1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Create and parse buffers containing CTF data.
28  */
29 
30 #include <sys/types.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <strings.h>
34 #include <ctype.h>
35 #include <zlib.h>
36 #include <elf.h>
37 
38 #include "ctf_headers.h"
39 #include "ctftools.h"
40 #include "strtab.h"
41 #include "memory.h"
42 
43 /*
44  * Name of the file currently being read, used to print error messages.  We
45  * assume that only one file will be read at a time, and thus make no attempt
46  * to allow curfile to be used simultaneously by multiple threads.
47  *
48  * The value is only valid during a call to ctf_load.
49  */
50 static char *curfile;
51 
52 #define	CTF_BUF_CHUNK_SIZE	(64 * 1024)
53 #define	RES_BUF_CHUNK_SIZE	(64 * 1024)
54 
55 struct ctf_buf {
56 	strtab_t ctb_strtab;	/* string table */
57 	caddr_t ctb_base;	/* pointer to base of buffer */
58 	caddr_t ctb_end;	/* pointer to end of buffer */
59 	caddr_t ctb_ptr;	/* pointer to empty buffer space */
60 	size_t ctb_size;	/* size of buffer */
61 	uint_t nptent;		/* number of processed types */
62 };
63 
64 /*
65  * Macros to reverse byte order
66  */
67 #define	BSWAP_8(x)	((x) & 0xff)
68 #define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
69 #define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
70 
71 #define	SWAP_16(x)	(x) = BSWAP_16(x)
72 #define	SWAP_32(x)	(x) = BSWAP_32(x)
73 
74 static int target_requires_swap;
75 
76 /*PRINTFLIKE1*/
77 static void
78 parseterminate(const char *fmt, ...)
79 {
80 	static char msgbuf[1024]; /* sigh */
81 	va_list ap;
82 
83 	va_start(ap, fmt);
84 	vsnprintf(msgbuf, sizeof (msgbuf), fmt, ap);
85 	va_end(ap);
86 
87 	terminate("%s: %s\n", curfile, msgbuf);
88 }
89 
90 static void
91 ctf_buf_grow(ctf_buf_t *b)
92 {
93 	off_t ptroff = b->ctb_ptr - b->ctb_base;
94 
95 	b->ctb_size += CTF_BUF_CHUNK_SIZE;
96 	b->ctb_base = xrealloc(b->ctb_base, b->ctb_size);
97 	b->ctb_end = b->ctb_base + b->ctb_size;
98 	b->ctb_ptr = b->ctb_base + ptroff;
99 }
100 
101 static ctf_buf_t *
102 ctf_buf_new(void)
103 {
104 	ctf_buf_t *b = xcalloc(sizeof (ctf_buf_t));
105 
106 	strtab_create(&b->ctb_strtab);
107 	ctf_buf_grow(b);
108 
109 	return (b);
110 }
111 
112 static void
113 ctf_buf_free(ctf_buf_t *b)
114 {
115 	strtab_destroy(&b->ctb_strtab);
116 	free(b->ctb_base);
117 	free(b);
118 }
119 
120 static uint_t
121 ctf_buf_cur(ctf_buf_t *b)
122 {
123 	return (b->ctb_ptr - b->ctb_base);
124 }
125 
126 static void
127 ctf_buf_write(ctf_buf_t *b, void const *p, size_t n)
128 {
129 	size_t len;
130 
131 	while (n != 0) {
132 		if (b->ctb_ptr == b->ctb_end)
133 			ctf_buf_grow(b);
134 
135 		len = MIN((size_t)(b->ctb_end - b->ctb_ptr), n);
136 		bcopy(p, b->ctb_ptr, len);
137 		b->ctb_ptr += len;
138 
139 		p = (char const *)p + len;
140 		n -= len;
141 	}
142 }
143 
144 static int
145 write_label(void *arg1, void *arg2)
146 {
147 	labelent_t *le = arg1;
148 	ctf_buf_t *b = arg2;
149 	ctf_lblent_t ctl;
150 
151 	ctl.ctl_label = strtab_insert(&b->ctb_strtab, le->le_name);
152 	ctl.ctl_typeidx = le->le_idx;
153 
154 	if (target_requires_swap) {
155 		SWAP_32(ctl.ctl_label);
156 		SWAP_32(ctl.ctl_typeidx);
157 	}
158 
159 	ctf_buf_write(b, &ctl, sizeof (ctl));
160 
161 	return (1);
162 }
163 
164 static void
165 write_objects(iidesc_t *idp, ctf_buf_t *b)
166 {
167 	uint_t id = (idp ? idp->ii_dtype->t_id : 0);
168 
169 	if (target_requires_swap) {
170 		SWAP_32(id);
171 	}
172 
173 	ctf_buf_write(b, &id, sizeof (id));
174 
175 	debug(3, "Wrote object %s (%d)\n", (idp ? idp->ii_name : "(null)"), id);
176 }
177 
178 static void
179 write_functions(iidesc_t *idp, ctf_buf_t *b)
180 {
181 	uint_t fdata[2];
182 	uint_t id;
183 	int nargs;
184 	int i;
185 
186 	if (!idp) {
187 		fdata[0] = 0;
188 		ctf_buf_write(b, &fdata[0], sizeof (fdata[0]));
189 
190 		debug(3, "Wrote function (null)\n");
191 		return;
192 	}
193 
194 	nargs = idp->ii_nargs + (idp->ii_vargs != 0);
195 
196 	if (nargs > CTF_V3_MAX_VLEN) {
197 		terminate("function %s has too many args: %d > %d\n",
198 		    idp->ii_name, nargs, CTF_V3_MAX_VLEN);
199 	}
200 
201 	fdata[0] = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, 1, nargs);
202 	fdata[1] = idp->ii_dtype->t_id;
203 
204 	if (target_requires_swap) {
205 		SWAP_32(fdata[0]);
206 		SWAP_32(fdata[1]);
207 	}
208 
209 	ctf_buf_write(b, fdata, sizeof (fdata));
210 
211 	for (i = 0; i < idp->ii_nargs; i++) {
212 		id = idp->ii_args[i]->t_id;
213 
214 		if (target_requires_swap) {
215 			SWAP_32(id);
216 		}
217 
218 		ctf_buf_write(b, &id, sizeof (id));
219 	}
220 
221 	if (idp->ii_vargs) {
222 		id = 0;
223 		ctf_buf_write(b, &id, sizeof (id));
224 	}
225 
226 	debug(3, "Wrote function %s (%d args)\n", idp->ii_name, nargs);
227 }
228 
229 /*
230  * Depending on the size of the type being described, either a ctf_stype_t (for
231  * types with size < CTF_LSTRUCT_THRESH) or a ctf_type_t (all others) will be
232  * written.  We isolate the determination here so the rest of the writer code
233  * doesn't need to care.
