xref: /freebsd/contrib/bearssl/src/config.h (revision 4d846d26)
1 /*
2  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef CONFIG_H__
26 #define CONFIG_H__
27 
28 /*
29  * This file contains compile-time flags that can override the
30  * autodetection performed in relevant files. Each flag is a macro; it
31  * deactivates the feature if defined to 0, activates it if defined to a
32  * non-zero integer (normally 1). If the macro is not defined, then
33  * autodetection applies.
34  */
35 
36 /*
37  * When BR_64 is enabled, 64-bit integer types are assumed to be
38  * efficient (i.e. the architecture has 64-bit registers and can
39  * do 64-bit operations as fast as 32-bit operations).
40  *
41 #define BR_64   1
42  */
43 
44 /*
45  * When BR_LOMUL is enabled, then multiplications of 32-bit values whose
46  * result are truncated to the low 32 bits are assumed to be
47  * substantially more efficient than 32-bit multiplications that yield
48  * 64-bit results. This is typically the case on low-end ARM Cortex M
49  * systems (M0, M0+, M1, and arguably M3 and M4 as well).
50  *
51 #define BR_LOMUL   1
52  */
53 
54 /*
55  * When BR_SLOW_MUL is enabled, multiplications are assumed to be
56  * substantially slow with regards to other integer operations, thus
57  * making it worth to make more operations for a given task if it allows
58  * using less multiplications.
59  *
60 #define BR_SLOW_MUL   1
61  */
62 
63 /*
64  * When BR_SLOW_MUL15 is enabled, short multplications (on 15-bit words)
65  * are assumed to be substantially slow with regards to other integer
66  * operations, thus making it worth to make more integer operations if
67  * it allows using less multiplications.
68  *
69 #define BR_SLOW_MUL15   1
70  */
71 
72 /*
73  * When BR_CT_MUL31 is enabled, multiplications of 31-bit values (used
74  * in the "i31" big integer implementation) use an alternate implementation
75  * which is slower and larger than the normal multiplication, but should
76  * ensure constant-time multiplications even on architectures where the
77  * multiplication opcode takes a variable number of cycles to complete.
78  *
79 #define BR_CT_MUL31   1
80  */
81 
82 /*
83  * When BR_CT_MUL15 is enabled, multiplications of 15-bit values (held
84  * in 32-bit words) use an alternate implementation which is slower and
85  * larger than the normal multiplication, but should ensure
86  * constant-time multiplications on most/all architectures where the
87  * basic multiplication is not constant-time.
88 #define BR_CT_MUL15   1
89  */
90 
91 /*
92  * When BR_NO_ARITH_SHIFT is enabled, arithmetic right shifts (with sign
93  * extension) are performed with a sequence of operations which is bigger
94  * and slower than a simple right shift on a signed value. This avoids
95  * relying on an implementation-defined behaviour. However, most if not
96  * all C compilers use sign extension for right shifts on signed values,
97  * so this alternate macro is disabled by default.
98 #define BR_NO_ARITH_SHIFT   1
99  */
100 
101 /*
102  * When BR_RDRAND is enabled, the SSL engine will use the RDRAND opcode
103  * to automatically obtain quality randomness for seeding its internal
104  * PRNG. Since that opcode is present only in recent x86 CPU, its
105  * support is dynamically tested; if the current CPU does not support
106  * it, then another random source will be used, such as /dev/urandom or
107  * CryptGenRandom().
108  *
109 #define BR_RDRAND   1
110  */
111 
112 /*
113  * When BR_USE_GETENTROPY is enabled, the SSL engine will use the
114  * getentropy() function to obtain quality randomness for seeding its
115  * internal PRNG. On Linux and FreeBSD, getentropy() is implemented by
116  * the standard library with the system call getrandom(); on OpenBSD,
117  * getentropy() is the system call, and there is no getrandom() wrapper,
118  * hence the use of the getentropy() function for maximum portability.
119  *
120  * If the getentropy() call fails, and BR_USE_URANDOM is not explicitly
121  * disabled, then /dev/urandom will be used as a fallback mechanism. On
122  * FreeBSD and OpenBSD, this does not change much, since /dev/urandom
123  * will block if not enough entropy has been obtained since last boot.
124  * On Linux, /dev/urandom might not block, which can be troublesome in
125  * early boot stages, which is why getentropy() is preferred.
126  *
127 #define BR_USE_GETENTROPY   1
128  */
129 
130 /*
131  * When BR_USE_URANDOM is enabled, the SSL engine will use /dev/urandom
132  * to automatically obtain quality randomness for seeding its internal
133  * PRNG.
