xref: /freebsd/contrib/bearssl/src/ec/ec_p256_m64.c (revision 81ad6265)
1 /*
2  * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "inner.h"
26 
27 #if BR_INT128 || BR_UMUL128
28 
29 #if BR_UMUL128
30 #include <intrin.h>
31 #endif
32 
33 static const unsigned char P256_G[] = {
34 	0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
35 	0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
36 	0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
37 	0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
38 	0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
39 	0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
40 	0x68, 0x37, 0xBF, 0x51, 0xF5
41 };
42 
43 static const unsigned char P256_N[] = {
44 	0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
45 	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
46 	0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
47 	0x25, 0x51
48 };
49 
50 static const unsigned char *
51 api_generator(int curve, size_t *len)
52 {
53 	(void)curve;
54 	*len = sizeof P256_G;
55 	return P256_G;
56 }
57 
58 static const unsigned char *
59 api_order(int curve, size_t *len)
60 {
61 	(void)curve;
62 	*len = sizeof P256_N;
63 	return P256_N;
64 }
65 
66 static size_t
67 api_xoff(int curve, size_t *len)
68 {
69 	(void)curve;
70 	*len = 32;
71 	return 1;
72 }
73 
74 /*
75  * A field element is encoded as four 64-bit integers, in basis 2^64.
76  * Values may reach up to 2^256-1. Montgomery multiplication is used.
77  */
78 
79 /* R = 2^256 mod p */
80 static const uint64_t F256_R[] = {
81 	0x0000000000000001, 0xFFFFFFFF00000000,
82 	0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE
83 };
84 
85 /* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
86    (Montgomery representation of B). */
87 static const uint64_t P256_B_MONTY[] = {
88 	0xD89CDF6229C4BDDF, 0xACF005CD78843090,
89 	0xE5A220ABF7212ED6, 0xDC30061D04874834
90 };
91 
92 /*
93  * Addition in the field.
94  */
95 static inline void
96 f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
97 {
98 #if BR_INT128
99 	unsigned __int128 w;
100 	uint64_t t;
101 
102 	/*
103 	 * Do the addition, with an extra carry in t.
104 	 */
105 	w = (unsigned __int128)a[0] + b[0];
106 	d[0] = (uint64_t)w;
107 	w = (unsigned __int128)a[1] + b[1] + (w >> 64);
108 	d[1] = (uint64_t)w;
109 	w = (unsigned __int128)a[2] + b[2] + (w >> 64);
110 	d[2] = (uint64_t)w;
111 	w = (unsigned __int128)a[3] + b[3] + (w >> 64);
112 	d[3] = (uint64_t)w;
113 	t = (uint64_t)(w >> 64);
114 
115 	/*
116 	 * Fold carry t, using: 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p.
117 	 */
118 	w = (unsigned __int128)d[0] + t;
119 	d[0] = (uint64_t)w;
120 	w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
121 	d[1] = (uint64_t)w;
122 	/* Here, carry "w >> 64" can only be 0 or -1 */
123 	w = (unsigned __int128)d[2] - ((w >> 64) & 1);
124 	d[2] = (uint64_t)w;
125 	/* Again, carry is 0 or -1. But there can be carry only if t = 1,
126 	   in which case the addition of (t << 32) - t is positive. */
127 	w = (unsigned __int128)d[3] - ((w >> 64) & 1) + (t << 32) - t;
128 	d[3] = (uint64_t)w;
129 	t = (uint64_t)(w >> 64);
130 
131 	/*
132 	 * There can be an extra carry here, which we must fold again.
133 	 */
134 	w = (unsigned __int128)d[0] + t;
135 	d[0] = (uint64_t)w;
136 	w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
137 	d[1] = (uint64_t)w;
138 	w = (unsigned __int128)d[2] - ((w >> 64) & 1);
139 	d[2] = (uint64_t)w;
140 	d[3] += (t << 32) - t - (uint64_t)((w >> 64) & 1);
141 
142 #elif BR_UMUL128
143 
144 	unsigned char cc;
145 	uint64_t t;
146 
147 	cc = _addcarry_u64(0, a[0], b[0], &d[0]);
148 	cc = _addcarry_u64(cc, a[1], b[1], &d[1]);
149 	cc = _addcarry_u64(cc, a[2], b[2], &d[2]);
150 	cc = _addcarry_u64(cc, a[3], b[3], &d[3]);
151 
152 	/*
153 	 * If there is a carry, then we want to subtract p, which we
154 	 * do by adding 2^256 - p.
155 	 */
156 	t = cc;
157 	cc = _addcarry_u64(cc, d[0], 0, &d[0]);
158 	cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
159 	cc = _addcarry_u64(cc, d[2], -t, &d[2]);
160 	cc = _addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
161 
162 	/*
163 	 * We have to do it again if there still is a carry.
164 	 */
165 	t = cc;
166 	cc = _addcarry_u64(cc, d[0], 0, &d[0]);
167 	cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
168 	cc = _addcarry_u64(cc, d[2], -t, &d[2]);
169 	(void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
170 
171 #endif
172 }
173 
174 /*
175  * Subtraction in the field.
176  */
177 static inline void
178 f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
179 {
180 #if BR_INT128
181 
182 	unsigned __int128 w;
183 	uint64_t t;
184 
185 	w = (unsigned __int128)a[0] - b[0];
186 	d[0] = (uint64_t)w;
187 	w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1);
188 	d[1] = (uint64_t)w;
189 	w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1);
190 	d[2] = (uint64_t)w;
191 	w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1);
192 	d[3] = (uint64_t)w;
193 	t = (uint64_t)(w >> 64) & 1;
194 
195 	/*
196 	 * If there is a borrow (t = 1), then we must add the modulus
197 	 * p = 2^256 - 2^224 + 2^192 + 2^96 - 1.