234  */
235 static void
236 write_sized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt, size_t size)
237 {
238 	if (size > CTF_V3_MAX_SIZE) {
239 		ctt->ctt_size = CTF_V3_LSIZE_SENT;
240 		ctt->ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI(size);
241 		ctt->ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO(size);
242 		if (target_requires_swap) {
243 			SWAP_32(ctt->ctt_name);
244 			SWAP_32(ctt->ctt_info);
245 			SWAP_32(ctt->ctt_size);
246 			SWAP_32(ctt->ctt_lsizehi);
247 			SWAP_32(ctt->ctt_lsizelo);
248 		}
249 		ctf_buf_write(b, ctt, sizeof (*ctt));
250 	} else {
251 		struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt;
252 
253 		cts->ctt_size = size;
254 
255 		if (target_requires_swap) {
256 			SWAP_32(cts->ctt_name);
257 			SWAP_32(cts->ctt_info);
258 			SWAP_32(cts->ctt_size);
259 		}
260 
261 		ctf_buf_write(b, cts, sizeof (*cts));
262 	}
263 }
264 
265 static void
266 write_unsized_type_rec(ctf_buf_t *b, struct ctf_type_v3 *ctt)
267 {
268 	struct ctf_stype_v3 *cts = (struct ctf_stype_v3 *)ctt;
269 
270 	if (target_requires_swap) {
271 		SWAP_32(cts->ctt_name);
272 		SWAP_32(cts->ctt_info);
273 		SWAP_32(cts->ctt_size);
274 	}
275 
276 	ctf_buf_write(b, cts, sizeof (*cts));
277 }
278 
279 static int
280 write_type(void *arg1, void *arg2)
281 {
282 	tdesc_t *tp = arg1;
283 	ctf_buf_t *b = arg2;
284 	elist_t *ep;
285 	mlist_t *mp;
286 	intr_t *ip;
287 
288 	size_t offset;
289 	uint_t encoding;
290 	uint_t data;
291 	int isroot = tp->t_flags & TDESC_F_ISROOT;
292 	int i;
293 
294 	struct ctf_type_v3 ctt;
295 	struct ctf_array_v3 cta;
296 	struct ctf_member_v3 ctm;
297 	struct ctf_lmember_v3 ctlm;
298 	struct ctf_enum cte;
299 	uint_t id;
300 
301 	/*
302 	 * There shouldn't be any holes in the type list (where a hole is
303 	 * defined as two consecutive tdescs without consecutive ids), but
304 	 * check for them just in case.  If we do find holes, we need to make
305 	 * fake entries to fill the holes, or we won't be able to reconstruct
306 	 * the tree from the written data.
307 	 */
308 	if (++b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) {
309 		debug(2, "genctf: type hole from %d < x < %d\n",
310 		    b->nptent - 1, CTF_V3_TYPE_TO_INDEX(tp->t_id));
311 
312 		ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, 0);
313 		ctt.ctt_info = CTF_V3_TYPE_INFO(0, 0, 0);
314 		while (b->nptent < CTF_V3_TYPE_TO_INDEX(tp->t_id)) {
315 			write_sized_type_rec(b, &ctt, 0);
316 			b->nptent++;
317 		}
318 	}
319 
320 	offset = strtab_insert(&b->ctb_strtab, tp->t_name);
321 	ctt.ctt_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
322 
323 	switch (tp->t_type) {
324 	case INTRINSIC:
325 		ip = tp->t_intr;
326 		if (ip->intr_type == INTR_INT)
327 			ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_INTEGER,
328 			    isroot, 1);
329 		else
330 			ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FLOAT, isroot, 1);
331 		write_sized_type_rec(b, &ctt, tp->t_size);
332 
333 		encoding = 0;
334 
335 		if (ip->intr_type == INTR_INT) {
336 			if (ip->intr_signed)
337 				encoding |= CTF_INT_SIGNED;
338 			if (ip->intr_iformat == 'c')
339 				encoding |= CTF_INT_CHAR;
340 			else if (ip->intr_iformat == 'b')
341 				encoding |= CTF_INT_BOOL;
342 			else if (ip->intr_iformat == 'v')
343 				encoding |= CTF_INT_VARARGS;
344 		} else
345 			encoding = ip->intr_fformat;
346 
347 		data = CTF_INT_DATA(encoding, ip->intr_offset, ip->intr_nbits);
348 		if (target_requires_swap) {
349 			SWAP_32(data);
350 		}
351 		ctf_buf_write(b, &data, sizeof (data));
352 		break;
353 
354 	case POINTER:
355 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_POINTER, isroot, 0);
356 		ctt.ctt_type = tp->t_tdesc->t_id;
357 		write_unsized_type_rec(b, &ctt);
358 		break;
359 
360 	case ARRAY:
361 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ARRAY, isroot, 1);
362 		write_sized_type_rec(b, &ctt, tp->t_size);
363 
364 		cta.cta_contents = tp->t_ardef->ad_contents->t_id;
365 		cta.cta_index = tp->t_ardef->ad_idxtype->t_id;
366 		cta.cta_nelems = tp->t_ardef->ad_nelems;
367 		if (target_requires_swap) {
368 			SWAP_32(cta.cta_contents);
369 			SWAP_32(cta.cta_index);
370 			SWAP_32(cta.cta_nelems);
371 		}
372 		ctf_buf_write(b, &cta, sizeof (cta));
373 		break;
374 
375 	case STRUCT:
376 	case UNION:
377 		for (i = 0, mp = tp->t_members; mp != NULL; mp = mp->ml_next)
378 			i++; /* count up struct or union members */
379 
380 		if (i > CTF_V3_MAX_VLEN) {
381 			terminate("sou %s has too many members: %d > %d\n",
382 			    tdesc_name(tp), i, CTF_V3_MAX_VLEN);
383 		}
384 
385 		if (tp->t_type == STRUCT)
386 			ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_STRUCT, isroot, i);
387 		else
388 			ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_UNION, isroot, i);
389 
390 		write_sized_type_rec(b, &ctt, tp->t_size);
391 
392 		if (tp->t_size < CTF_V3_LSTRUCT_THRESH) {
393 			for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
394 				offset = strtab_insert(&b->ctb_strtab,
395 				    mp->ml_name);
396 
397 				ctm.ctm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
398 				    offset);
399 				ctm.ctm_type = mp->ml_type->t_id;
400 				ctm.ctm_offset = mp->ml_offset;
401 				if (target_requires_swap) {
402 					SWAP_32(ctm.ctm_name);
403 					SWAP_32(ctm.ctm_type);
404 					SWAP_32(ctm.ctm_offset);
405 				}
406 				ctf_buf_write(b, &ctm, sizeof (ctm));
407 			}
408 		} else {
409 			for (mp = tp->t_members; mp != NULL; mp = mp->ml_next) {
410 				offset = strtab_insert(&b->ctb_strtab,
411 				    mp->ml_name);
412 
413 				ctlm.ctlm_name = CTF_TYPE_NAME(CTF_STRTAB_0,
414 				    offset);
415 				ctlm.ctlm_type = mp->ml_type->t_id;
416 				ctlm.ctlm_offsethi =
417 				    CTF_OFFSET_TO_LMEMHI(mp->ml_offset);
418 				ctlm.ctlm_offsetlo =
419 				    CTF_OFFSET_TO_LMEMLO(mp->ml_offset);
420 
421 				if (target_requires_swap) {
422 					SWAP_32(ctlm.ctlm_name);
423 					SWAP_32(ctlm.ctlm_type);
424 					SWAP_32(ctlm.ctlm_offsethi);
425 					SWAP_32(ctlm.ctlm_offsetlo);
426 				}
427 
428 				ctf_buf_write(b, &ctlm, sizeof (ctlm));
429 			}
430 		}
431 		break;
432 
433 	case ENUM:
434 		for (i = 0, ep = tp->t_emem; ep != NULL; ep = ep->el_next)
