xref: /freebsd/contrib/bearssl/inc/bearssl_kdf.h (revision c697fb7f)
1 /*
2  * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef BR_BEARSSL_KDF_H__
26 #define BR_BEARSSL_KDF_H__
27 
28 #include <stddef.h>
29 #include <stdint.h>
30 
31 #include "bearssl_hash.h"
32 #include "bearssl_hmac.h"
33 
34 #ifdef __cplusplus
35 extern "C" {
36 #endif
37 
38 /** \file bearssl_kdf.h
39  *
40  * # Key Derivation Functions
41  *
42  * KDF are functions that takes a variable length input, and provide a
43  * variable length output, meant to be used to derive subkeys from a
44  * master key.
45  *
46  * ## HKDF
47  *
48  * HKDF is a KDF defined by [RFC 5869](https://tools.ietf.org/html/rfc5869).
49  * It is based on HMAC, itself using an underlying hash function. Any
50  * hash function can be used, as long as it is compatible with the rules
51  * for the HMAC implementation (i.e. output size is 64 bytes or less, hash
52  * internal state size is 64 bytes or less, and the internal block length is
53  * a power of 2 between 16 and 256 bytes). HKDF has two phases:
54  *
55  *  - HKDF-Extract: the input data in ingested, along with a "salt" value.
56  *
57  *  - HKDF-Expand: the output is produced, from the result of processing
58  *    the input and salt, and using an extra non-secret parameter called
59  *    "info".
60  *
61  * The "salt" and "info" strings are non-secret and can be empty. Their role
62  * is normally to bind the input and output, respectively, to conventional
63  * identifiers that qualifu them within the used protocol or application.
64  *
65  * The implementation defined in this file uses the following functions:
66  *
67  *  - `br_hkdf_init()`: initialize an HKDF context, with a hash function,
68  *    and the salt. This starts the HKDF-Extract process.
69  *
70  *  - `br_hkdf_inject()`: inject more input bytes. This function may be
71  *    called repeatedly if the input data is provided by chunks.
72  *
73  *  - `br_hkdf_flip()`: end the HKDF-Extract process, and start the
74  *    HKDF-Expand process.
75  *
76  *  - `br_hkdf_produce()`: get the next bytes of output. This function
77  *    may be called several times to obtain the full output by chunks.
78  *    For correct HKDF processing, the same "info" string must be
79  *    provided for each call.
80  *
81  * Note that the HKDF total output size (the number of bytes that
82  * HKDF-Expand is willing to produce) is limited: if the hash output size
83  * is _n_ bytes, then the maximum output size is _255*n_.
84  *
85  * ## SHAKE
86  *
87  * SHAKE is defined in
88  * [FIPS 202](https://csrc.nist.gov/publications/detail/fips/202/final)
89  * under two versions: SHAKE128 and SHAKE256, offering an alleged
90  * "security level" of 128 and 256 bits, respectively (SHAKE128 is
91  * about 20 to 25% faster than SHAKE256). SHAKE internally relies on
92  * the Keccak family of sponge functions, not on any externally provided
93  * hash function. Contrary to HKDF, SHAKE does not have a concept of
94  * either a "salt" or an "info" string. The API consists in four
95  * functions:
96  *
97  *  - `br_shake_init()`: initialize a SHAKE context for a given
98  *    security level.
99  *
100  *  - `br_shake_inject()`: inject more input bytes. This function may be
101  *    called repeatedly if the input data is provided by chunks.
102  *
103  *  - `br_shake_flip()`: end the data injection process, and start the
104  *    data production process.
105  *
106  *  - `br_shake_produce()`: get the next bytes of output. This function
107  *    may be called several times to obtain the full output by chunks.
108  */
109 
110 /**
111  * \brief HKDF context.
112  *
113  * The HKDF context is initialized with a hash function implementation
114  * and a salt value. Contents are opaque (callers should not access them
115  * directly). The caller is responsible for allocating the context where
116  * appropriate. Context initialisation and usage incurs no dynamic
117  * allocation, so there is no release function.
118  */
119 typedef struct {
120 #ifndef BR_DOXYGEN_IGNORE
121 	union {
122 		br_hmac_context hmac_ctx;
123 		br_hmac_key_context prk_ctx;
124 	} u;
125 	unsigned char buf[64];
126 	size_t ptr;
127 	size_t dig_len;
128 	unsigned chunk_num;
129 #endif
130 } br_hkdf_context;
131 
132 /**
133  * \brief HKDF context initialization.
134  *
135  * The underlying hash function and salt value are provided. Arbitrary
136  * salt lengths can be used.
137  *
138  * HKDF makes a difference between a salt of length zero, and an
139  * absent salt (the latter being equivalent to a salt consisting of
140  * bytes of value zero, of the same length as the hash function output).
141  * If `salt_len` is zero, then this function assumes that the salt is
142  * present but of length zero. To specify an _absent_ salt, use
143  * `BR_HKDF_NO_SALT` as `salt` parameter (`salt_len` is then ignored).
144  *
145  * \param hc              HKDF context to initialise.