198 	 */
199 	w = (unsigned __int128)d[0] - t;
200 	d[0] = (uint64_t)w;
201 	w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
202 	d[1] = (uint64_t)w;
203 	/* Here, carry "w >> 64" can only be 0 or +1 */
204 	w = (unsigned __int128)d[2] + (w >> 64);
205 	d[2] = (uint64_t)w;
206 	/* Again, carry is 0 or +1 */
207 	w = (unsigned __int128)d[3] + (w >> 64) - (t << 32) + t;
208 	d[3] = (uint64_t)w;
209 	t = (uint64_t)(w >> 64) & 1;
210 
211 	/*
212 	 * There may be again a borrow, in which case we must add the
213 	 * modulus again.
214 	 */
215 	w = (unsigned __int128)d[0] - t;
216 	d[0] = (uint64_t)w;
217 	w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
218 	d[1] = (uint64_t)w;
219 	w = (unsigned __int128)d[2] + (w >> 64);
220 	d[2] = (uint64_t)w;
221 	d[3] += (uint64_t)(w >> 64) - (t << 32) + t;
222 
223 #elif BR_UMUL128
224 
225 	unsigned char cc;
226 	uint64_t t;
227 
228 	cc = _subborrow_u64(0, a[0], b[0], &d[0]);
229 	cc = _subborrow_u64(cc, a[1], b[1], &d[1]);
230 	cc = _subborrow_u64(cc, a[2], b[2], &d[2]);
231 	cc = _subborrow_u64(cc, a[3], b[3], &d[3]);
232 
233 	/*
234 	 * If there is a borrow, then we need to add p. We (virtually)
235 	 * add 2^256, then subtract 2^256 - p.
236 	 */
237 	t = cc;
238 	cc = _subborrow_u64(0, d[0], t, &d[0]);
239 	cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]);
240 	cc = _subborrow_u64(cc, d[2], -t, &d[2]);
241 	cc = _subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
242 
243 	/*
244 	 * If there still is a borrow, then we need to add p again.
245 	 */
246 	t = cc;
247 	cc = _subborrow_u64(0, d[0], t, &d[0]);
248 	cc = _subborrow_u64(cc, d[1], -(t << 32), &d[1]);
249 	cc = _subborrow_u64(cc, d[2], -t, &d[2]);
250 	(void)_subborrow_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
251 
252 #endif
253 }
254 
255 /*
256  * Montgomery multiplication in the field.
257  */
258 static void
259 f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
260 {
261 #if BR_INT128
262 
263 	uint64_t x, f, t0, t1, t2, t3, t4;
264 	unsigned __int128 z, ff;
265 	int i;
266 
267 	/*
268 	 * When computing d <- d + a[u]*b, we also add f*p such
269 	 * that d + a[u]*b + f*p is a multiple of 2^64. Since
270 	 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
271 	 */
272 
273 	/*
274 	 * Step 1: t <- (a[0]*b + f*p) / 2^64
275 	 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
276 	 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
277 	 *
278 	 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
279 	 */
280 	x = a[0];
281 	z = (unsigned __int128)b[0] * x;
282 	f = (uint64_t)z;
283 	z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32);
284 	t0 = (uint64_t)z;
285 	z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32);
286 	t1 = (uint64_t)z;
287 	z = (unsigned __int128)b[3] * x + (z >> 64) + f;
288 	t2 = (uint64_t)z;
289 	t3 = (uint64_t)(z >> 64);
290 	ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32);
291 	z = (unsigned __int128)t2 + (uint64_t)ff;
292 	t2 = (uint64_t)z;
293 	z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
294 	t3 = (uint64_t)z;
295 	t4 = (uint64_t)(z >> 64);
296 
297 	/*
298 	 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
299 	 */
300 	for (i = 1; i < 4; i ++) {
301 		x = a[i];
302 
303 		/* t <- (t + x*b - f) / 2^64 */
304 		z = (unsigned __int128)b[0] * x + t0;
305 		f = (uint64_t)z;
306 		z = (unsigned __int128)b[1] * x + t1 + (z >> 64);
307 		t0 = (uint64_t)z;
308 		z = (unsigned __int128)b[2] * x + t2 + (z >> 64);
309 		t1 = (uint64_t)z;
310 		z = (unsigned __int128)b[3] * x + t3 + (z >> 64);
311 		t2 = (uint64_t)z;
312 		z = t4 + (z >> 64);
313 		t3 = (uint64_t)z;
314 		t4 = (uint64_t)(z >> 64);
315 
316 		/* t <- t + f*2^32, carry in the upper half of z */
317 		z = (unsigned __int128)t0 + (uint64_t)(f << 32);
318 		t0 = (uint64_t)z;
319 		z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32);
320 		t1 = (uint64_t)z;
321 
322 		/* t <- t + f*2^192 - f*2^160 + f*2^128 */
323 		ff = ((unsigned __int128)f << 64)
324 			- ((unsigned __int128)f << 32) + f;
325 		z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff;
326 		t2 = (uint64_t)z;
327 		z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
328 		t3 = (uint64_t)z;
329 		t4 += (uint64_t)(z >> 64);
330 	}
331 
332 	/*
333 	 * At that point, we have computed t = (a*b + F*p) / 2^256, where
334 	 * F is a 256-bit integer whose limbs are the "f" coefficients
335 	 * in the steps above. We have:
336 	 *   a <= 2^256-1
337 	 *   b <= 2^256-1
338 	 *   F <= 2^256-1
339 	 * Hence:
340 	 *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
341 	 *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
342 	 * Therefore:
343 	 *   t < 2^256 + p - 2
344 	 * Since p < 2^256, it follows that:
345 	 *   t4 can be only 0 or 1
346 	 *   t - p < 2^256
347 	 * We can therefore subtract p from t, conditionally on t4, to
348 	 * get a nonnegative result that fits on 256 bits.