435 			i++; /* count up enum members */
436 
437 		if (i > CTF_V3_MAX_VLEN) {
438 			i = CTF_V3_MAX_VLEN;
439 		}
440 
441 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_ENUM, isroot, i);
442 		write_sized_type_rec(b, &ctt, tp->t_size);
443 
444 		for (ep = tp->t_emem; ep != NULL && i > 0; ep = ep->el_next) {
445 			offset = strtab_insert(&b->ctb_strtab, ep->el_name);
446 			cte.cte_name = CTF_TYPE_NAME(CTF_STRTAB_0, offset);
447 			cte.cte_value = ep->el_number;
448 
449 			if (target_requires_swap) {
450 				SWAP_32(cte.cte_name);
451 				SWAP_32(cte.cte_value);
452 			}
453 
454 			ctf_buf_write(b, &cte, sizeof (cte));
455 			i--;
456 		}
457 		break;
458 
459 	case FORWARD:
460 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FORWARD, isroot, 0);
461 		ctt.ctt_type = 0;
462 		write_unsized_type_rec(b, &ctt);
463 		break;
464 
465 	case TYPEDEF:
466 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_TYPEDEF, isroot, 0);
467 		ctt.ctt_type = tp->t_tdesc->t_id;
468 		write_unsized_type_rec(b, &ctt);
469 		break;
470 
471 	case VOLATILE:
472 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_VOLATILE, isroot, 0);
473 		ctt.ctt_type = tp->t_tdesc->t_id;
474 		write_unsized_type_rec(b, &ctt);
475 		break;
476 
477 	case CONST:
478 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_CONST, isroot, 0);
479 		ctt.ctt_type = tp->t_tdesc->t_id;
480 		write_unsized_type_rec(b, &ctt);
481 		break;
482 
483 	case FUNCTION:
484 		i = tp->t_fndef->fn_nargs + tp->t_fndef->fn_vargs;
485 
486 		if (i > CTF_V3_MAX_VLEN) {
487 			terminate("function %s has too many args: %d > %d\n",
488 			    tdesc_name(tp), i, CTF_V3_MAX_VLEN);
489 		}
490 
491 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_FUNCTION, isroot, i);
492 		ctt.ctt_type = tp->t_fndef->fn_ret->t_id;
493 		write_unsized_type_rec(b, &ctt);
494 
495 		for (i = 0; i < (int) tp->t_fndef->fn_nargs; i++) {
496 			id = tp->t_fndef->fn_args[i]->t_id;
497 
498 			if (target_requires_swap) {
499 				SWAP_32(id);
500 			}
501 
502 			ctf_buf_write(b, &id, sizeof (id));
503 		}
504 
505 		if (tp->t_fndef->fn_vargs) {
506 			id = 0;
507 			ctf_buf_write(b, &id, sizeof (id));
508 			i++;
509 		}
510 
511 		break;
512 
513 	case RESTRICT:
514 		ctt.ctt_info = CTF_V3_TYPE_INFO(CTF_K_RESTRICT, isroot, 0);
515 		ctt.ctt_type = tp->t_tdesc->t_id;
516 		write_unsized_type_rec(b, &ctt);
517 		break;
518 
519 	default:
520 		warning("Can't write unknown type %d\n", tp->t_type);
521 	}
522 
523 	debug(3, "Wrote type %d %s\n", tp->t_id, tdesc_name(tp));
524 
525 	return (1);
526 }
527 
528 typedef struct resbuf {
529 	caddr_t rb_base;
530 	caddr_t rb_ptr;
531 	size_t rb_size;
532 	z_stream rb_zstr;
533 } resbuf_t;
534 
535 static void
536 rbzs_grow(resbuf_t *rb)
537 {
538 	off_t ptroff = (caddr_t)rb->rb_zstr.next_out - rb->rb_base;
539 
540 	rb->rb_size += RES_BUF_CHUNK_SIZE;
541 	rb->rb_base = xrealloc(rb->rb_base, rb->rb_size);
542 	rb->rb_ptr = rb->rb_base + ptroff;
543 	rb->rb_zstr.next_out = (Bytef *)(rb->rb_ptr);
544 	rb->rb_zstr.avail_out += RES_BUF_CHUNK_SIZE;
545 }
546 
547 static void
548 compress_start(resbuf_t *rb)
549 {
550 	int rc;
551 
552 	rb->rb_zstr.zalloc = (alloc_func)0;
553 	rb->rb_zstr.zfree = (free_func)0;
554 	rb->rb_zstr.opaque = (voidpf)0;
555 
556 	if ((rc = deflateInit(&rb->rb_zstr, Z_BEST_COMPRESSION)) != Z_OK)
557 		parseterminate("zlib start failed: %s", zError(rc));
558 }
559 
560 static ssize_t
561 compress_buffer(void *buf, size_t n, void *data)
562 {
563 	resbuf_t *rb = (resbuf_t *)data;
564 	int rc;
565 
566 	rb->rb_zstr.next_out = (Bytef *)rb->rb_ptr;
567 	rb->rb_zstr.avail_out = rb->rb_size - (rb->rb_ptr - rb->rb_base);
568 	rb->rb_zstr.next_in = buf;
569 	rb->rb_zstr.avail_in = n;
570 
571 	while (rb->rb_zstr.avail_in) {
572 		if (rb->rb_zstr.avail_out == 0)
573 			rbzs_grow(rb);
574 
575 		if ((rc = deflate(&rb->rb_zstr, Z_NO_FLUSH)) != Z_OK)
576 			parseterminate("zlib deflate failed: %s", zError(rc));
577 	}
578 	rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
579 
580 	return (n);
581 }
582 
583 static void
584 compress_flush(resbuf_t *rb, int type)
585 {
586 	int rc;
587 
588 	for (;;) {
589 		if (rb->rb_zstr.avail_out == 0)
590 			rbzs_grow(rb);
591 
592 		rc = deflate(&rb->rb_zstr, type);
593 		if ((type == Z_FULL_FLUSH && rc == Z_BUF_ERROR) ||
594 		    (type == Z_FINISH && rc == Z_STREAM_END))
595 			break;
596 		else if (rc != Z_OK)
597 			parseterminate("zlib finish failed: %s", zError(rc));
598 	}
599 	rb->rb_ptr = (caddr_t)rb->rb_zstr.next_out;
600 }
601 
602 static void
603 compress_end(resbuf_t *rb)
604 {
605 	int rc;
606 
607 	compress_flush(rb, Z_FINISH);
608 
609 	if ((rc = deflateEnd(&rb->rb_zstr)) != Z_OK)
610 		parseterminate("zlib end failed: %s", zError(rc));
611 }
612 
613 /*
614  * Pad the buffer to a power-of-2 boundary
615  */
616 static void
617 pad_buffer(ctf_buf_t *buf, int align)
618 {
619 	uint_t cur = ctf_buf_cur(buf);
620 	ssize_t topad = (align - (cur % align)) % align;
621 	static const char pad[8] = { 0 };
622 
623 	while (topad > 0) {
624 		ctf_buf_write(buf, pad, (topad > 8 ? 8 : topad));
625 		topad -= 8;
626 	}
627 }
628 
629 static ssize_t
630 bcopy_data(void *buf, size_t n, void *data)
631 {
632 	caddr_t *posp = (caddr_t *)data;
633 	bcopy(buf, *posp, n);
634 	*posp += n;
635 	return (n);
636 }
637 
638 static caddr_t
639 write_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
640 {
641 	caddr_t outbuf;
642 	caddr_t bufpos;
643 
644 	outbuf = xmalloc(sizeof (ctf_header_t) + (buf->ctb_ptr - buf->ctb_base)
645 	    + buf->ctb_strtab.str_size);
646 
647 	bufpos = outbuf;
648 	(void) bcopy_data(h, sizeof (ctf_header_t), &bufpos);
649 	(void) bcopy_data(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
650 	    &bufpos);
651 	(void) strtab_write(&buf->ctb_strtab, bcopy_data, &bufpos);
652 	*resszp = bufpos - outbuf;
653 	return (outbuf);
654 }
655 
656 /*
657  * Create the compression buffer, and fill it with the CTF and string
658  * table data.  We flush the compression state between the two so the
659  * dictionary used for the string tables won't be polluted with values
660  * that made sense for the CTF data.
