1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * This file contains routines that merge one tdata_t tree, called the child,
30  * into another, called the parent.  Note that these names are used mainly for
31  * convenience and to represent the direction of the merge.  They are not meant
32  * to imply any relationship between the tdata_t graphs prior to the merge.
33  *
34  * tdata_t structures contain two main elements - a hash of iidesc_t nodes, and
35  * a directed graph of tdesc_t nodes, pointed to by the iidesc_t nodes.  Simply
36  * put, we merge the tdesc_t graphs, followed by the iidesc_t nodes, and then we
37  * clean up loose ends.
38  *
39  * The algorithm is as follows:
40  *
41  * 1. Mapping iidesc_t nodes
42  *
43  * For each child iidesc_t node, we first try to map its tdesc_t subgraph
44  * against the tdesc_t graph in the parent.  For each node in the child subgraph
45  * that exists in the parent, a mapping between the two (between their type IDs)
46  * is established.  For the child nodes that cannot be mapped onto existing
47  * parent nodes, a mapping is established between the child node ID and a
48  * newly-allocated ID that the node will use when it is re-created in the
49  * parent.  These unmappable nodes are added to the md_tdtba (tdesc_t To Be
50  * Added) hash, which tracks nodes that need to be created in the parent.
51  *
52  * If all of the nodes in the subgraph for an iidesc_t in the child can be
53  * mapped to existing nodes in the parent, then we can try to map the child
54  * iidesc_t onto an iidesc_t in the parent.  If we cannot find an equivalent
55  * iidesc_t, or if we were not able to completely map the tdesc_t subgraph(s),
56  * then we add this iidesc_t to the md_iitba (iidesc_t To Be Added) list.  This
57  * list tracks iidesc_t nodes that are to be created in the parent.
58  *
59  * While visiting the tdesc_t nodes, we may discover a forward declaration (a
60  * FORWARD tdesc_t) in the parent that is resolved in the child.  That is, there
61  * may be a structure or union definition in the child with the same name as the
62  * forward declaration in the parent.  If we find such a node, we record an
63  * association in the md_fdida (Forward => Definition ID Association) list
64  * between the parent ID of the forward declaration and the ID that the
65  * definition will use when re-created in the parent.
66  *
67  * 2. Creating new tdesc_t nodes (the md_tdtba hash)
68  *
69  * We have now attempted to map all tdesc_t nodes from the child into the
70  * parent, and have, in md_tdtba, a hash of all tdesc_t nodes that need to be
71  * created (or, as we so wittily call it, conjured) in the parent.  We iterate
72  * through this hash, creating the indicated tdesc_t nodes.  For a given tdesc_t
73  * node, conjuring requires two steps - the copying of the common tdesc_t data
74  * (name, type, etc) from the child node, and the creation of links from the
75  * newly-created node to the parent equivalents of other tdesc_t nodes pointed
76  * to by node being conjured.  Note that in some cases, the targets of these
77  * links will be on the md_tdtba hash themselves, and may not have been created
78  * yet.  As such, we can't establish the links from these new nodes into the
79  * parent graph.  We therefore conjure them with links to nodes in the *child*
80  * graph, and add pointers to the links to be created to the md_tdtbr (tdesc_t
81  * To Be Remapped) hash.  For example, a POINTER tdesc_t that could not be
82  * resolved would have its &tdesc_t->t_tdesc added to md_tdtbr.
83  *
84  * 3. Creating new iidesc_t nodes (the md_iitba list)
85  *
86  * When we have completed step 2, all tdesc_t nodes have been created (or
87  * already existed) in the parent.  Some of them may have incorrect links (the
88  * members of the md_tdtbr list), but they've all been created.  As such, we can
89  * create all of the iidesc_t nodes, as we can attach the tdesc_t subgraph
90  * pointers correctly.  We create each node, and attach the pointers to the
91  * appropriate parts of the parent tdesc_t graph.
92  *
93  * 4. Resolving newly-created tdesc_t node links (the md_tdtbr list)
94  *
95  * As in step 3, we rely on the fact that all of the tdesc_t nodes have been
96  * created.  Each entry in the md_tdtbr list is a pointer to where a link into
97  * the parent will be established.  As saved in the md_tdtbr list, these
98  * pointers point into the child tdesc_t subgraph.  We can thus get the target
99  * type ID from the child, look at the ID mapping to determine the desired link
100  * target, and redirect the link accordingly.
101  *
102  * 5. Parent => child forward declaration resolution
103  *
104  * If entries were made in the md_fdida list in step 1, we have forward
105  * declarations in the parent that need to be resolved to their definitions
106  * re-created in step 2 from the child.  Using the md_fdida list, we can locate
107  * the definition for the forward declaration, and we can redirect all inbound
108  * edges to the forward declaration node to the actual definition.
109  *
110  * A pox on the house of anyone who changes the algorithm without updating
111  * this comment.
112  */
113 
114 #include <stdio.h>
115 #include <strings.h>
116 #include <assert.h>
117 #include <pthread.h>
118 
119 #include "ctf_headers.h"
120 #include "ctftools.h"
121 #include "list.h"
122 #include "alist.h"
123 #include "memory.h"
124 #include "traverse.h"
125 
126 typedef struct equiv_data equiv_data_t;
127 typedef struct merge_cb_data merge_cb_data_t;
128 
129 /*
130  * There are two traversals in this file, for equivalency and for tdesc_t
131  * re-creation, that do not fit into the tdtraverse() framework.  We have our
132  * own traversal mechanism and ops vector here for those two cases.