349 	 */
350 	z = (unsigned __int128)t0 + t4;
351 	t0 = (uint64_t)z;
352 	z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64);
353 	t1 = (uint64_t)z;
354 	z = (unsigned __int128)t2 - (z >> 127);
355 	t2 = (uint64_t)z;
356 	t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32);
357 
358 	d[0] = t0;
359 	d[1] = t1;
360 	d[2] = t2;
361 	d[3] = t3;
362 
363 #elif BR_UMUL128
364 
365 	uint64_t x, f, t0, t1, t2, t3, t4;
366 	uint64_t zl, zh, ffl, ffh;
367 	unsigned char k, m;
368 	int i;
369 
370 	/*
371 	 * When computing d <- d + a[u]*b, we also add f*p such
372 	 * that d + a[u]*b + f*p is a multiple of 2^64. Since
373 	 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
374 	 */
375 
376 	/*
377 	 * Step 1: t <- (a[0]*b + f*p) / 2^64
378 	 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
379 	 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
380 	 *
381 	 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
382 	 */
383 	x = a[0];
384 
385 	zl = _umul128(b[0], x, &zh);
386 	f = zl;
387 	t0 = zh;
388 
389 	zl = _umul128(b[1], x, &zh);
390 	k = _addcarry_u64(0, zl, t0, &zl);
391 	(void)_addcarry_u64(k, zh, 0, &zh);
392 	k = _addcarry_u64(0, zl, f << 32, &zl);
393 	(void)_addcarry_u64(k, zh, 0, &zh);
394 	t0 = zl;
395 	t1 = zh;
396 
397 	zl = _umul128(b[2], x, &zh);
398 	k = _addcarry_u64(0, zl, t1, &zl);
399 	(void)_addcarry_u64(k, zh, 0, &zh);
400 	k = _addcarry_u64(0, zl, f >> 32, &zl);
401 	(void)_addcarry_u64(k, zh, 0, &zh);
402 	t1 = zl;
403 	t2 = zh;
404 
405 	zl = _umul128(b[3], x, &zh);
406 	k = _addcarry_u64(0, zl, t2, &zl);
407 	(void)_addcarry_u64(k, zh, 0, &zh);
408 	k = _addcarry_u64(0, zl, f, &zl);
409 	(void)_addcarry_u64(k, zh, 0, &zh);
410 	t2 = zl;
411 	t3 = zh;
412 
413 	t4 = _addcarry_u64(0, t3, f, &t3);
414 	k = _subborrow_u64(0, t2, f << 32, &t2);
415 	k = _subborrow_u64(k, t3, f >> 32, &t3);
416 	(void)_subborrow_u64(k, t4, 0, &t4);
417 
418 	/*
419 	 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
420 	 */
421 	for (i = 1; i < 4; i ++) {
422 		x = a[i];
423 		/* f = t0 + x * b[0]; -- computed below */
424 
425 		/* t <- (t + x*b - f) / 2^64 */
426 		zl = _umul128(b[0], x, &zh);
427 		k = _addcarry_u64(0, zl, t0, &f);
428 		(void)_addcarry_u64(k, zh, 0, &t0);
429 
430 		zl = _umul128(b[1], x, &zh);
431 		k = _addcarry_u64(0, zl, t0, &zl);
432 		(void)_addcarry_u64(k, zh, 0, &zh);
433 		k = _addcarry_u64(0, zl, t1, &t0);
434 		(void)_addcarry_u64(k, zh, 0, &t1);
435 
436 		zl = _umul128(b[2], x, &zh);
437 		k = _addcarry_u64(0, zl, t1, &zl);
438 		(void)_addcarry_u64(k, zh, 0, &zh);
439 		k = _addcarry_u64(0, zl, t2, &t1);
440 		(void)_addcarry_u64(k, zh, 0, &t2);
441 
442 		zl = _umul128(b[3], x, &zh);
443 		k = _addcarry_u64(0, zl, t2, &zl);
444 		(void)_addcarry_u64(k, zh, 0, &zh);
445 		k = _addcarry_u64(0, zl, t3, &t2);
446 		(void)_addcarry_u64(k, zh, 0, &t3);
447 
448 		t4 = _addcarry_u64(0, t3, t4, &t3);
449 
450 		/* t <- t + f*2^32, carry in k */
451 		k = _addcarry_u64(0, t0, f << 32, &t0);
452 		k = _addcarry_u64(k, t1, f >> 32, &t1);
453 
454 		/* t <- t + f*2^192 - f*2^160 + f*2^128 */
455 		m = _subborrow_u64(0, f, f << 32, &ffl);
456 		(void)_subborrow_u64(m, f, f >> 32, &ffh);
457 		k = _addcarry_u64(k, t2, ffl, &t2);
458 		k = _addcarry_u64(k, t3, ffh, &t3);
459 		(void)_addcarry_u64(k, t4, 0, &t4);
460 	}
461 
462 	/*
463 	 * At that point, we have computed t = (a*b + F*p) / 2^256, where
464 	 * F is a 256-bit integer whose limbs are the "f" coefficients
465 	 * in the steps above. We have:
466 	 *   a <= 2^256-1
467 	 *   b <= 2^256-1
468 	 *   F <= 2^256-1
469 	 * Hence:
470 	 *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
471 	 *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
472 	 * Therefore:
473 	 *   t < 2^256 + p - 2
474 	 * Since p < 2^256, it follows that:
475 	 *   t4 can be only 0 or 1
476 	 *   t - p < 2^256
477 	 * We can therefore subtract p from t, conditionally on t4, to
478 	 * get a nonnegative result that fits on 256 bits.
479 	 */
480 	k = _addcarry_u64(0, t0, t4, &t0);
481 	k = _addcarry_u64(k, t1, -(t4 << 32), &t1);
482 	k = _addcarry_u64(k, t2, -t4, &t2);
483 	(void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3);
484 
485 	d[0] = t0;
486 	d[1] = t1;
487 	d[2] = t2;
488 	d[3] = t3;
489 
490 #endif
491 }
492 
493 /*
494  * Montgomery squaring in the field; currently a basic wrapper around
495  * multiplication (inline, should be optimized away).
496  * TODO: see if some extra speed can be gained here.
497  */
498 static inline void
499 f256_montysquare(uint64_t *d, const uint64_t *a)
500 {
501 	f256_montymul(d, a, a);
502 }
503 
504 /*
505  * Convert to Montgomery representation.
506  */
507 static void
508 f256_tomonty(uint64_t *d, const uint64_t *a)
509 {
510 	/*
511 	 * R2 = 2^512 mod p.
512 	 * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery
513 	 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
514 	 * conversion to Montgomery representation.