661  */
662 static caddr_t
663 write_compressed_buffer(ctf_header_t *h, ctf_buf_t *buf, size_t *resszp)
664 {
665 	resbuf_t resbuf;
666 	resbuf.rb_size = RES_BUF_CHUNK_SIZE;
667 	resbuf.rb_base = xmalloc(resbuf.rb_size);
668 	bcopy(h, resbuf.rb_base, sizeof (ctf_header_t));
669 	resbuf.rb_ptr = resbuf.rb_base + sizeof (ctf_header_t);
670 
671 	compress_start(&resbuf);
672 	(void) compress_buffer(buf->ctb_base, buf->ctb_ptr - buf->ctb_base,
673 	    &resbuf);
674 	compress_flush(&resbuf, Z_FULL_FLUSH);
675 	(void) strtab_write(&buf->ctb_strtab, compress_buffer, &resbuf);
676 	compress_end(&resbuf);
677 
678 	*resszp = (resbuf.rb_ptr - resbuf.rb_base);
679 	return (resbuf.rb_base);
680 }
681 
682 caddr_t
683 ctf_gen(iiburst_t *iiburst, size_t *resszp, int do_compress)
684 {
685 	ctf_buf_t *buf = ctf_buf_new();
686 	ctf_header_t h;
687 	caddr_t outbuf;
688 
689 	int i;
690 
691 	target_requires_swap = do_compress & CTF_SWAP_BYTES;
692 	do_compress &= ~CTF_SWAP_BYTES;
693 
694 	/*
695 	 * Prepare the header, and create the CTF output buffers.  The data
696 	 * object section and function section are both lists of 2-byte
697 	 * integers; we pad these out to the next 4-byte boundary if needed.
698 	 */
699 	h.cth_magic = CTF_MAGIC;
700 	h.cth_version = CTF_VERSION_3;
701 	h.cth_flags = do_compress ? CTF_F_COMPRESS : 0;
702 	h.cth_parlabel = strtab_insert(&buf->ctb_strtab,
703 	    iiburst->iib_td->td_parlabel);
704 	h.cth_parname = strtab_insert(&buf->ctb_strtab,
705 	    iiburst->iib_td->td_parname);
706 
707 	h.cth_lbloff = 0;
708 	(void) list_iter(iiburst->iib_td->td_labels, write_label,
709 	    buf);
710 
711 	pad_buffer(buf, 2);
712 	h.cth_objtoff = ctf_buf_cur(buf);
713 	for (i = 0; i < iiburst->iib_nobjts; i++)
714 		write_objects(iiburst->iib_objts[i], buf);
715 
716 	pad_buffer(buf, 2);
717 	h.cth_funcoff = ctf_buf_cur(buf);
718 	for (i = 0; i < iiburst->iib_nfuncs; i++)
719 		write_functions(iiburst->iib_funcs[i], buf);
720 
721 	pad_buffer(buf, 4);
722 	h.cth_typeoff = ctf_buf_cur(buf);
723 	(void) list_iter(iiburst->iib_types, write_type, buf);
724 
725 	debug(2, "CTF wrote %d types\n", list_count(iiburst->iib_types));
726 
727 	h.cth_stroff = ctf_buf_cur(buf);
728 	h.cth_strlen = strtab_size(&buf->ctb_strtab);
729 
730 	if (target_requires_swap) {
731 		SWAP_16(h.cth_preamble.ctp_magic);
732 		SWAP_32(h.cth_parlabel);
733 		SWAP_32(h.cth_parname);
734 		SWAP_32(h.cth_lbloff);
735 		SWAP_32(h.cth_objtoff);
736 		SWAP_32(h.cth_funcoff);
737 		SWAP_32(h.cth_typeoff);
738 		SWAP_32(h.cth_stroff);
739 		SWAP_32(h.cth_strlen);
740 	}
741 
742 	/*
743 	 * We only do compression for ctfmerge, as ctfconvert is only
744 	 * supposed to be used on intermediary build objects. This is
745 	 * significantly faster.