134  *
135 #define BR_USE_URANDOM   1
136  */
137 
138 /*
139  * When BR_USE_WIN32_RAND is enabled, the SSL engine will use the Win32
140  * (CryptoAPI) functions (CryptAcquireContext(), CryptGenRandom()...) to
141  * automatically obtain quality randomness for seeding its internal PRNG.
142  *
143  * Note: if both BR_USE_URANDOM and BR_USE_WIN32_RAND are defined, the
144  * former takes precedence.
145  *
146 #define BR_USE_WIN32_RAND   1
147  */
148 
149 /*
150  * When BR_USE_UNIX_TIME is enabled, the X.509 validation engine obtains
151  * the current time from the OS by calling time(), and assuming that the
152  * returned value (a 'time_t') is an integer that counts time in seconds
153  * since the Unix Epoch (Jan 1st, 1970, 00:00 UTC).
154  *
155 #define BR_USE_UNIX_TIME   1
156  */
157 
158 /*
159  * When BR_USE_WIN32_TIME is enabled, the X.509 validation engine obtains
160  * the current time from the OS by calling the Win32 function
161  * GetSystemTimeAsFileTime().
162  *
163  * Note: if both BR_USE_UNIX_TIME and BR_USE_WIN32_TIME are defined, the
164  * former takes precedence.
165  *
166 #define BR_USE_WIN32_TIME   1
167  */
168 
169 /*
170  * When BR_ARMEL_CORTEXM_GCC is enabled, some operations are replaced with
171  * inline assembly which is shorter and/or faster. This should be used
172  * only when all of the following are true:
173  *   - target architecture is ARM in Thumb mode
174  *   - target endianness is little-endian
175  *   - compiler is GCC (or GCC-compatible for inline assembly syntax)
176  *
177  * This is meant for the low-end cores (Cortex M0, M0+, M1, M3).
178  * Note: if BR_LOMUL is not explicitly enabled or disabled, then
179  * enabling BR_ARMEL_CORTEXM_GCC also enables BR_LOMUL.
180  *
181 #define BR_ARMEL_CORTEXM_GCC   1
182  */
183 
184 /*
185  * When BR_AES_X86NI is enabled, the AES implementation using the x86 "NI"
186  * instructions (dedicated AES opcodes) will be compiled. If this is not
187  * enabled explicitly, then that AES implementation will be compiled only
188  * if a compatible compiler is detected. If set explicitly to 0, the
189  * implementation will not be compiled at all.
190  *
191 #define BR_AES_X86NI   1
192  */
193 
194 /*
195  * When BR_SSE2 is enabled, SSE2 intrinsics will be used for some
196  * algorithm implementations that use them (e.g. chacha20_sse2). If this
197  * is not enabled explicitly, then support for SSE2 intrinsics will be
198  * automatically detected. If set explicitly to 0, then SSE2 code will
199  * not be compiled at all.
200  *
201 #define BR_SSE2   1
202  */
203 
204 /*
205  * When BR_POWER8 is enabled, the AES implementation using the POWER ISA
206  * 2.07 opcodes (available on POWER8 processors and later) is compiled.
207  * If this is not enabled explicitly, then that implementation will be
208  * compiled only if a compatible compiler is detected, _and_ the target
209  * architecture is POWER8 or later.
210  *
211 #define BR_POWER8   1
212  */
213 
214 /*
215  * When BR_INT128 is enabled, then code using the 'unsigned __int64'
216  * and 'unsigned __int128' types will be used to leverage 64x64->128
217  * unsigned multiplications. This should work with GCC and compatible
218  * compilers on 64-bit architectures.
219  *
220 #define BR_INT128   1
221  */
222 
223 /*
224  * When BR_UMUL128 is enabled, then code using the '_umul128()' and
225  * '_addcarry_u64()' intrinsics will be used to implement 64x64->128
226  * unsigned multiplications. This should work on Visual C on x64 systems.
227  *
228 #define BR_UMUL128   1
229  */
230 
231 /*
232  * When BR_LE_UNALIGNED is enabled, then the current architecture is
233  * assumed to use little-endian encoding for integers, and to tolerate
234  * unaligned accesses with no or minimal time penalty.
235  *
236 #define BR_LE_UNALIGNED   1
237  */
238 
239 /*
240  * When BR_BE_UNALIGNED is enabled, then the current architecture is
241  * assumed to use big-endian encoding for integers, and to tolerate
242  * unaligned accesses with no or minimal time penalty.
243  *
244 #define BR_BE_UNALIGNED   1
245  */
246 
247 #endif
248