133  */
134 typedef struct tdesc_ops {
135 	const char *name;
136 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
137 	tdesc_t *(*conjure)(tdesc_t *, int, merge_cb_data_t *);
138 } tdesc_ops_t;
139 extern tdesc_ops_t tdesc_ops[];
140 
141 /*
142  * The workhorse structure of tdata_t merging.  Holds all lists of nodes to be
143  * processed during various phases of the merge algorithm.
144  */
145 struct merge_cb_data {
146 	tdata_t *md_parent;
147 	tdata_t *md_tgt;
148 	alist_t *md_ta;		/* Type Association */
149 	alist_t *md_fdida;	/* Forward -> Definition ID Association */
150 	list_t	**md_iitba;	/* iidesc_t nodes To Be Added to the parent */
151 	hash_t	*md_tdtba;	/* tdesc_t nodes To Be Added to the parent */
152 	list_t	**md_tdtbr;	/* tdesc_t nodes To Be Remapped */
153 	int md_flags;
154 }; /* merge_cb_data_t */
155 
156 /*
157  * When we first create a tdata_t from stabs data, we will have duplicate nodes.
158  * Normal merges, however, assume that the child tdata_t is already self-unique,
159  * and for speed reasons do not attempt to self-uniquify.  If this flag is set,
160  * the merge algorithm will self-uniquify by avoiding the insertion of
161  * duplicates in the md_tdtdba list.
162  */
163 #define	MCD_F_SELFUNIQUIFY	0x1
164 
165 /*
166  * When we merge the CTF data for the modules, we don't want it to contain any
167  * data that can be found in the reference module (usually genunix).  If this
168  * flag is set, we're doing a merge between the fully merged tdata_t for this
169  * module and the tdata_t for the reference module, with the data unique to this
170  * module ending up in a third tdata_t.  It is this third tdata_t that will end
171  * up in the .SUNW_ctf section for the module.
172  */
173 #define	MCD_F_REFMERGE	0x2
174 
175 /*
176  * Mapping of child type IDs to parent type IDs
177  */
178 
179 static void
180 add_mapping(alist_t *ta, tid_t srcid, tid_t tgtid)
181 {
182 	debug(3, "Adding mapping %u <%x> => %u <%x>\n", srcid, srcid, tgtid, tgtid);
183 
184 	assert(!alist_find(ta, (void *)(uintptr_t)srcid, NULL));
185 	assert(srcid != 0 && tgtid != 0);
186 
187 	alist_add(ta, (void *)(uintptr_t)srcid, (void *)(uintptr_t)tgtid);
188 }
189 
190 static tid_t
191 get_mapping(alist_t *ta, int srcid)
192 {
193 	void *ltgtid;
194 
195 	if (alist_find(ta, (void *)(uintptr_t)srcid, (void **)&ltgtid))
196 		return ((uintptr_t)ltgtid);
197 	else
198 		return (0);
199 }
200 
201 /*
202  * Determining equivalence of tdesc_t subgraphs
203  */
204 
205 struct equiv_data {
206 	alist_t *ed_ta;
207 	tdesc_t *ed_node;
208 	tdesc_t *ed_tgt;
209 
210 	int ed_clear_mark;
211 	int ed_cur_mark;
212 	int ed_selfuniquify;
213 }; /* equiv_data_t */
214 
215 static int equiv_node(tdesc_t *, tdesc_t *, equiv_data_t *);
216 
217 /*ARGSUSED2*/
218 static int
219 equiv_intrinsic(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
220 {
221 	intr_t *si = stdp->t_intr;
222 	intr_t *ti = ttdp->t_intr;
223 
224 	if (si->intr_type != ti->intr_type ||
225 	    si->intr_signed != ti->intr_signed ||
226 	    si->intr_offset != ti->intr_offset ||
227 	    si->intr_nbits != ti->intr_nbits)
228 		return (0);
229 
230 	if (si->intr_type == INTR_INT &&
231 	    si->intr_iformat != ti->intr_iformat)
232 		return (0);
233 	else if (si->intr_type == INTR_REAL &&
234 	    si->intr_fformat != ti->intr_fformat)
235 		return (0);
236 
237 	return (1);
238 }
239 
240 static int
241 equiv_plain(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
242 {
243 	return (equiv_node(stdp->t_tdesc, ttdp->t_tdesc, ed));
244 }
245 
246 static int
247 equiv_function(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
248 {
249 	fndef_t *fn1 = stdp->t_fndef, *fn2 = ttdp->t_fndef;
250 	int i;
251 
252 	if (fn1->fn_nargs != fn2->fn_nargs ||
253 	    fn1->fn_vargs != fn2->fn_vargs)
254 		return (0);
255 
256 	if (!equiv_node(fn1->fn_ret, fn2->fn_ret, ed))
257 		return (0);
258 
259 	for (i = 0; i < (int) fn1->fn_nargs; i++) {
260 		if (!equiv_node(fn1->fn_args[i], fn2->fn_args[i], ed))
261 			return (0);
262 	}
263 
264 	return (1);
265 }
266 
267 static int
268 equiv_array(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