515 	 */
516 	static const uint64_t R2[] = {
517 		0x0000000000000003,
518 		0xFFFFFFFBFFFFFFFF,
519 		0xFFFFFFFFFFFFFFFE,
520 		0x00000004FFFFFFFD
521 	};
522 
523 	f256_montymul(d, a, R2);
524 }
525 
526 /*
527  * Convert from Montgomery representation.
528  */
529 static void
530 f256_frommonty(uint64_t *d, const uint64_t *a)
531 {
532 	/*
533 	 * Montgomery multiplication by 1 is division by 2^256 modulo p.
534 	 */
535 	static const uint64_t one[] = { 1, 0, 0, 0 };
536 
537 	f256_montymul(d, a, one);
538 }
539 
540 /*
541  * Inversion in the field. If the source value is 0 modulo p, then this
542  * returns 0 or p. This function uses Montgomery representation.
543  */
544 static void
545 f256_invert(uint64_t *d, const uint64_t *a)
546 {
547 	/*
548 	 * We compute a^(p-2) mod p. The exponent pattern (from high to
549 	 * low) is:
550 	 *  - 32 bits of value 1
551 	 *  - 31 bits of value 0
552 	 *  - 1 bit of value 1
553 	 *  - 96 bits of value 0
554 	 *  - 94 bits of value 1
555 	 *  - 1 bit of value 0
556 	 *  - 1 bit of value 1
557 	 * To speed up the square-and-multiply algorithm, we precompute
558 	 * a^(2^31-1).
559 	 */
560 
561 	uint64_t r[4], t[4];
562 	int i;
563 
564 	memcpy(t, a, sizeof t);
565 	for (i = 0; i < 30; i ++) {
566 		f256_montysquare(t, t);
567 		f256_montymul(t, t, a);
568 	}
569 
570 	memcpy(r, t, sizeof t);
571 	for (i = 224; i >= 0; i --) {
572 		f256_montysquare(r, r);
573 		switch (i) {
574 		case 0:
575 		case 2:
576 		case 192:
577 		case 224:
578 			f256_montymul(r, r, a);
579 			break;
580 		case 3:
581 		case 34:
582 		case 65:
583 			f256_montymul(r, r, t);
584 			break;
585 		}
586 	}
587 	memcpy(d, r, sizeof r);
588 }
589 
590 /*
591  * Finalize reduction.
592  * Input value fits on 256 bits. This function subtracts p if and only
593  * if the input is greater than or equal to p.
594  */
595 static inline void
596 f256_final_reduce(uint64_t *a)
597 {
598 #if BR_INT128
599 
600 	uint64_t t0, t1, t2, t3, cc;
601 	unsigned __int128 z;
602 
603 	/*
604 	 * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry,
605 	 * then a < p; otherwise, the addition result we computed is
606 	 * the value we must return.
607 	 */
608 	z = (unsigned __int128)a[0] + 1;
609 	t0 = (uint64_t)z;
610 	z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32);
611 	t1 = (uint64_t)z;
612 	z = (unsigned __int128)a[2] - (z >> 127);
613 	t2 = (uint64_t)z;
614 	z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF;
615 	t3 = (uint64_t)z;
616 	cc = -(uint64_t)(z >> 64);
617 
618 	a[0] ^= cc & (a[0] ^ t0);
619 	a[1] ^= cc & (a[1] ^ t1);
620 	a[2] ^= cc & (a[2] ^ t2);
621 	a[3] ^= cc & (a[3] ^ t3);
622 
623 #elif BR_UMUL128
624 
625 	uint64_t t0, t1, t2, t3, m;
626 	unsigned char k;
627 
628 	k = _addcarry_u64(0, a[0], (uint64_t)1, &t0);
629 	k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1);
630 	k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2);
631 	k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3);
632 	m = -(uint64_t)k;
633 
634 	a[0] ^= m & (a[0] ^ t0);
635 	a[1] ^= m & (a[1] ^ t1);
636 	a[2] ^= m & (a[2] ^ t2);
637 	a[3] ^= m & (a[3] ^ t3);
638 
639 #endif
640 }
641 
642 /*
643  * Points in affine and Jacobian coordinates.
644  *
645  *  - In affine coordinates, the point-at-infinity cannot be encoded.
646  *  - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
647  *    if Z = 0 then this is the point-at-infinity.
648  */
649 typedef struct {
650 	uint64_t x[4];
651 	uint64_t y[4];
652 } p256_affine;
653 
654 typedef struct {
655 	uint64_t x[4];
656 	uint64_t y[4];
657 	uint64_t z[4];
658 } p256_jacobian;
659 
660 /*
661  * Decode a point. The returned point is in Jacobian coordinates, but
662  * with z = 1. If the encoding is invalid, or encodes a point which is
663  * not on the curve, or encodes the point at infinity, then this function
664  * returns 0. Otherwise, 1 is returned.
665  *
666  * The buffer is assumed to have length exactly 65 bytes.
667  */
668 static uint32_t
669 point_decode(p256_jacobian *P, const unsigned char *buf)
670 {
671 	uint64_t x[4], y[4], t[4], x3[4], tt;
672 	uint32_t r;
673 
674 	/*
675 	 * Header byte shall be 0x04.
676 	 */
677 	r = EQ(buf[0], 0x04);
678 
679 	/*
680 	 * Decode X and Y coordinates, and convert them into
681 	 * Montgomery representation.
682 	 */
683 	x[3] = br_dec64be(buf +  1);
684 	x[2] = br_dec64be(buf +  9);
685 	x[1] = br_dec64be(buf + 17);
686 	x[0] = br_dec64be(buf + 25);
687 	y[3] = br_dec64be(buf + 33);
688 	y[2] = br_dec64be(buf + 41);
689 	y[1] = br_dec64be(buf + 49);
690 	y[0] = br_dec64be(buf + 57);
691 	f256_tomonty(x, x);
692 	f256_tomonty(y, y);
693 
694 	/*
695 	 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
696 	 * Note that the Montgomery representation of 0 is 0. We must
697 	 * take care to apply the final reduction to make sure we have
698 	 * 0 and not p.
