, when it was committed).  We retrieve a buffer
2988 		 * from each CPU and put it into a priority queue, which sorts
2989 		 * based on the first entry in the buffer.  This is sufficient
2990 		 * because entries within a buffer are already sorted.
2991 		 *
2992 		 * We then consume records one at a time, always consuming the
2993 		 * oldest record, as determined by the priority queue.  When
2994 		 * we reach the end of the time covered by these buffers,
2995 		 * we need to stop and retrieve more records on the next pass.
2996 		 * The kernel tells us the time covered by each buffer, in
2997 		 * dtbd_timestamp.  The first buffer's timestamp tells us the
2998 		 * time covered by all buffers, as subsequently retrieved
2999 		 * buffers will cover to a more recent time.
3000 		 */
3001 
3002 		uint64_t *drops = alloca(max_ncpus * sizeof (uint64_t));
3003 		uint64_t first_timestamp = 0;
3004 		uint_t cookie = 0;
3005 		dtrace_bufdesc_t *buf;
3006 
3007 		bzero(drops, max_ncpus * sizeof (uint64_t));
3008 
3009 		if (dtp->dt_bufq == NULL) {
3010 			dtp->dt_bufq = dt_pq_init(dtp, max_ncpus * 2,
3011 			    dt_buf_oldest, NULL);
3012 			if (dtp->dt_bufq == NULL) /* ENOMEM */
3013 				return (-1);
3014 		}
3015 
3016 		/* Retrieve data from each CPU. */
3017 		(void) dtrace_getopt(dtp, "bufsize", &size);
3018 		for (i = 0; i < max_ncpus; i++) {
3019 			dtrace_bufdesc_t *buf;
3020 
3021 			if (dt_get_buf(dtp, i, &buf) != 0)
3022 				return (-1);
3023 			if (buf != NULL) {
3024 				if (first_timestamp == 0)
3025 					first_timestamp = buf->dtbd_timestamp;
3026 				assert(buf->dtbd_timestamp >= first_timestamp);
3027 
3028 				dt_pq_insert(dtp->dt_bufq, buf);
3029 				drops[i] = buf->dtbd_drops;
3030 				buf->dtbd_drops = 0;
3031 			}
3032 		}
3033 
3034 		/* Consume records. */
3035 		for (;;) {
3036 			dtrace_bufdesc_t *buf = dt_pq_pop(dtp->dt_bufq);
3037 			uint64_t timestamp;
3038 
3039 			if (buf == NULL)
3040 				break;
3041 
3042 			timestamp = dt_buf_oldest(buf, dtp);
3043 			assert(timestamp >= dtp->dt_last_timestamp);
3044 			dtp->dt_last_timestamp = timestamp;
3045 
3046 			if (timestamp == buf->dtbd_timestamp) {
3047 				/*
3048 				 * We've reached the end of the time covered
3049 				 * by this buffer.  If this is the oldest
3050 				 * buffer, we must do another pass
3051 				 * to retrieve more data.
3052 				 */
3053 				dt_put_buf(dtp, buf);
3054 				if (timestamp == first_timestamp &&
3055 				    !dtp->dt_stopped)
3056 					break;
3057 				continue;
3058 			}
3059 
3060 			if ((rval = dt_consume_cpu(dtp, fp,
3061 			    buf->dtbd_cpu, buf, B_TRUE, pf, rf, arg)) != 0)
3062 				return (rval);
3063 			dt_pq_insert(dtp->dt_bufq, buf);
3064 		}
3065 
3066 		/* Consume drops. */
3067 		for (i = 0; i < max_ncpus; i++) {
3068 			if (drops[i] != 0) {
3069 				int error = dt_handle_cpudrop(dtp, i,
3070 				    DTRACEDROP_PRINCIPAL, drops[i]);
3071 				if (error != 0)
3072 					return (error);
3073 			}
3074 		}
3075 
3076 		/*
3077 		 * Reduce memory usage by re-allocating smaller buffers
3078 		 * for the "remnants".
3079 		 */
3080 		while (buf = dt_pq_walk(dtp->dt_bufq, &cookie))
3081 			dt_realloc_buf(dtp, buf, buf->dtbd_size);
3082 	}
3083 
3084 	return (0);
3085 }
3086