269 {
270 	ardef_t *ar1 = stdp->t_ardef, *ar2 = ttdp->t_ardef;
271 
272 	if (!equiv_node(ar1->ad_contents, ar2->ad_contents, ed) ||
273 	    !equiv_node(ar1->ad_idxtype, ar2->ad_idxtype, ed))
274 		return (0);
275 
276 	if (ar1->ad_nelems != ar2->ad_nelems)
277 		return (0);
278 
279 	return (1);
280 }
281 
282 static int
283 equiv_su(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed)
284 {
285 	mlist_t *ml1 = stdp->t_members, *ml2 = ttdp->t_members;
286 
287 	while (ml1 && ml2) {
288 		if (ml1->ml_offset != ml2->ml_offset ||
289 		    strcmp(ml1->ml_name, ml2->ml_name) != 0 ||
290 		    ml1->ml_size != ml2->ml_size ||
291 		    !equiv_node(ml1->ml_type, ml2->ml_type, ed))
292 			return (0);
293 
294 		ml1 = ml1->ml_next;
295 		ml2 = ml2->ml_next;
296 	}
297 
298 	if (ml1 || ml2)
299 		return (0);
300 
301 	return (1);
302 }
303 
304 /*ARGSUSED2*/
305 static int
306 equiv_enum(tdesc_t *stdp, tdesc_t *ttdp, equiv_data_t *ed __unused)
307 {
308 	elist_t *el1 = stdp->t_emem;
309 	elist_t *el2 = ttdp->t_emem;
310 
311 	while (el1 && el2) {
312 		if (el1->el_number != el2->el_number ||
313 		    strcmp(el1->el_name, el2->el_name) != 0)
314 			return (0);
315 
316 		el1 = el1->el_next;
317 		el2 = el2->el_next;
318 	}
319 
320 	if (el1 || el2)
321 		return (0);
322 
323 	return (1);
324 }
325 
326 /*ARGSUSED*/
327 static int
328 equiv_assert(tdesc_t *stdp __unused, tdesc_t *ttdp __unused, equiv_data_t *ed __unused)
329 {
330 	/* foul, evil, and very bad - this is a "shouldn't happen" */
331 	assert(1 == 0);
332 
333 	return (0);
334 }
335 
336 static int
337 fwd_equiv(tdesc_t *ctdp, tdesc_t *mtdp)
338 {
339 	tdesc_t *defn = (ctdp->t_type == FORWARD ? mtdp : ctdp);
340 
341 	return (defn->t_type == STRUCT || defn->t_type == UNION ||
342 	    defn->t_type == ENUM);
343 }
344 
345 static int
346 equiv_node(tdesc_t *ctdp, tdesc_t *mtdp, equiv_data_t *ed)
347 {
348 	int (*equiv)(tdesc_t *, tdesc_t *, equiv_data_t *);
349 	int mapping;
350 
351 	if (ctdp->t_emark > ed->ed_clear_mark &&
352 	    mtdp->t_emark > ed->ed_clear_mark)
353 		return (ctdp->t_emark == mtdp->t_emark);
354 
355 	/*
356 	 * In normal (non-self-uniquify) mode, we don't want to do equivalency
357 	 * checking on a subgraph that has already been checked.  If a mapping
358 	 * has already been established for a given child node, we can simply
359 	 * compare the mapping for the child node with the ID of the parent
360 	 * node.  If we are in self-uniquify mode, then we're comparing two
361 	 * subgraphs within the child graph, and thus need to ignore any
362 	 * type mappings that have been created, as they are only valid into the
363 	 * parent.
364 	 */
365 	if ((mapping = get_mapping(ed->ed_ta, ctdp->t_id)) > 0 &&
366 	    mapping == mtdp->t_id && !ed->ed_selfuniquify)
367 		return (1);
368 
369 	if (!streq(ctdp->t_name, mtdp->t_name))
370 		return (0);
371 
372 	if (ctdp->t_type != mtdp->t_type) {
373 		if (ctdp->t_type == FORWARD || mtdp->t_type == FORWARD)
374 			return (fwd_equiv(ctdp, mtdp));
375 		else
376 			return (0);
377 	}
378 
379 	ctdp->t_emark = ed->ed_cur_mark;
380 	mtdp->t_emark = ed->ed_cur_mark;
381 	ed->ed_cur_mark++;
382 
383 	if ((equiv = tdesc_ops[ctdp->t_type].equiv) != NULL)
384 		return (equiv(ctdp, mtdp, ed));
385 
386 	return (1);
387 }
388 
389 /*
390  * We perform an equivalency check on two subgraphs by traversing through them
391  * in lockstep.  If a given node is equivalent in both the parent and the child,
392  * we mark it in both subgraphs, using the t_emark field, with a monotonically
393  * increasing number.  If, in the course of the traversal, we reach a node that
394  * we have visited and numbered during this equivalency check, we have a cycle.
395  * If the previously-visited nodes don't have the same emark, then the edges
396  * that brought us to these nodes are not equivalent, and so the check ends.
397  * If the emarks are the same, the edges are equivalent.  We then backtrack and
398  * continue the traversal.  If we have exhausted all edges in the subgraph, and
399  * have not found any inequivalent nodes, then the subgraphs are equivalent.