746 	 */
747 	if (do_compress)
748 		outbuf = write_compressed_buffer(&h, buf, resszp);
749 	else
750 		outbuf = write_buffer(&h, buf, resszp);
751 
752 	ctf_buf_free(buf);
753 	return (outbuf);
754 }
755 
756 static void
757 get_ctt_info(ctf_header_t *h, void *v, uint_t *kind, uint_t *vlen, int *isroot)
758 {
759 	if (h->cth_version == CTF_VERSION_2) {
760 		struct ctf_type_v2 *ctt = v;
761 
762 		*kind = CTF_V2_INFO_KIND(ctt->ctt_info);
763 		*vlen = CTF_V2_INFO_VLEN(ctt->ctt_info);
764 		*isroot = CTF_V2_INFO_ISROOT(ctt->ctt_info);
765 	} else {
766 		struct ctf_type_v3 *ctt = v;
767 
768 		*kind = CTF_V3_INFO_KIND(ctt->ctt_info);
769 		*vlen = CTF_V3_INFO_VLEN(ctt->ctt_info);
770 		*isroot = CTF_V3_INFO_ISROOT(ctt->ctt_info);
771 	}
772 }
773 
774 static void
775 get_ctt_size(ctf_header_t *h, void *v, size_t *sizep, size_t *incrementp)
776 {
777 	if (h->cth_version == CTF_VERSION_2) {
778 		struct ctf_type_v2 *ctt = v;
779 
780 		if (ctt->ctt_size == CTF_V2_LSIZE_SENT) {
781 			*sizep = (size_t)CTF_TYPE_LSIZE(ctt);
782 			*incrementp = sizeof (struct ctf_type_v2);
783 		} else {
784 			*sizep = ctt->ctt_size;
785 			*incrementp = sizeof (struct ctf_stype_v2);
786 		}
787 	} else {
788 		struct ctf_type_v3 *ctt = v;
789 
790 		if (ctt->ctt_size == CTF_V3_LSIZE_SENT) {
791 			*sizep = (size_t)CTF_TYPE_LSIZE(ctt);
792 			*incrementp = sizeof (struct ctf_type_v3);
793 		} else {
794 			*sizep = ctt->ctt_size;
795 			*incrementp = sizeof (struct ctf_stype_v3);
796 		}
797 	}
798 }
799 
800 static int
801 count_types(ctf_header_t *h, caddr_t data)
802 {
803 	caddr_t dptr = data + h->cth_typeoff;
804 	uint_t version = h->cth_version;
805 	size_t idwidth;
806 	int count = 0;
807 
808 	idwidth = version == CTF_VERSION_2 ? 2 : 4;
809 	dptr = data + h->cth_typeoff;
810 	while (dptr < data + h->cth_stroff) {
811 		void *v = (void *) dptr;
812 		size_t size, increment;
813 		uint_t vlen, kind;
814 		int isroot;
815 
816 		get_ctt_info(h, v, &kind, &vlen, &isroot);
817 		get_ctt_size(h, v, &size, &increment);
818 
819 		switch (kind) {
820 		case CTF_K_INTEGER:
821 		case CTF_K_FLOAT:
822 			dptr += 4;
823 			break;
824 		case CTF_K_POINTER:
825 		case CTF_K_FORWARD:
826 		case CTF_K_TYPEDEF:
827 		case CTF_K_VOLATILE:
828 		case CTF_K_CONST:
829 		case CTF_K_RESTRICT:
830 		case CTF_K_FUNCTION:
831 			dptr += idwidth * vlen;
832 			break;
833 		case CTF_K_ARRAY:
834 			if (version == CTF_VERSION_2)
835 				dptr += sizeof (struct ctf_array_v2);
836 			else
837 				dptr += sizeof (struct ctf_array_v3);
838 			break;
839 		case CTF_K_STRUCT:
840 		case CTF_K_UNION:
841 			if (version == CTF_VERSION_2) {
842 				if (size < CTF_V2_LSTRUCT_THRESH)
843 					dptr += sizeof (struct ctf_member_v2) *
844 					    vlen;
845 				else
846 					dptr += sizeof (struct ctf_lmember_v2) *
847 					    vlen;
848 			} else {
849 				if (size < CTF_V3_LSTRUCT_THRESH)
850 					dptr += sizeof (struct ctf_member_v3) *
851 					    vlen;
852 				else
853 					dptr += sizeof (struct ctf_lmember_v3) *
854 					    vlen;
855 			}
856 			break;
857 		case CTF_K_ENUM:
858 			dptr += sizeof (ctf_enum_t) * vlen;
859 			break;
860 		case CTF_K_UNKNOWN:
861 			break;
862 		default:
863 			parseterminate("Unknown CTF type %d (#%d) at %#x",
864 			    kind, count, dptr - data);
865 		}
866 
867 		dptr += increment;
868 		count++;
869 	}
870 
871 	debug(3, "CTF read %d types\n", count);
872 
873 	return (count);
874 }
875 
876 /*
877  * Resurrect the labels stored in the CTF data, returning the index associated
878  * with a label provided by the caller.  There are several cases, outlined
879  * below.  Note that, given two labels, the one associated with the lesser type
880  * index is considered to be older than the other.
881  *
882  *  1. matchlbl == NULL - return the index of the most recent label.
883  *  2. matchlbl == "BASE" - return the index of the oldest label.
884  *  3. matchlbl != NULL, but doesn't match any labels in the section - warn
885  *	the user, and proceed as if matchlbl == "BASE" (for safety).
886  *  4. matchlbl != NULL, and matches one of the labels in the section - return
887  *	the type index associated with the label.
888  */
889 static int
890 resurrect_labels(ctf_header_t *h, tdata_t *td, caddr_t ctfdata, char *matchlbl)
891 {
892 	caddr_t buf = ctfdata + h->cth_lbloff;
893 	caddr_t sbuf = ctfdata + h->cth_stroff;
894 	size_t bufsz = h->cth_objtoff - h->cth_lbloff;
895 	int lastidx = 0, baseidx = -1;
896 	char *baselabel = NULL;
897 	ctf_lblent_t *ctl;
898 	void *v = (void *) buf;
899 
900 	for (ctl = v; (caddr_t)ctl < buf + bufsz; ctl++) {
901 		char *label = sbuf + ctl->ctl_label;
902 
903 		lastidx = ctl->ctl_typeidx;
904 
905 		debug(3, "Resurrected label %s type idx %d\n", label, lastidx);
906 
907 		tdata_label_add(td, label, lastidx);
908 
909 		if (baseidx == -1) {
910 			baseidx = lastidx;
911 			baselabel = label;
912 			if (matchlbl != NULL && streq(matchlbl, "BASE"))
913 				return (lastidx);
914 		}
915 
916 		if (matchlbl != NULL && streq(label, matchlbl))
917 			return (lastidx);
918 	}
919 
920 	if (matchlbl != NULL) {
921 		/* User provided a label that didn't match */
922 		warning("%s: Cannot find label `%s' - using base (%s)\n",
923 		    curfile, matchlbl, (baselabel ? baselabel : "NONE"));
924 
925 		tdata_label_free(td);
926 		tdata_label_add(td, baselabel, baseidx);
927 
928 		return (baseidx);
929 	}
930 
931 	return (lastidx);
932 }
933 
934 static void
935 resurrect_objects(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