699 	 */
700 	f256_montysquare(t, y);
701 	f256_montysquare(x3, x);
702 	f256_montymul(x3, x3, x);
703 	f256_sub(t, t, x3);
704 	f256_add(t, t, x);
705 	f256_add(t, t, x);
706 	f256_add(t, t, x);
707 	f256_sub(t, t, P256_B_MONTY);
708 	f256_final_reduce(t);
709 	tt = t[0] | t[1] | t[2] | t[3];
710 	r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
711 
712 	/*
713 	 * Return the point in Jacobian coordinates (and Montgomery
714 	 * representation).
715 	 */
716 	memcpy(P->x, x, sizeof x);
717 	memcpy(P->y, y, sizeof y);
718 	memcpy(P->z, F256_R, sizeof F256_R);
719 	return r;
720 }
721 
722 /*
723  * Final conversion for a point:
724  *  - The point is converted back to affine coordinates.
725  *  - Final reduction is performed.
726  *  - The point is encoded into the provided buffer.
727  *
728  * If the point is the point-at-infinity, all operations are performed,
729  * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
730  * the encoded point is written in the buffer, and 1 is returned.
731  */
732 static uint32_t
733 point_encode(unsigned char *buf, const p256_jacobian *P)
734 {
735 	uint64_t t1[4], t2[4], z;
736 
737 	/* Set t1 = 1/z^2 and t2 = 1/z^3. */
738 	f256_invert(t2, P->z);
739 	f256_montysquare(t1, t2);
740 	f256_montymul(t2, t2, t1);
741 
742 	/* Compute affine coordinates x (in t1) and y (in t2). */
743 	f256_montymul(t1, P->x, t1);
744 	f256_montymul(t2, P->y, t2);
745 
746 	/* Convert back from Montgomery representation, and finalize
747 	   reductions. */
748 	f256_frommonty(t1, t1);
749 	f256_frommonty(t2, t2);
750 	f256_final_reduce(t1);
751 	f256_final_reduce(t2);
752 
753 	/* Encode. */
754 	buf[0] = 0x04;
755 	br_enc64be(buf +  1, t1[3]);
756 	br_enc64be(buf +  9, t1[2]);
757 	br_enc64be(buf + 17, t1[1]);
758 	br_enc64be(buf + 25, t1[0]);
759 	br_enc64be(buf + 33, t2[3]);
760 	br_enc64be(buf + 41, t2[2]);
761 	br_enc64be(buf + 49, t2[1]);
762 	br_enc64be(buf + 57, t2[0]);
763 
764 	/* Return success if and only if P->z != 0. */
765 	z = P->z[0] | P->z[1] | P->z[2] | P->z[3];
766 	return NEQ((uint32_t)(z | z >> 32), 0);
767 }
768 
769 /*
770  * Point doubling in Jacobian coordinates: point P is doubled.
771  * Note: if the source point is the point-at-infinity, then the result is
772  * still the point-at-infinity, which is correct. Moreover, if the three
773  * coordinates were zero, then they still are zero in the returned value.
774  *
775  * (Note: this is true even without the final reduction: if the three
776  * coordinates are encoded as four words of value zero each, then the
777  * result will also have all-zero coordinate encodings, not the alternate
778  * encoding as the integer p.)
779  */
780 static void
781 p256_double(p256_jacobian *P)
782 {
783 	/*
784 	 * Doubling formulas are:
785 	 *
786 	 *   s = 4*x*y^2
787 	 *   m = 3*(x + z^2)*(x - z^2)
788 	 *   x' = m^2 - 2*s
789 	 *   y' = m*(s - x') - 8*y^4
790 	 *   z' = 2*y*z
791 	 *
792 	 * These formulas work for all points, including points of order 2
793 	 * and points at infinity:
794 	 *   - If y = 0 then z' = 0. But there is no such point in P-256
795 	 *     anyway.
796 	 *   - If z = 0 then z' = 0.
797 	 */
798 	uint64_t t1[4], t2[4], t3[4], t4[4];
799 
800 	/*
801 	 * Compute z^2 in t1.
802 	 */
803 	f256_montysquare(t1, P->z);
804 
805 	/*
806 	 * Compute x-z^2 in t2 and x+z^2 in t1.
807 	 */
808 	f256_add(t2, P->x, t1);
809 	f256_sub(t1, P->x, t1);
810 
811 	/*
812 	 * Compute 3*(x+z^2)*(x-z^2) in t1.
813 	 */
814 	f256_montymul(t3, t1, t2);
815 	f256_add(t1, t3, t3);
816 	f256_add(t1, t3, t1);
817 
818 	/*
819 	 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
820 	 */
821 	f256_montysquare(t3, P->y);
822 	f256_add(t3, t3, t3);
823 	f256_montymul(t2, P->x, t3);
824 	f256_add(t2, t2, t2);
825 
826 	/*
827 	 * Compute x' = m^2 - 2*s.
828 	 */
829 	f256_montysquare(P->x, t1);
830 	f256_sub(P->x, P->x, t2);
831 	f256_sub(P->x, P->x, t2);
832 
833 	/*
834 	 * Compute z' = 2*y*z.
835 	 */
836 	f256_montymul(t4, P->y, P->z);
837 	f256_add(P->z, t4, t4);
838 
839 	/*
840 	 * Compute y' = m*(s - x') - 8*y^4. Note that we already have
841 	 * 2*y^2 in t3.
842 	 */
843 	f256_sub(t2, t2, P->x);
844 	f256_montymul(P->y, t1, t2);
845 	f256_montysquare(t4, t3);
846 	f256_add(t4, t4, t4);
847 	f256_sub(P->y, P->y, t4);
848 }
849 
850 /*
851  * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
852  * This function computes the wrong result in the following cases:
853  *
854  *   - If P1 == 0 but P2 != 0
855  *   - If P1 != 0 but P2 == 0
856  *   - If P1 == P2
857  *
858  * In all three cases, P1 is set to the point at infinity.
859  *
860  * Returned value is 0 if one of the following occurs:
861  *
862  *   - P1 and P2 have the same Y coordinate.
863  *   - P1 == 0 and P2 == 0.