400  */
401 static int
402 equiv_cb(void *bucket, void *arg)
403 {
404 	equiv_data_t *ed = arg;
405 	tdesc_t *mtdp = bucket;
406 	tdesc_t *ctdp = ed->ed_node;
407 
408 	ed->ed_clear_mark = ed->ed_cur_mark + 1;
409 	ed->ed_cur_mark = ed->ed_clear_mark + 1;
410 
411 	if (equiv_node(ctdp, mtdp, ed)) {
412 		debug(3, "equiv_node matched %d <%x> %d <%x>\n",
413 		    ctdp->t_id, ctdp->t_id, mtdp->t_id, mtdp->t_id);
414 		ed->ed_tgt = mtdp;
415 		/* matched.  stop looking */
416 		return (-1);
417 	}
418 
419 	return (0);
420 }
421 
422 /*ARGSUSED1*/
423 static int
424 map_td_tree_pre(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
425 {
426 	merge_cb_data_t *mcd = private;
427 
428 	if (get_mapping(mcd->md_ta, ctdp->t_id) > 0)
429 		return (0);
430 
431 	return (1);
432 }
433 
434 /*ARGSUSED1*/
435 static int
436 map_td_tree_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
437 {
438 	merge_cb_data_t *mcd = private;
439 	equiv_data_t ed;
440 
441 	ed.ed_ta = mcd->md_ta;
442 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
443 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
444 	ed.ed_node = ctdp;
445 	ed.ed_selfuniquify = 0;
446 
447 	debug(3, "map_td_tree_post on %d <%x> %s\n", ctdp->t_id, ctdp->t_id,tdesc_name(ctdp));
448 
449 	if (hash_find_iter(mcd->md_parent->td_layouthash, ctdp,
450 	    equiv_cb, &ed) < 0) {
451 		/* We found an equivalent node */
452 		if (ed.ed_tgt->t_type == FORWARD && ctdp->t_type != FORWARD) {
453 			int id = mcd->md_tgt->td_nextid++;
454 
455 			debug(3, "Creating new defn type %d <%x>\n", id, id);
456 			add_mapping(mcd->md_ta, ctdp->t_id, id);
457 			alist_add(mcd->md_fdida, (void *)(ulong_t)ed.ed_tgt,
458 			    (void *)(ulong_t)id);
459 			hash_add(mcd->md_tdtba, ctdp);
460 		} else
461 			add_mapping(mcd->md_ta, ctdp->t_id, ed.ed_tgt->t_id);
462 
463 	} else if (debug_level > 1 && hash_iter(mcd->md_parent->td_idhash,
464 	    equiv_cb, &ed) < 0) {
465 		/*
466 		 * We didn't find an equivalent node by looking through the
467 		 * layout hash, but we somehow found it by performing an
468 		 * exhaustive search through the entire graph.  This usually
469 		 * means that the "name" hash function is broken.
470 		 */
471 		aborterr("Second pass for %d (%s) == %d\n", ctdp->t_id,
472 		    tdesc_name(ctdp), ed.ed_tgt->t_id);
473 	} else {
474 		int id = mcd->md_tgt->td_nextid++;
475 
476 		debug(3, "Creating new type %d <%x>\n", id, id);
477 		add_mapping(mcd->md_ta, ctdp->t_id, id);
478 		hash_add(mcd->md_tdtba, ctdp);
479 	}
480 
481 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
482 
483 	return (1);
484 }
485 
486 /*ARGSUSED1*/
487 static int
488 map_td_tree_self_post(tdesc_t *ctdp, tdesc_t **ctdpp __unused, void *private)
489 {
490 	merge_cb_data_t *mcd = private;
491 	equiv_data_t ed;
492 
493 	ed.ed_ta = mcd->md_ta;
494 	ed.ed_clear_mark = mcd->md_parent->td_curemark;
495 	ed.ed_cur_mark = mcd->md_parent->td_curemark + 1;
496 	ed.ed_node = ctdp;
497 	ed.ed_selfuniquify = 1;
498 	ed.ed_tgt = NULL;
499 
500 	if (hash_find_iter(mcd->md_tdtba, ctdp, equiv_cb, &ed) < 0) {
501 		debug(3, "Self check found %d <%x> in %d <%x>\n", ctdp->t_id,
502 		    ctdp->t_id, ed.ed_tgt->t_id, ed.ed_tgt->t_id);
503 		add_mapping(mcd->md_ta, ctdp->t_id,
504 		    get_mapping(mcd->md_ta, ed.ed_tgt->t_id));
505 	} else if (debug_level > 1 && hash_iter(mcd->md_tdtba,
506 	    equiv_cb, &ed) < 0) {
507 		/*
508 		 * We didn't find an equivalent node using the quick way (going
509 		 * through the hash normally), but we did find it by iterating
510 		 * through the entire hash.  This usually means that the hash
511 		 * function is broken.
512 		 */
513 		aborterr("Self-unique second pass for %d <%x> (%s) == %d <%x>\n",
514 		    ctdp->t_id, ctdp->t_id, tdesc_name(ctdp), ed.ed_tgt->t_id,
515 		    ed.ed_tgt->t_id);
516 	} else {
517 		int id = mcd->md_tgt->td_nextid++;
518 
519 		debug(3, "Creating new type %d <%x>\n", id, id);
520 		add_mapping(mcd->md_ta, ctdp->t_id, id);
521 		hash_add(mcd->md_tdtba, ctdp);
522 	}
523 
524 	mcd->md_parent->td_curemark = ed.ed_cur_mark + 1;
525 
526 	return (1);
527 }
528 
529 static tdtrav_cb_f map_pre[] = {
530 	NULL,
531 	map_td_tree_pre,	/* intrinsic */
532 	map_td_tree_pre,	/* pointer */
533 	map_td_tree_pre,	/* array */
534 	map_td_tree_pre,	/* function */
535 	map_td_tree_pre,	/* struct */
536 	map_td_tree_pre,	/* union */
537 	map_td_tree_pre,	/* enum */
538 	map_td_tree_pre,	/* forward */
539 	map_td_tree_pre,	/* typedef */
540 	tdtrav_assert,		/* typedef_unres */
541 	map_td_tree_pre,	/* volatile */
542 	map_td_tree_pre,	/* const */
543 	map_td_tree_pre		/* restrict */
544 };
545 
546 static tdtrav_cb_f map_post[] = {
547 	NULL,
548 	map_td_tree_post,	/* intrinsic */
549 	map_td_tree_post,	/* pointer */
550 	map_td_tree_post,	/* array */
551 	map_td_tree_post,	/* function */
552 	map_td_tree_post,	/* struct */
553 	map_td_tree_post,	/* union */
554 	map_td_tree_post,	/* enum */
555 	map_td_tree_post,	/* forward */
556 	map_td_tree_post,	/* typedef */
557 	tdtrav_assert,		/* typedef_unres */
558 	map_td_tree_post,	/* volatile */
559 	map_td_tree_post,	/* const */
560 	map_td_tree_post	/* restrict */
561 };
562 
563 static tdtrav_cb_f map_self_post[] = {
564 	NULL,
565 	map_td_tree_self_post,	/* intrinsic */
566 	map_td_tree_self_post,	/* pointer */
567 	map_td_tree_self_post,	/* array */
568 	map_td_tree_self_post,	/* function */
569 	map_td_tree_self_post,	/* struct */
570 	map_td_tree_self_post,	/* union */
571 	map_td_tree_self_post,	/* enum */
572 	map_td_tree_self_post,	/* forward */
573 	map_td_tree_self_post,	/* typedef */
574 	tdtrav_assert,		/* typedef_unres */
575 	map_td_tree_self_post,	/* volatile */
576 	map_td_tree_self_post,	/* const */
577 	map_td_tree_self_post	/* restrict */
578 };
579 
580 /*
581  * Determining equivalence of iidesc_t nodes
582  */
583 
584 typedef struct iifind_data {
585 	iidesc_t *iif_template;
586 	alist_t *iif_ta;
587 	int iif_newidx;
588 	int iif_refmerge;
589 } iifind_data_t;
590 
591 /*
592  * Check to see if this iidesc_t (node) - the current one on the list we're
593  * iterating through - matches the target one (iif->iif_template).  Return -1
594  * if it matches, to stop the iteration.