936     caddr_t ctfdata, symit_data_t *si)
937 {
938 	caddr_t buf = ctfdata + h->cth_objtoff;
939 	size_t bufsz = h->cth_funcoff - h->cth_objtoff;
940 	caddr_t dptr;
941 	size_t idwidth;
942 
943 	idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4;
944 
945 	symit_reset(si);
946 	for (dptr = buf; dptr < buf + bufsz; dptr += idwidth) {
947 		uint32_t id = 0;
948 
949 		memcpy(&id, (void *) dptr, idwidth);
950 		iidesc_t *ii;
951 		GElf_Sym *sym;
952 
953 		if (!(sym = symit_next(si, STT_OBJECT)) && id != 0) {
954 			parseterminate(
955 			    "Unexpected end of object symbols at %x of %x",
956 			    dptr - buf, bufsz);
957 		}
958 
959 		if (id == 0) {
960 			debug(3, "Skipping null object\n");
961 			continue;
962 		} else if (id >= (uint_t)tdsize) {
963 			parseterminate("Reference to invalid type %d", id);
964 		}
965 
966 		ii = iidesc_new(symit_name(si));
967 		ii->ii_dtype = tdarr[id];
968 		if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
969 			ii->ii_type = II_SVAR;
970 			ii->ii_owner = xstrdup(symit_curfile(si));
971 		} else
972 			ii->ii_type = II_GVAR;
973 		hash_add(td->td_iihash, ii);
974 
975 		debug(3, "Resurrected %s object %s (%d) from %s\n",
976 		    (ii->ii_type == II_GVAR ? "global" : "static"),
977 		    ii->ii_name, id, (ii->ii_owner ? ii->ii_owner : "(none)"));
978 	}
979 }
980 
981 static void
982 resurrect_functions(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
983     caddr_t ctfdata, symit_data_t *si)
984 {
985 	caddr_t buf = ctfdata + h->cth_funcoff;
986 	size_t bufsz = h->cth_typeoff - h->cth_funcoff;
987 	size_t idwidth;
988 	caddr_t dptr = buf;
989 	iidesc_t *ii;
990 	GElf_Sym *sym;
991 	int i;
992 
993 	idwidth = h->cth_version == CTF_VERSION_2 ? 2 : 4;
994 
995 	symit_reset(si);
996 	while (dptr < buf + bufsz) {
997 		uint32_t id, info, retid;
998 
999 		info = 0;
1000 		memcpy(&info, (void *) dptr, idwidth);
1001 		dptr += idwidth;
1002 
1003 		if (!(sym = symit_next(si, STT_FUNC)) && info != 0)
1004 			parseterminate("Unexpected end of function symbols");
1005 
1006 		if (info == 0) {
1007 			debug(3, "Skipping null function (%s)\n",
1008 			    symit_name(si));
1009 			continue;
1010 		}
1011 
1012 		retid = 0;
1013 		memcpy(&retid, (void *) dptr, idwidth);
1014 		dptr += idwidth;
1015 
1016 		if (retid >= (uint_t)tdsize)
1017 			parseterminate("Reference to invalid type %d", retid);
1018 
1019 		ii = iidesc_new(symit_name(si));
1020 		ii->ii_dtype = tdarr[retid];
1021 		if (GELF_ST_BIND(sym->st_info) == STB_LOCAL) {
1022 			ii->ii_type = II_SFUN;
1023 			ii->ii_owner = xstrdup(symit_curfile(si));
1024 		} else
1025 			ii->ii_type = II_GFUN;
1026 		if (h->cth_version == CTF_VERSION_2)
1027 			ii->ii_nargs = CTF_V2_INFO_VLEN(info);
1028 		else
1029 			ii->ii_nargs = CTF_V3_INFO_VLEN(info);
1030 		if (ii->ii_nargs)
1031 			ii->ii_args =
1032 			    xmalloc(sizeof (tdesc_t *) * ii->ii_nargs);
1033 
1034 		for (i = 0; i < ii->ii_nargs; i++, dptr += idwidth) {
1035 			id = 0;
1036 			memcpy(&id, (void *) dptr, idwidth);
1037 			if (id >= (uint_t)tdsize)
1038 				parseterminate("Reference to invalid type %d",
1039 				    id);
1040 			ii->ii_args[i] = tdarr[id];
1041 		}
1042 
1043 		if (ii->ii_nargs && ii->ii_args[ii->ii_nargs - 1] == NULL) {
1044 			ii->ii_nargs--;
1045 			ii->ii_vargs = 1;
1046 		}
1047 
1048 		hash_add(td->td_iihash, ii);
1049 
1050 		debug(3, "Resurrected %s function %s (%d, %d args)\n",
1051 		    (ii->ii_type == II_GFUN ? "global" : "static"),
1052 		    ii->ii_name, retid, ii->ii_nargs);
1053 	}
1054 }
1055 
1056 static void
1057 resurrect_types(ctf_header_t *h, tdata_t *td, tdesc_t **tdarr, int tdsize,
1058     caddr_t ctfdata, int maxid)
1059 {
1060 	caddr_t buf = ctfdata + h->cth_typeoff;
1061 	size_t bufsz = h->cth_stroff - h->cth_typeoff;
1062 	caddr_t sbuf = ctfdata + h->cth_stroff;
1063 	caddr_t dptr = buf;
1064 	tdesc_t *tdp;
1065 	uint_t data;
1066 	uint_t encoding;
1067 	size_t idwidth, size, increment;
1068 	int tcnt;
1069 	int iicnt = 0;
1070 	tid_t tid, argid;
1071 	int isroot, kind, vlen;
1072 	int i, version;
1073 
1074 	elist_t **epp;
1075 	mlist_t **mpp;
1076 	intr_t *ip;
1077 
1078 	version = h->cth_version;
1079 	idwidth = version == CTF_VERSION_2 ? 2 : 4;
1080 
1081 	/*
1082 	 * A maxid of zero indicates a request to resurrect all types, so reset
1083 	 * maxid to the maximum type id.
1084 	 */
1085 	if (maxid == 0) {
1086 		maxid = version == CTF_VERSION_2 ?
1087 		    CTF_V2_MAX_TYPE : CTF_V3_MAX_TYPE;
1088 	}
1089 
1090 	for (dptr = buf, tcnt = 0, tid = 1; dptr < buf + bufsz; tcnt++, tid++) {
1091 		ctf_enum_t *cte;
1092 		uint_t name, type;
1093 		void *v;
1094 
1095 		if (tid > maxid)
1096 			break;
1097 
1098 		if (tid >= tdsize)
1099 			parseterminate("Reference to invalid type %d", tid);
1100 
1101 		get_ctt_info(h, dptr, &kind, &vlen, &isroot);
1102 		get_ctt_size(h, dptr, &size, &increment);
1103 		if (version == CTF_VERSION_2) {
1104 			struct ctf_type_v2 *ctt = (void *) dptr;
1105 
1106 			name = ctt->ctt_name;
1107 			type = ctt->ctt_type;
1108 		} else {
1109 			struct ctf_type_v3 *ctt = (void *) dptr;
1110 
1111 			name = ctt->ctt_name;
1112 			type = ctt->ctt_type;
1113 		}
1114 		dptr += increment;
1115 
1116 		tdp = tdarr[tid];
1117 
1118 		if (CTF_NAME_STID(name) != CTF_STRTAB_0)
1119 			parseterminate(
1120 			    "Unable to cope with non-zero strtab id");
1121 		if (CTF_NAME_OFFSET(name) != 0) {
1122 			tdp->t_name = xstrdup(sbuf + CTF_NAME_OFFSET(name));