864  *   - The Y coordinate of one of the points is 0 and the other point is
865  *     the point at infinity.
866  *
867  * The third case cannot actually happen with valid points, since a point
868  * with Y == 0 is a point of order 2, and there is no point of order 2 on
869  * curve P-256.
870  *
871  * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
872  * can apply the following:
873  *
874  *   - If the result is not the point at infinity, then it is correct.
875  *   - Otherwise, if the returned value is 1, then this is a case of
876  *     P1+P2 == 0, so the result is indeed the point at infinity.
877  *   - Otherwise, P1 == P2, so a "double" operation should have been
878  *     performed.
879  *
880  * Note that you can get a returned value of 0 with a correct result,
881  * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
882  */
883 static uint32_t
884 p256_add(p256_jacobian *P1, const p256_jacobian *P2)
885 {
886 	/*
887 	 * Addtions formulas are:
888 	 *
889 	 *   u1 = x1 * z2^2
890 	 *   u2 = x2 * z1^2
891 	 *   s1 = y1 * z2^3
892 	 *   s2 = y2 * z1^3
893 	 *   h = u2 - u1
894 	 *   r = s2 - s1
895 	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
896 	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
897 	 *   z3 = h * z1 * z2
898 	 */
899 	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
900 	uint32_t ret;
901 
902 	/*
903 	 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
904 	 */
905 	f256_montysquare(t3, P2->z);
906 	f256_montymul(t1, P1->x, t3);
907 	f256_montymul(t4, P2->z, t3);
908 	f256_montymul(t3, P1->y, t4);
909 
910 	/*
911 	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
912 	 */
913 	f256_montysquare(t4, P1->z);
914 	f256_montymul(t2, P2->x, t4);
915 	f256_montymul(t5, P1->z, t4);
916 	f256_montymul(t4, P2->y, t5);
917 
918 	/*
919 	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
920 	 * We need to test whether r is zero, so we will do some extra
921 	 * reduce.
922 	 */
923 	f256_sub(t2, t2, t1);
924 	f256_sub(t4, t4, t3);
925 	f256_final_reduce(t4);
926 	tt = t4[0] | t4[1] | t4[2] | t4[3];
927 	ret = (uint32_t)(tt | (tt >> 32));
928 	ret = (ret | -ret) >> 31;
929 
930 	/*
931 	 * Compute u1*h^2 (in t6) and h^3 (in t5);
932 	 */
933 	f256_montysquare(t7, t2);
934 	f256_montymul(t6, t1, t7);
935 	f256_montymul(t5, t7, t2);
936 
937 	/*
938 	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
939 	 */
940 	f256_montysquare(P1->x, t4);
941 	f256_sub(P1->x, P1->x, t5);
942 	f256_sub(P1->x, P1->x, t6);
943 	f256_sub(P1->x, P1->x, t6);
944 
945 	/*
946 	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
947 	 */
948 	f256_sub(t6, t6, P1->x);
949 	f256_montymul(P1->y, t4, t6);
950 	f256_montymul(t1, t5, t3);
951 	f256_sub(P1->y, P1->y, t1);
952 
953 	/*
954 	 * Compute z3 = h*z1*z2.
955 	 */
956 	f256_montymul(t1, P1->z, P2->z);
957 	f256_montymul(P1->z, t1, t2);
958 
959 	return ret;
960 }
961 
962 /*
963  * Point addition (mixed coordinates): P1 is replaced with P1+P2.
964  * This is a specialised function for the case when P2 is a non-zero point
965  * in affine coordinates.
966  *
967  * This function computes the wrong result in the following cases:
968  *
969  *   - If P1 == 0
970  *   - If P1 == P2
971  *
972  * In both cases, P1 is set to the point at infinity.
973  *
974  * Returned value is 0 if one of the following occurs:
975  *
976  *   - P1 and P2 have the same Y (affine) coordinate.
977  *   - The Y coordinate of P2 is 0 and P1 is the point at infinity.
978  *
979  * The second case cannot actually happen with valid points, since a point
980  * with Y == 0 is a point of order 2, and there is no point of order 2 on
981  * curve P-256.
982  *
983  * Therefore, assuming that P1 != 0 on input, then the caller
984  * can apply the following:
985  *
986  *   - If the result is not the point at infinity, then it is correct.
987  *   - Otherwise, if the returned value is 1, then this is a case of
988  *     P1+P2 == 0, so the result is indeed the point at infinity.
989  *   - Otherwise, P1 == P2, so a "double" operation should have been
990  *     performed.
991  *
992  * Again, a value of 0 may be returned in some cases where the addition
993  * result is correct.
994  */
995 static uint32_t
996 p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
997 {
998 	/*
999 	 * Addtions formulas are:
1000 	 *
1001 	 *   u1 = x1
1002 	 *   u2 = x2 * z1^2
1003 	 *   s1 = y1
1004 	 *   s2 = y2 * z1^3
1005 	 *   h = u2 - u1
1006 	 *   r = s2 - s1
1007 	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
1008 	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
1009 	 *   z3 = h * z1
1010 	 */
1011 	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
1012 	uint32_t ret;
1013 
1014 	/*
1015 	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1016 	 */
1017 	memcpy(t1, P1->x, sizeof t1);
1018 	memcpy(t3, P1->y, sizeof t3);
1019 
1020 	/*
1021 	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1022 	 */
1023 	f256_montysquare(t4, P1->z);
1024 	f256_montymul(t2, P2->x, t4);
1025 	f256_montymul(t5, P1->z, t4);
1026 	f256_montymul(t4, P2->y, t5);
1027 
1028 	/*
1029 	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1030 	 * We need to test whether r is zero, so we will do some extra
1031 	 * reduce.