146  * \param digest_vtable   pointer to the hash function implementation vtable.
147  * \param salt            HKDF-Extract salt.
148  * \param salt_len        HKDF-Extract salt length (in bytes).
149  */
150 void br_hkdf_init(br_hkdf_context *hc, const br_hash_class *digest_vtable,
151 	const void *salt, size_t salt_len);
152 
153 /**
154  * \brief The special "absent salt" value for HKDF.
155  */
156 #define BR_HKDF_NO_SALT   (&br_hkdf_no_salt)
157 
158 #ifndef BR_DOXYGEN_IGNORE
159 extern const unsigned char br_hkdf_no_salt;
160 #endif
161 
162 /**
163  * \brief HKDF input injection (HKDF-Extract).
164  *
165  * This function injects some more input bytes ("key material") into
166  * HKDF. This function may be called several times, after `br_hkdf_init()`
167  * but before `br_hkdf_flip()`.
168  *
169  * \param hc        HKDF context.
170  * \param ikm       extra input bytes.
171  * \param ikm_len   number of extra input bytes.
172  */
173 void br_hkdf_inject(br_hkdf_context *hc, const void *ikm, size_t ikm_len);
174 
175 /**
176  * \brief HKDF switch to the HKDF-Expand phase.
177  *
178  * This call terminates the HKDF-Extract process (input injection), and
179  * starts the HKDF-Expand process (output production).
180  *
181  * \param hc   HKDF context.
182  */
183 void br_hkdf_flip(br_hkdf_context *hc);
184 
185 /**
186  * \brief HKDF output production (HKDF-Expand).
187  *
188  * Produce more output bytes from the current state. This function may be
189  * called several times, but only after `br_hkdf_flip()`.
190  *
191  * Returned value is the number of actually produced bytes. The total
192  * output length is limited to 255 times the output length of the
193  * underlying hash function.
194  *
195  * \param hc         HKDF context.
196  * \param info       application specific information string.
197  * \param info_len   application specific information string length (in bytes).
198  * \param out        destination buffer for the HKDF output.
199  * \param out_len    the length of the requested output (in bytes).
200  * \return  the produced output length (in bytes).
201  */
202 size_t br_hkdf_produce(br_hkdf_context *hc,
203 	const void *info, size_t info_len, void *out, size_t out_len);
204 
205 /**
206  * \brief SHAKE context.
207  *
208  * The HKDF context is initialized with a "security level". The internal
209  * notion is called "capacity"; the capacity is twice the security level
210  * (for instance, SHAKE128 has capacity 256).
211  *
212  * The caller is responsible for allocating the context where
213  * appropriate. Context initialisation and usage incurs no dynamic
214  * allocation, so there is no release function.
215  */
216 typedef struct {
217 #ifndef BR_DOXYGEN_IGNORE
218 	unsigned char dbuf[200];
219 	size_t dptr;
220 	size_t rate;
221 	uint64_t A[25];
222 #endif
223 } br_shake_context;
224 
225 /**
226  * \brief SHAKE context initialization.
227  *
228  * The context is initialized for the provided "security level".
229  * Internally, this sets the "capacity" to twice the security level;
230  * thus, for SHAKE128, the `security_level` parameter should be 128,
231  * which corresponds to a 256-bit capacity.
232  *
233  * Allowed security levels are all multiples of 32, from 32 to 768,
234  * inclusive. Larger security levels imply lower performance; levels
235  * beyond 256 bits don't make much sense. Standard levels are 128
236  * and 256 bits (for SHAKE128 and SHAKE256, respectively).
237  *
238  * \param sc               SHAKE context to initialise.
239  * \param security_level   security level (in bits).
240  */
241 void br_shake_init(br_shake_context *sc, int security_level);
242 
243 /**
244  * \brief SHAKE input injection.
245  *
246  * This function injects some more input bytes ("key material") into
247  * SHAKE. This function may be called several times, after `br_shake_init()`
248  * but before `br_shake_flip()`.
249  *
250  * \param sc     SHAKE context.
251  * \param data   extra input bytes.
252  * \param len    number of extra input bytes.
253  */
254 void br_shake_inject(br_shake_context *sc, const void *data, size_t len);
255 
256 /**
257  * \brief SHAKE switch to production phase.
258  *
259  * This call terminates the input injection process, and starts the
260  * output production process.
261  *
262  * \param sc   SHAKE context.
263  */
264 void br_shake_flip(br_shake_context *hc);
265 
266 /**
267  * \brief SHAKE output production.
268  *
269  * Produce more output bytes from the current state. This function may be
270  * called several times, but only after `br_shake_flip()`.
271  *
272  * There is no practical limit to the number of bytes that may be produced.
273  *
274  * \param sc    SHAKE context.
275  * \param out   destination buffer for the SHAKE output.
276  * \param len   the length of the requested output (in bytes).
277  */
278 void br_shake_produce(br_shake_context *sc, void *out, size_t len);
279 
280 #ifdef __cplusplus
281 }
282 #endif
283 
284 #endif
285