1123 		} else
1124 			tdp->t_name = NULL;
1125 
1126 		switch (kind) {
1127 		case CTF_K_INTEGER:
1128 			tdp->t_type = INTRINSIC;
1129 			tdp->t_size = size;
1130 
1131 			v = (void *) dptr;
1132 			data = *((uint_t *)v);
1133 			dptr += sizeof (uint_t);
1134 			encoding = CTF_INT_ENCODING(data);
1135 
1136 			ip = xmalloc(sizeof (intr_t));
1137 			ip->intr_type = INTR_INT;
1138 			ip->intr_signed = (encoding & CTF_INT_SIGNED) ? 1 : 0;
1139 
1140 			if (encoding & CTF_INT_CHAR)
1141 				ip->intr_iformat = 'c';
1142 			else if (encoding & CTF_INT_BOOL)
1143 				ip->intr_iformat = 'b';
1144 			else if (encoding & CTF_INT_VARARGS)
1145 				ip->intr_iformat = 'v';
1146 			else
1147 				ip->intr_iformat = '\0';
1148 
1149 			ip->intr_offset = CTF_INT_OFFSET(data);
1150 			ip->intr_nbits = CTF_INT_BITS(data);
1151 			tdp->t_intr = ip;
1152 			break;
1153 
1154 		case CTF_K_FLOAT:
1155 			tdp->t_type = INTRINSIC;
1156 			tdp->t_size = size;
1157 
1158 			v = (void *) dptr;
1159 			data = *((uint_t *)v);
1160 			dptr += sizeof (uint_t);
1161 
1162 			ip = xcalloc(sizeof (intr_t));
1163 			ip->intr_type = INTR_REAL;
1164 			ip->intr_fformat = CTF_FP_ENCODING(data);
1165 			ip->intr_offset = CTF_FP_OFFSET(data);
1166 			ip->intr_nbits = CTF_FP_BITS(data);
1167 			tdp->t_intr = ip;
1168 			break;
1169 
1170 		case CTF_K_POINTER:
1171 			tdp->t_type = POINTER;
1172 			tdp->t_tdesc = tdarr[type];
1173 			break;
1174 
1175 		case CTF_K_ARRAY: {
1176 			uint_t contents, index, nelems;
1177 
1178 			tdp->t_type = ARRAY;
1179 			tdp->t_size = size;
1180 
1181 			if (version == CTF_VERSION_2) {
1182 				struct ctf_array_v2 *cta = (void *) dptr;
1183 				contents = cta->cta_contents;
1184 				index = cta->cta_index;
1185 				nelems = cta->cta_nelems;
1186 				dptr += sizeof (*cta);
1187 			} else {
1188 				struct ctf_array_v3 *cta = (void *) dptr;
1189 				contents = cta->cta_contents;
1190 				index = cta->cta_index;
1191 				nelems = cta->cta_nelems;
1192 				dptr += sizeof (*cta);
1193 			}
1194 
1195 			tdp->t_ardef = xmalloc(sizeof (ardef_t));
1196 			tdp->t_ardef->ad_contents = tdarr[contents];
1197 			tdp->t_ardef->ad_idxtype = tdarr[index];
1198 			tdp->t_ardef->ad_nelems = nelems;
1199 			break;
1200 		}
1201 
1202 		case CTF_K_STRUCT:
1203 		case CTF_K_UNION: {
1204 			tdp->t_type = (kind == CTF_K_STRUCT ? STRUCT : UNION);
1205 			tdp->t_size = size;
1206 
1207 			if (version == CTF_VERSION_2) {
1208 				if (size < CTF_V2_LSTRUCT_THRESH) {
1209 					for (i = 0, mpp = &tdp->t_members; i < vlen;
1210 					    i++, mpp = &((*mpp)->ml_next)) {
1211 						v = (void *) dptr;
1212 						struct ctf_member_v2 *ctm = v;
1213 						dptr += sizeof (struct ctf_member_v2);
1214 
1215 						*mpp = xmalloc(sizeof (mlist_t));
1216 						(*mpp)->ml_name = xstrdup(sbuf +
1217 						    ctm->ctm_name);
1218 						(*mpp)->ml_type = tdarr[ctm->ctm_type];
1219 						(*mpp)->ml_offset = ctm->ctm_offset;
1220 						(*mpp)->ml_size = 0;
1221 					}
1222 				} else {
1223 					for (i = 0, mpp = &tdp->t_members; i < vlen;
1224 					    i++, mpp = &((*mpp)->ml_next)) {
1225 						v = (void *) dptr;
1226 						struct ctf_lmember_v2 *ctlm = v;
1227 						dptr += sizeof (struct ctf_lmember_v2);
1228 
1229 						*mpp = xmalloc(sizeof (mlist_t));
1230 						(*mpp)->ml_name = xstrdup(sbuf +
1231 						    ctlm->ctlm_name);
1232 						(*mpp)->ml_type =
1233 						    tdarr[ctlm->ctlm_type];
1234 						(*mpp)->ml_offset =
1235 						    (int)CTF_LMEM_OFFSET(ctlm);
1236 						(*mpp)->ml_size = 0;
1237 					}
1238 				}
1239 			} else {
1240 				if (size < CTF_V3_LSTRUCT_THRESH) {
1241 					for (i = 0, mpp = &tdp->t_members; i < vlen;
1242 					    i++, mpp = &((*mpp)->ml_next)) {
1243 						v = (void *) dptr;
1244 						struct ctf_member_v3 *ctm = v;
1245 						dptr += sizeof (struct ctf_member_v3);
1246 
1247 						*mpp = xmalloc(sizeof (mlist_t));
1248 						(*mpp)->ml_name = xstrdup(sbuf +
1249 						    ctm->ctm_name);
1250 						(*mpp)->ml_type = tdarr[ctm->ctm_type];
1251 						(*mpp)->ml_offset = ctm->ctm_offset;
1252 						(*mpp)->ml_size = 0;
1253 					}
1254 				} else {
1255 					for (i = 0, mpp = &tdp->t_members; i < vlen;
1256 					    i++, mpp = &((*mpp)->ml_next)) {
1257 						v = (void *) dptr;
1258 						struct ctf_lmember_v3 *ctlm = v;
1259 						dptr += sizeof (struct ctf_lmember_v3);
1260 
1261 						*mpp = xmalloc(sizeof (mlist_t));
1262 						(*mpp)->ml_name = xstrdup(sbuf +
1263 						    ctlm->ctlm_name);
1264 						(*mpp)->ml_type =
1265 						    tdarr[ctlm->ctlm_type];
1266 						(*mpp)->ml_offset =
1267 						    (int)CTF_LMEM_OFFSET(ctlm);
1268 						(*mpp)->ml_size = 0;
1269 					}
1270 				}
1271 			}
1272 
1273 			*mpp = NULL;
1274 			break;
1275 		}
1276 
1277 		case CTF_K_ENUM:
1278 			tdp->t_type = ENUM;
1279 			tdp->t_size = size;
1280 
1281 			for (i = 0, epp = &tdp->t_emem; i < vlen;
1282 			    i++, epp = &((*epp)->el_next)) {
1283 				v = (void *) dptr;
1284 				cte = v;
1285 				dptr += sizeof (ctf_enum_t);
1286 
1287 				*epp = xmalloc(sizeof (elist_t));
1288 				(*epp)->el_name = xstrdup(sbuf + cte->cte_name);
1289 				(*epp)->el_number = cte->cte_value;
1290 			}
1291 			*epp = NULL;
1292 			break;
1293 
1294 		case CTF_K_FORWARD:
1295 			tdp->t_type = FORWARD;
1296 			list_add(&td->td_fwdlist, tdp);
1297 			break;
1298 
1299 		case CTF_K_TYPEDEF:
1300 			tdp->t_type = TYPEDEF;
1301 			tdp->t_tdesc = tdarr[type];
1302 			break;
1303 
1304 		case CTF_K_VOLATILE:
1305 			tdp->t_type = VOLATILE;