1032 	 */
1033 	f256_sub(t2, t2, t1);
1034 	f256_sub(t4, t4, t3);
1035 	f256_final_reduce(t4);
1036 	tt = t4[0] | t4[1] | t4[2] | t4[3];
1037 	ret = (uint32_t)(tt | (tt >> 32));
1038 	ret = (ret | -ret) >> 31;
1039 
1040 	/*
1041 	 * Compute u1*h^2 (in t6) and h^3 (in t5);
1042 	 */
1043 	f256_montysquare(t7, t2);
1044 	f256_montymul(t6, t1, t7);
1045 	f256_montymul(t5, t7, t2);
1046 
1047 	/*
1048 	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
1049 	 */
1050 	f256_montysquare(P1->x, t4);
1051 	f256_sub(P1->x, P1->x, t5);
1052 	f256_sub(P1->x, P1->x, t6);
1053 	f256_sub(P1->x, P1->x, t6);
1054 
1055 	/*
1056 	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1057 	 */
1058 	f256_sub(t6, t6, P1->x);
1059 	f256_montymul(P1->y, t4, t6);
1060 	f256_montymul(t1, t5, t3);
1061 	f256_sub(P1->y, P1->y, t1);
1062 
1063 	/*
1064 	 * Compute z3 = h*z1*z2.
1065 	 */
1066 	f256_montymul(P1->z, P1->z, t2);
1067 
1068 	return ret;
1069 }
1070 
1071 #if 0
1072 /* unused */
1073 /*
1074  * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
1075  * This is a specialised function for the case when P2 is a non-zero point
1076  * in affine coordinates.
1077  *
1078  * This function returns the correct result in all cases.
1079  */
1080 static uint32_t
1081 p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
1082 {
1083 	/*
1084 	 * Addtions formulas, in the general case, are:
1085 	 *
1086 	 *   u1 = x1
1087 	 *   u2 = x2 * z1^2
1088 	 *   s1 = y1
1089 	 *   s2 = y2 * z1^3
1090 	 *   h = u2 - u1
1091 	 *   r = s2 - s1
1092 	 *   x3 = r^2 - h^3 - 2 * u1 * h^2
1093 	 *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
1094 	 *   z3 = h * z1
1095 	 *
1096 	 * These formulas mishandle the two following cases:
1097 	 *
1098 	 *  - If P1 is the point-at-infinity (z1 = 0), then z3 is
1099 	 *    incorrectly set to 0.
1100 	 *
1101 	 *  - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
1102 	 *    are all set to 0.
1103 	 *
1104 	 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
1105 	 * we correctly get z3 = 0 (the point-at-infinity).
1106 	 *
1107 	 * To fix the case P1 = 0, we perform at the end a copy of P2
1108 	 * over P1, conditional to z1 = 0.
1109 	 *
1110 	 * For P1 = P2: in that case, both h and r are set to 0, and
1111 	 * we get x3, y3 and z3 equal to 0. We can test for that
1112 	 * occurrence to make a mask which will be all-one if P1 = P2,
1113 	 * or all-zero otherwise; then we can compute the double of P2
1114 	 * and add it, combined with the mask, to (x3,y3,z3).
1115 	 *
1116 	 * Using the doubling formulas in p256_double() on (x2,y2),
1117 	 * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
1118 	 * we get:
1119 	 *   s = 4*x2*y2^2
1120 	 *   m = 3*(x2 + 1)*(x2 - 1)
1121 	 *   x' = m^2 - 2*s
1122 	 *   y' = m*(s - x') - 8*y2^4
1123 	 *   z' = 2*y2
1124 	 * which requires only 6 multiplications. Added to the 11
1125 	 * multiplications of the normal mixed addition in Jacobian
1126 	 * coordinates, we get a cost of 17 multiplications in total.
1127 	 */
1128 	uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz;
1129 	int i;
1130 
1131 	/*
1132 	 * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
1133 	 */
1134 	zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3];
1135 	zz = ((zz | -zz) >> 63) - (uint64_t)1;
1136 
1137 	/*
1138 	 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1139 	 */
1140 	memcpy(t1, P1->x, sizeof t1);
1141 	memcpy(t3, P1->y, sizeof t3);
1142 
1143 	/*
1144 	 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1145 	 */
1146 	f256_montysquare(t4, P1->z);
1147 	f256_montymul(t2, P2->x, t4);
1148 	f256_montymul(t5, P1->z, t4);
1149 	f256_montymul(t4, P2->y, t5);
1150 
1151 	/*
1152 	 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1153 	 * reduce.
1154 	 */
1155 	f256_sub(t2, t2, t1);
1156 	f256_sub(t4, t4, t3);
1157 
1158 	/*
1159 	 * If both h = 0 and r = 0, then P1 = P2, and we want to set
1160 	 * the mask tt to -1; otherwise, the mask will be 0.
1161 	 */
1162 	f256_final_reduce(t2);
1163 	f256_final_reduce(t4);
1164 	tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3];
1165 	tt = ((tt | -tt) >> 63) - (uint64_t)1;
1166 
1167 	/*
1168 	 * Compute u1*h^2 (in t6) and h^3 (in t5);
1169 	 */
1170 	f256_montysquare(t7, t2);
1171 	f256_montymul(t6, t1, t7);
1172 	f256_montymul(t5, t7, t2);
1173 
1174 	/*
1175 	 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
1176 	 */
1177 	f256_montysquare(P1->x, t4);
1178 	f256_sub(P1->x, P1->x, t5);
1179 	f256_sub(P1->x, P1->x, t6);
1180 	f256_sub(P1->x, P1->x, t6);
1181 
1182 	/*
1183 	 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1184 	 */
1185 	f256_sub(t6, t6, P1->x);
1186 	f256_montymul(P1->y, t4, t6);
1187 	f256_montymul(t1, t5, t3);
1188 	f256_sub(P1->y, P1->y, t1);
1189 
1190 	/*
1191 	 * Compute z3 = h*z1.
1192 	 */
1193 	f256_montymul(P1->z, P1->z, t2);
1194 
1195 	/*
1196 	 * The "double" result, in case P1 = P2.
1197 	 */
1198 
1199 	/*
1200 	 * Compute z' = 2*y2 (in t1).
1201 	 */
1202 	f256_add(t1, P2->y, P2->y);
1203 
1204 	/*
1205 	 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
1206 	 */
1207 	f256_montysquare(t2, P2->y);
1208 	f256_add(t2, t2, t2);
1209 	f256_add(t3, t2, t2);
1210 	f256_montymul(t3, P2->x, t3);
1211 
1212 	/*
1213 	 * Compute m = 3*(x2^2 - 1) (in t4).