595  */
596 static int
597 iidesc_match(void *data, void *arg)
598 {
599 	iidesc_t *node = data;
600 	iifind_data_t *iif = arg;
601 	int i;
602 
603 	if (node->ii_type != iif->iif_template->ii_type ||
604 	    !streq(node->ii_name, iif->iif_template->ii_name) ||
605 	    node->ii_dtype->t_id != iif->iif_newidx)
606 		return (0);
607 
608 	if ((node->ii_type == II_SVAR || node->ii_type == II_SFUN) &&
609 	    !streq(node->ii_owner, iif->iif_template->ii_owner))
610 		return (0);
611 
612 	if (node->ii_nargs != iif->iif_template->ii_nargs)
613 		return (0);
614 
615 	for (i = 0; i < node->ii_nargs; i++) {
616 		if (get_mapping(iif->iif_ta,
617 		    iif->iif_template->ii_args[i]->t_id) !=
618 		    node->ii_args[i]->t_id)
619 			return (0);
620 	}
621 
622 	if (iif->iif_refmerge) {
623 		switch (iif->iif_template->ii_type) {
624 		case II_GFUN:
625 		case II_SFUN:
626 		case II_GVAR:
627 		case II_SVAR:
628 			debug(3, "suppressing duping of %d %s from %s\n",
629 			    iif->iif_template->ii_type,
630 			    iif->iif_template->ii_name,
631 			    (iif->iif_template->ii_owner ?
632 			    iif->iif_template->ii_owner : "NULL"));
633 			return (0);
634 		case II_NOT:
635 		case II_PSYM:
636 		case II_SOU:
637 		case II_TYPE:
638 			break;
639 		}
640 	}
641 
642 	return (-1);
643 }
644 
645 static int
646 merge_type_cb(void *data, void *arg)
647 {
648 	iidesc_t *sii = data;
649 	merge_cb_data_t *mcd = arg;
650 	iifind_data_t iif;
651 	tdtrav_cb_f *post;
652 
653 	post = (mcd->md_flags & MCD_F_SELFUNIQUIFY ? map_self_post : map_post);
654 
655 	/* Map the tdesc nodes */
656 	(void) iitraverse(sii, &mcd->md_parent->td_curvgen, NULL, map_pre, post,
657 	    mcd);
658 
659 	/* Map the iidesc nodes */
660 	iif.iif_template = sii;
661 	iif.iif_ta = mcd->md_ta;
662 	iif.iif_newidx = get_mapping(mcd->md_ta, sii->ii_dtype->t_id);
663 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
664 
665 	if (hash_match(mcd->md_parent->td_iihash, sii, iidesc_match,
666 	    &iif) == 1)
667 		/* successfully mapped */
668 		return (1);
669 
670 	debug(3, "tba %s (%d)\n", (sii->ii_name ? sii->ii_name : "(anon)"),
671 	    sii->ii_type);
672 
673 	list_add(mcd->md_iitba, sii);
674 
675 	return (0);
676 }
677 
678 static int
679 remap_node(tdesc_t **tgtp, tdesc_t *oldtgt, int selftid, tdesc_t *newself,
680     merge_cb_data_t *mcd)
681 {
682 	tdesc_t *tgt = NULL;
683 	tdesc_t template;
684 	int oldid = oldtgt->t_id;
685 
686 	if (oldid == selftid) {
687 		*tgtp = newself;
688 		return (1);
689 	}
690 
691 	if ((template.t_id = get_mapping(mcd->md_ta, oldid)) == 0)
692 		aborterr("failed to get mapping for tid %d <%x>\n", oldid, oldid);
693 
694 	if (!hash_find(mcd->md_parent->td_idhash, (void *)&template,
695 	    (void *)&tgt) && (!(mcd->md_flags & MCD_F_REFMERGE) ||
696 	    !hash_find(mcd->md_tgt->td_idhash, (void *)&template,
697 	    (void *)&tgt))) {
698 		debug(3, "Remap couldn't find %d <%x> (from %d <%x>)\n", template.t_id,
699 		    template.t_id, oldid, oldid);
700 		*tgtp = oldtgt;
701 		list_add(mcd->md_tdtbr, tgtp);
702 		return (0);
703 	}
704 
705 	*tgtp = tgt;
706 	return (1);
707 }
708 
709 static tdesc_t *
710 conjure_template(tdesc_t *old, int newselfid)
711 {
712 	tdesc_t *new = xcalloc(sizeof (tdesc_t));
713 
714 	new->t_name = old->t_name ? xstrdup(old->t_name) : NULL;
715 	new->t_type = old->t_type;
716 	new->t_size = old->t_size;
717 	new->t_id = newselfid;
718 	new->t_flags = old->t_flags;
719 
720 	return (new);
721 }
722 
723 /*ARGSUSED2*/
724 static tdesc_t *
725 conjure_intrinsic(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
726 {
727 	tdesc_t *new = conjure_template(old, newselfid);
728 
729 	new->t_intr = xmalloc(sizeof (intr_t));
730 	bcopy(old->t_intr, new->t_intr, sizeof (intr_t));