1306 			tdp->t_tdesc = tdarr[type];
1307 			break;
1308 
1309 		case CTF_K_CONST:
1310 			tdp->t_type = CONST;
1311 			tdp->t_tdesc = tdarr[type];
1312 			break;
1313 
1314 		case CTF_K_FUNCTION:
1315 			tdp->t_type = FUNCTION;
1316 			tdp->t_fndef = xcalloc(sizeof (fndef_t));
1317 			tdp->t_fndef->fn_ret = tdarr[type];
1318 
1319 			v = (void *) (dptr + (idwidth * (vlen - 1)));
1320 			if (vlen > 0 && *(uint_t *)v == 0)
1321 				tdp->t_fndef->fn_vargs = 1;
1322 
1323 			tdp->t_fndef->fn_nargs = vlen - tdp->t_fndef->fn_vargs;
1324 			tdp->t_fndef->fn_args = xcalloc(sizeof (tdesc_t) *
1325 			    vlen - tdp->t_fndef->fn_vargs);
1326 
1327 			for (i = 0; i < vlen; i++) {
1328 				v = (void *) dptr;
1329 				memcpy(&argid, v, idwidth);
1330 				dptr += idwidth;
1331 
1332 				if (argid != 0)
1333 					tdp->t_fndef->fn_args[i] = tdarr[argid];
1334 			}
1335 
1336 			dptr = (caddr_t) roundup2((uintptr_t) dptr, 4);
1337 			break;
1338 
1339 		case CTF_K_RESTRICT:
1340 			tdp->t_type = RESTRICT;
1341 			tdp->t_tdesc = tdarr[type];
1342 			break;
1343 
1344 		case CTF_K_UNKNOWN:
1345 			break;
1346 
1347 		default:
1348 			warning("Can't parse unknown CTF type %d\n", kind);
1349 		}
1350 
1351 		if (isroot) {
1352 			iidesc_t *ii = iidesc_new(tdp->t_name);
1353 			if (tdp->t_type == STRUCT || tdp->t_type == UNION ||
1354 			    tdp->t_type == ENUM)
1355 				ii->ii_type = II_SOU;
1356 			else
1357 				ii->ii_type = II_TYPE;
1358 			ii->ii_dtype = tdp;
1359 			hash_add(td->td_iihash, ii);
1360 
1361 			iicnt++;
1362 		}
1363 
1364 		debug(3, "Resurrected %d %stype %s (%d)\n", tdp->t_type,
1365 		    (isroot ? "root " : ""), tdesc_name(tdp), tdp->t_id);
1366 	}
1367 
1368 	debug(3, "Resurrected %d types (%d were roots)\n", tcnt, iicnt);
1369 }
1370 
1371 /*
1372  * For lack of other inspiration, we're going to take the boring route.  We
1373  * count the number of types.  This lets us malloc that many tdesc structs
1374  * before we start filling them in.  This has the advantage of allowing us to
1375  * avoid a merge-esque remap step.
1376  */
1377 static tdata_t *
1378 ctf_parse(ctf_header_t *h, caddr_t buf, symit_data_t *si, char *label)
1379 {
1380 	tdata_t *td = tdata_new();
1381 	tdesc_t **tdarr;
1382 	int ntypes = count_types(h, buf);
1383 	int idx, i;
1384 
1385 	/* shudder */
1386 	tdarr = xcalloc(sizeof (tdesc_t *) * (ntypes + 1));
1387 	tdarr[0] = NULL;
1388 	for (i = 1; i <= ntypes; i++) {
1389 		tdarr[i] = xcalloc(sizeof (tdesc_t));
1390 		tdarr[i]->t_id = i;
1391 	}
1392 
1393 	td->td_parlabel = xstrdup(buf + h->cth_stroff + h->cth_parlabel);
1394 
1395 	/* we have the technology - we can rebuild them */
1396 	idx = resurrect_labels(h, td, buf, label);
1397 
1398 	resurrect_objects(h, td, tdarr, ntypes + 1, buf, si);
1399 	resurrect_functions(h, td, tdarr, ntypes + 1, buf, si);
1400 	resurrect_types(h, td, tdarr, ntypes + 1, buf, idx);
1401 
1402 	free(tdarr);
1403 
1404 	td->td_nextid = ntypes + 1;
1405 
1406 	return (td);
1407 }
1408 
1409 static size_t
1410 decompress_ctf(caddr_t cbuf, size_t cbufsz, caddr_t dbuf, size_t dbufsz)
1411 {
1412 	z_stream zstr;
1413 	int rc;
1414 
1415 	zstr.zalloc = (alloc_func)0;
1416 	zstr.zfree = (free_func)0;
1417 	zstr.opaque = (voidpf)0;
1418 
1419 	zstr.next_in = (Bytef *)cbuf;
1420 	zstr.avail_in = cbufsz;
1421 	zstr.next_out = (Bytef *)dbuf;
1422 	zstr.avail_out = dbufsz;
1423 
1424 	if ((rc = inflateInit(&zstr)) != Z_OK ||
1425 	    (rc = inflate(&zstr, Z_NO_FLUSH)) != Z_STREAM_END ||
1426 	    (rc = inflateEnd(&zstr)) != Z_OK) {
1427 		warning("CTF decompress zlib error %s\n", zError(rc));
1428 		return (0);
1429 	}
1430 
1431 	debug(3, "reflated %lu bytes to %lu, pointer at %d\n",
1432 	    zstr.total_in, zstr.total_out, (caddr_t)zstr.next_in - cbuf);
1433 
1434 	return (zstr.total_out);
1435 }
1436 
1437 /*
1438  * Reconstruct the type tree from a given buffer of CTF data.  Only the types
1439  * up to the type associated with the provided label, inclusive, will be
1440  * reconstructed.  If a NULL label is provided, all types will be reconstructed.
1441  *
1442  * This function won't work on files that have been uniquified.
1443  */
1444 tdata_t *
1445 ctf_load(char *file, caddr_t buf, size_t bufsz, symit_data_t *si, char *label)
1446 {
1447 	ctf_header_t *h;
1448 	caddr_t ctfdata;
1449 	size_t ctfdatasz;
1450 	tdata_t *td;
1451 
1452 	curfile = file;
1453 
1454 	if (bufsz < sizeof (ctf_header_t))
1455 		parseterminate("Corrupt CTF - short header");
1456 
1457 	void *v = (void *) buf;
1458 	h = v;
1459 	buf += sizeof (ctf_header_t);
1460 	bufsz -= sizeof (ctf_header_t);
1461 
1462 	if (h->cth_magic != CTF_MAGIC)
1463 		parseterminate("Corrupt CTF - bad magic 0x%x", h->cth_magic);
1464 
1465 	if (h->cth_version != CTF_VERSION_2 && h->cth_version != CTF_VERSION_3)
1466 		parseterminate("Unknown CTF version %d", h->cth_version);
1467 
1468 	ctfdatasz = h->cth_stroff + h->cth_strlen;
1469 	if (h->cth_flags & CTF_F_COMPRESS) {
1470 		size_t actual;
1471 
1472 		ctfdata = xmalloc(ctfdatasz);
1473 		if ((actual = decompress_ctf(buf, bufsz, ctfdata, ctfdatasz)) !=
1474 		    ctfdatasz) {
1475 			parseterminate("Corrupt CTF - short decompression "
1476 			    "(was %d, expecting %d)", actual, ctfdatasz);
1477 		}
1478 	} else {
1479 		ctfdata = buf;
1480 		ctfdatasz = bufsz;
1481 	}
1482 
1483 	td = ctf_parse(h, ctfdata, si, label);
1484 
1485 	if (h->cth_flags & CTF_F_COMPRESS)
1486 		free(ctfdata);
1487 
1488 	curfile = NULL;
1489 
1490 	return (td);
1491 }
1492