731 
732 	return (new);
733 }
734 
735 static tdesc_t *
736 conjure_plain(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
737 {
738 	tdesc_t *new = conjure_template(old, newselfid);
739 
740 	(void) remap_node(&new->t_tdesc, old->t_tdesc, old->t_id, new, mcd);
741 
742 	return (new);
743 }
744 
745 static tdesc_t *
746 conjure_function(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
747 {
748 	tdesc_t *new = conjure_template(old, newselfid);
749 	fndef_t *nfn = xmalloc(sizeof (fndef_t));
750 	fndef_t *ofn = old->t_fndef;
751 	int i;
752 
753 	(void) remap_node(&nfn->fn_ret, ofn->fn_ret, old->t_id, new, mcd);
754 
755 	nfn->fn_nargs = ofn->fn_nargs;
756 	nfn->fn_vargs = ofn->fn_vargs;
757 
758 	if (nfn->fn_nargs > 0)
759 		nfn->fn_args = xcalloc(sizeof (tdesc_t *) * ofn->fn_nargs);
760 
761 	for (i = 0; i < (int) ofn->fn_nargs; i++) {
762 		(void) remap_node(&nfn->fn_args[i], ofn->fn_args[i], old->t_id,
763 		    new, mcd);
764 	}
765 
766 	new->t_fndef = nfn;
767 
768 	return (new);
769 }
770 
771 static tdesc_t *
772 conjure_array(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
773 {
774 	tdesc_t *new = conjure_template(old, newselfid);
775 	ardef_t *nar = xmalloc(sizeof (ardef_t));
776 	ardef_t *oar = old->t_ardef;
777 
778 	(void) remap_node(&nar->ad_contents, oar->ad_contents, old->t_id, new,
779 	    mcd);
780 	(void) remap_node(&nar->ad_idxtype, oar->ad_idxtype, old->t_id, new,
781 	    mcd);
782 
783 	nar->ad_nelems = oar->ad_nelems;
784 
785 	new->t_ardef = nar;
786 
787 	return (new);
788 }
789 
790 static tdesc_t *
791 conjure_su(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
792 {
793 	tdesc_t *new = conjure_template(old, newselfid);
794 	mlist_t *omem, **nmemp;
795 
796 	for (omem = old->t_members, nmemp = &new->t_members;
797 	    omem; omem = omem->ml_next, nmemp = &((*nmemp)->ml_next)) {
798 		*nmemp = xmalloc(sizeof (mlist_t));
799 		(*nmemp)->ml_offset = omem->ml_offset;
800 		(*nmemp)->ml_size = omem->ml_size;
801 		(*nmemp)->ml_name = xstrdup(omem->ml_name ? omem->ml_name : "empty omem->ml_name");
802 		(void) remap_node(&((*nmemp)->ml_type), omem->ml_type,
803 		    old->t_id, new, mcd);
804 	}
805 	*nmemp = NULL;
806 
807 	return (new);
808 }
809 
810 /*ARGSUSED2*/
811 static tdesc_t *
812 conjure_enum(tdesc_t *old, int newselfid, merge_cb_data_t *mcd __unused)
813 {
814 	tdesc_t *new = conjure_template(old, newselfid);
815 	elist_t *oel, **nelp;
816 
817 	for (oel = old->t_emem, nelp = &new->t_emem;
818 	    oel; oel = oel->el_next, nelp = &((*nelp)->el_next)) {
819 		*nelp = xmalloc(sizeof (elist_t));
820 		(*nelp)->el_name = xstrdup(oel->el_name);
821 		(*nelp)->el_number = oel->el_number;
822 	}
823 	*nelp = NULL;
824 
825 	return (new);
826 }
827 
828 /*ARGSUSED2*/
829 static tdesc_t *
830 conjure_forward(tdesc_t *old, int newselfid, merge_cb_data_t *mcd)
831 {
832 	tdesc_t *new = conjure_template(old, newselfid);
833 
834 	list_add(&mcd->md_tgt->td_fwdlist, new);
835 
836 	return (new);
837 }
838 
839 /*ARGSUSED*/
840 static tdesc_t *
841 conjure_assert(tdesc_t *old __unused, int newselfid __unused, merge_cb_data_t *mcd __unused)
842 {
843 	assert(1 == 0);
844 	return (NULL);
845 }
846 
847 static iidesc_t *
848 conjure_iidesc(iidesc_t *old, merge_cb_data_t *mcd)
849 {
850 	iidesc_t *new = iidesc_dup(old);
851 	int i;
852 
853 	(void) remap_node(&new->ii_dtype, old->ii_dtype, -1, NULL, mcd);
854 	for (i = 0; i < new->ii_nargs; i++) {
855 		(void) remap_node(&new->ii_args[i], old->ii_args[i], -1, NULL,
856 		    mcd);
857 	}
858 
859 	return (new);
860 }
861 
862 static int
863 fwd_redir(tdesc_t *fwd, tdesc_t **fwdp, void *private)
864 {
865 	alist_t *map = private;
866 	void *defn;
867 
868 	if (!alist_find(map, (void *)fwd, (void **)&defn))
869 		return (0);
870 
871 	debug(3, "Redirecting an edge to %s\n", tdesc_name(defn));
872 
873 	*fwdp = defn;
874 
875 	return (1);
876 }
877 
878 static tdtrav_cb_f fwd_redir_cbs[] = {
879 	NULL,
880 	NULL,			/* intrinsic */
881 	NULL,			/* pointer */
882 	NULL,			/* array */
883 	NULL,			/* function */
884 	NULL,			/* struct */
885 	NULL,			/* union */
886 	NULL,			/* enum */
887 	fwd_redir,		/* forward */
888 	NULL,			/* typedef */
889 	tdtrav_assert,		/* typedef_unres */
890 	NULL,			/* volatile */
891 	NULL,			/* const */
892 	NULL			/* restrict */
893 };
894 
895 typedef struct redir_mstr_data {
896 	tdata_t *rmd_tgt;
897 	alist_t *rmd_map;
898 } redir_mstr_data_t;
899 
900 static int
901 redir_mstr_fwd_cb(void *name, void *value, void *arg)
902 {
903 	tdesc_t *fwd = name;
904 	int defnid = (uintptr_t)value;
905 	redir_mstr_data_t *rmd = arg;
906 	tdesc_t template;
907 	tdesc_t *defn;
908 
909 	template.t_id = defnid;
910 
911 	if (!hash_find(rmd->rmd_tgt->td_idhash, (void *)&template,
912 	    (void *)&defn)) {
913 		aborterr("Couldn't unforward %d (%s)\n", defnid,
914 		    tdesc_name(defn));
915 	}
916 
917 	debug(3, "Forward map: resolved %d to %s\n", defnid, tdesc_name(defn));
918 
919 	alist_add(rmd->rmd_map, (void *)fwd, (void *)defn);
920 
921 	return (1);
922 }
923 
924 static void
925 redir_mstr_fwds(merge_cb_data_t *mcd)
926 {
927 	redir_mstr_data_t rmd;
928 	alist_t *map = alist_new(NULL, NULL);
929 
930 	rmd.rmd_tgt = mcd->md_tgt;
931 	rmd.rmd_map = map;
932 
933 	if (alist_iter(mcd->md_fdida, redir_mstr_fwd_cb, &rmd)) {
934 		(void) iitraverse_hash(mcd->md_tgt->td_iihash,
935 		    &mcd->md_tgt->td_curvgen, fwd_redir_cbs, NULL, NULL, map);
936 	}
937 
938 	alist_free(map);
939 }
940 
941 static int
942 add_iitba_cb(void *data, void *private)
943 {
944 	merge_cb_data_t *mcd = private;
945 	iidesc_t *tba = data;
946 	iidesc_t *new;
947 	iifind_data_t iif;
948 	int newidx;
949 
950 	newidx = get_mapping(mcd->md_ta, tba->ii_dtype->t_id);
951 	assert(newidx != -1);
952 
953 	(void) list_remove(mcd->md_iitba, data, NULL, NULL);
954 
955 	iif.iif_template = tba;
956 	iif.iif_ta = mcd->md_ta;
957 	iif.iif_newidx = newidx;
958 	iif.iif_refmerge = (mcd->md_flags & MCD_F_REFMERGE);
959 
960 	if (hash_match(mcd->md_parent->td_iihash, tba, iidesc_match,
961 	    &iif) == 1) {
962 		debug(3, "iidesc_t %s already exists\n",
963 		    (tba->ii_name ? tba->ii_name : "(anon)"));
964 		return (1);
965 	}
966 
967 	new = conjure_iidesc(tba, mcd);
968 	hash_add(mcd->md_tgt->td_iihash, new);
969 
970 	return (1);
971 }
972 
973 static int
974 add_tdesc(tdesc_t *oldtdp, int newid, merge_cb_data_t *mcd)
975 {
976 	tdesc_t *newtdp;
977 	tdesc_t template;
978 
979 	template.t_id = newid;
980 	assert(hash_find(mcd->md_parent->td_idhash,
981 	    (void *)&template, NULL) == 0);
982 
983 	debug(3, "trying to conjure %d %s (%d, <%x>) as %d, <%x>\n",
984 	    oldtdp->t_type, tdesc_name(oldtdp), oldtdp->t_id,
985 	    oldtdp->t_id, newid, newid);
986 
987 	if ((newtdp = tdesc_ops[oldtdp->t_type].conjure(oldtdp, newid,
988 	    mcd)) == NULL)
989 		/* couldn't map everything */
990 		return (0);
991 
992 	debug(3, "succeeded\n");
993 
994 	hash_add(mcd->md_tgt->td_idhash, newtdp);
995 	hash_add(mcd->md_tgt->td_layouthash, newtdp);
996 
997 	return (1);
998 }
999 
1000 static int
1001 add_tdtba_cb(void *data, void *arg)
1002 {
1003 	tdesc_t *tdp = data;
1004 	merge_cb_data_t *mcd = arg;
1005 	int newid;
1006 	int rc;
1007 
1008 	newid = get_mapping(mcd->md_ta, tdp->t_id);
1009 	assert(newid != -1);
1010 
1011 	if ((rc = add_tdesc(tdp, newid, mcd)))
1012 		hash_remove(mcd->md_tdtba, (void *)tdp);
1013 
1014 	return (rc);
1015 }
1016 
1017 static int
1018 add_tdtbr_cb(void *data, void *arg)
1019 {
1020 	tdesc_t **tdpp = data;
1021 	merge_cb_data_t *mcd = arg;
1022 
1023 	debug(3, "Remapping %s (%d)\n", tdesc_name(*tdpp), (*tdpp)->t_id);
1024 
1025 	if (!remap_node(tdpp, *tdpp, -1, NULL, mcd))
1026 		return (0);
1027 
1028 	(void) list_remove(mcd->md_tdtbr, (void *)tdpp, NULL, NULL);
1029 	return (1);
1030 }
1031 
1032 static void
1033 merge_types(hash_t *src, merge_cb_data_t *mcd)
1034 {
1035 	list_t *iitba = NULL;
1036 	list_t *tdtbr = NULL;
1037 	int iirc, tdrc;
1038 
1039 	mcd->md_iitba = &iitba;
1040 	mcd->md_tdtba = hash_new(TDATA_LAYOUT_HASH_SIZE, tdesc_layouthash,
1041 	    tdesc_layoutcmp);
1042 	mcd->md_tdtbr = &tdtbr;
1043 
1044 	(void) hash_iter(src, merge_type_cb, mcd);
1045 
1046 	tdrc = hash_iter(mcd->md_tdtba, add_tdtba_cb, mcd);
1047 	debug(3, "add_tdtba_cb added %d items\n", tdrc);
1048 
1049 	iirc = list_iter(*mcd->md_iitba, add_iitba_cb, mcd);
1050 	debug(3, "add_iitba_cb added %d items\n", iirc);
1051 
1052 	assert(list_count(*mcd->md_iitba) == 0 &&
1053 	    hash_count(mcd->md_tdtba) == 0);
1054 
1055 	tdrc = list_iter(*mcd->md_tdtbr, add_tdtbr_cb, mcd);
1056 	debug(3, "add_tdtbr_cb added %d items\n", tdrc);
1057 
1058 	if (list_count(*mcd->md_tdtbr) != 0)
1059 		aborterr("Couldn't remap all nodes\n");
1060 
1061 	/*
1062 	 * We now have an alist of master forwards and the ids of the new master
1063 	 * definitions for those forwards in mcd->md_fdida.  By this point,
1064 	 * we're guaranteed that all of the master definitions referenced in
1065 	 * fdida have been added to the master tree.  We now traverse through
1066 	 * the master tree, redirecting all edges inbound to forwards that have
1067 	 * definitions to those definitions.
1068 	 */
1069 	if (mcd->md_parent == mcd->md_tgt) {
1070 		redir_mstr_fwds(mcd);
1071 	}
1072 }
1073 
1074 void
1075 merge_into_master(tdata_t *cur, tdata_t *mstr, tdata_t *tgt, int selfuniquify)
1076 {
1077 	merge_cb_data_t mcd;
1078 
1079 	cur->td_ref++;
1080 	mstr->td_ref++;
1081 	if (tgt)
1082 		tgt->td_ref++;
1083 
1084 	assert(cur->td_ref == 1 && mstr->td_ref == 1 &&
1085 	    (tgt == NULL || tgt->td_ref == 1));
1086 
1087 	mcd.md_parent = mstr;
1088 	mcd.md_tgt = (tgt ? tgt : mstr);
1089 	mcd.md_ta = alist_new(NULL, NULL);
1090 	mcd.md_fdida = alist_new(NULL, NULL);
1091 	mcd.md_flags = 0;
1092 
1093 	if (selfuniquify)
1094 		mcd.md_flags |= MCD_F_SELFUNIQUIFY;
1095 	if (tgt)
1096 		mcd.md_flags |= MCD_F_REFMERGE;
1097 
1098 	mstr->td_curvgen = MAX(mstr->td_curvgen, cur->td_curvgen);
1099 	mstr->td_curemark = MAX(mstr->td_curemark, cur->td_curemark);
1100 
1101 	merge_types(cur->td_iihash, &mcd);
1102 
1103 	if (debug_level >= 3) {
1104 		debug(3, "Type association stats\n");
1105 		alist_stats(mcd.md_ta, 0);
1106 		debug(3, "Layout hash stats\n");
1107 		hash_stats(mcd.md_tgt->td_layouthash, 1);
1108 	}
1109 
1110 	alist_free(mcd.md_fdida);
1111 	alist_free(mcd.md_ta);
1112 
1113 	cur->td_ref--;
1114 	mstr->td_ref--;
1115 	if (tgt)
1116 		tgt->td_ref--;
1117 }
1118 
1119 tdesc_ops_t tdesc_ops[] = {
1120 	{ "ERROR! BAD tdesc TYPE", NULL, NULL },
1121 	{ "intrinsic",		equiv_intrinsic,	conjure_intrinsic },
1122 	{ "pointer", 		equiv_plain,		conjure_plain },
1123 	{ "array", 		equiv_array,		conjure_array },
1124 	{ "function", 		equiv_function,		conjure_function },
1125 	{ "struct",		equiv_su,		conjure_su },
1126 	{ "union",		equiv_su,		conjure_su },
1127 	{ "enum",		equiv_enum,		conjure_enum },
1128 	{ "forward",		NULL,			conjure_forward },
1129 	{ "typedef",		equiv_plain,		conjure_plain },
1130 	{ "typedef_unres",	equiv_assert,		conjure_assert },
1131 	{ "volatile",		equiv_plain,		conjure_plain },
1132 	{ "const", 		equiv_plain,		conjure_plain },
1133 	{ "restrict",		equiv_plain,		conjure_plain }
1134 };
1135