1214 	 */
1215 	f256_montysquare(t4, P2->x);
1216 	f256_sub(t4, t4, F256_R);
1217 	f256_add(t5, t4, t4);
1218 	f256_add(t4, t4, t5);
1219 
1220 	/*
1221 	 * Compute x' = m^2 - 2*s (in t5).
1222 	 */
1223 	f256_montysquare(t5, t4);
1224 	f256_sub(t5, t3);
1225 	f256_sub(t5, t3);
1226 
1227 	/*
1228 	 * Compute y' = m*(s - x') - 8*y2^4 (in t6).
1229 	 */
1230 	f256_sub(t6, t3, t5);
1231 	f256_montymul(t6, t6, t4);
1232 	f256_montysquare(t7, t2);
1233 	f256_sub(t6, t6, t7);
1234 	f256_sub(t6, t6, t7);
1235 
1236 	/*
1237 	 * We now have the alternate (doubling) coordinates in (t5,t6,t1).
1238 	 * We combine them with (x3,y3,z3).
1239 	 */
1240 	for (i = 0; i < 4; i ++) {
1241 		P1->x[i] |= tt & t5[i];
1242 		P1->y[i] |= tt & t6[i];
1243 		P1->z[i] |= tt & t1[i];
1244 	}
1245 
1246 	/*
1247 	 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
1248 	 * then we want to replace the result with a copy of P2. The
1249 	 * test on z1 was done at the start, in the zz mask.
1250 	 */
1251 	for (i = 0; i < 4; i ++) {
1252 		P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
1253 		P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
1254 		P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
1255 	}
1256 }
1257 #endif
1258 
1259 /*
1260  * Inner function for computing a point multiplication. A window is
1261  * provided, with points 1*P to 15*P in affine coordinates.
1262  *
1263  * Assumptions:
1264  *  - All provided points are valid points on the curve.
1265  *  - Multiplier is non-zero, and smaller than the curve order.
1266  *  - Everything is in Montgomery representation.
1267  */
1268 static void
1269 point_mul_inner(p256_jacobian *R, const p256_affine *W,
1270 	const unsigned char *k, size_t klen)
1271 {
1272 	p256_jacobian Q;
1273 	uint32_t qz;
1274 
1275 	memset(&Q, 0, sizeof Q);
1276 	qz = 1;
1277 	while (klen -- > 0) {
1278 		int i;
1279 		unsigned bk;
1280 
1281 		bk = *k ++;
1282 		for (i = 0; i < 2; i ++) {
1283 			uint32_t bits;
1284 			uint32_t bnz;
1285 			p256_affine T;
1286 			p256_jacobian U;
1287 			uint32_t n;
1288 			int j;
1289 			uint64_t m;
1290 
1291 			p256_double(&Q);
1292 			p256_double(&Q);
1293 			p256_double(&Q);
1294 			p256_double(&Q);
1295 			bits = (bk >> 4) & 0x0F;
1296 			bnz = NEQ(bits, 0);
1297 
1298 			/*
1299 			 * Lookup point in window. If the bits are 0,
1300 			 * we get something invalid, which is not a
1301 			 * problem because we will use it only if the
1302 			 * bits are non-zero.
1303 			 */
1304 			memset(&T, 0, sizeof T);
1305 			for (n = 0; n < 15; n ++) {
1306 				m = -(uint64_t)EQ(bits, n + 1);
1307 				T.x[0] |= m & W[n].x[0];
1308 				T.x[1] |= m & W[n].x[1];
1309 				T.x[2] |= m & W[n].x[2];
1310 				T.x[3] |= m & W[n].x[3];
1311 				T.y[0] |= m & W[n].y[0];
1312 				T.y[1] |= m & W[n].y[1];
1313 				T.y[2] |= m & W[n].y[2];
1314 				T.y[3] |= m & W[n].y[3];
1315 			}
1316 
1317 			U = Q;
1318 			p256_add_mixed(&U, &T);
1319 
1320 			/*
1321 			 * If qz is still 1, then Q was all-zeros, and this
1322 			 * is conserved through p256_double().
1323 			 */
1324 			m = -(uint64_t)(bnz & qz);
1325 			for (j = 0; j < 4; j ++) {
1326 				Q.x[j] |= m & T.x[j];
1327 				Q.y[j] |= m & T.y[j];
1328 				Q.z[j] |= m & F256_R[j];
1329 			}
1330 			CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1331 			qz &= ~bnz;
1332 			bk <<= 4;
1333 		}
1334 	}
1335 	*R = Q;
1336 }
1337 
1338 /*
1339  * Convert a window from Jacobian to affine coordinates. A single
1340  * field inversion is used. This function works for windows up to
1341  * 32 elements.
1342  *
1343  * The destination array (aff[]) and the source array (jac[]) may
1344  * overlap, provided that the start of aff[] is not after the start of
1345  * jac[]. Even if the arrays do _not_ overlap, the source array is
1346  * modified.
1347  */
1348 static void
1349 window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
1350 {
1351 	/*
1352 	 * Convert the window points to affine coordinates. We use the
1353 	 * following trick to mutualize the inversion computation: if
1354 	 * we have z1, z2, z3, and z4, and want to inverse all of them,
1355 	 * we compute u = 1/(z1*z2*z3*z4), and then we have:
1356 	 *   1/z1 = u*z2*z3*z4
1357 	 *   1/z2 = u*z1*z3*z4
1358 	 *   1/z3 = u*z1*z2*z4
1359 	 *   1/z4 = u*z1*z2*z3
1360 	 *
1361 	 * The partial products are computed recursively:
1362 	 *
1363 	 *  - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
1364 	 *  - on input (z_1,z_2,... z_n):
1365 	 *       recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
1366 	 *       recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
1367 	 *       multiply elements of r1 by m2 -> s1
1368 	 *       multiply elements of r2 by m1 -> s2
1369 	 *       return r1||r2 and m1*m2
1370 	 *
1371 	 * In the example below, we suppose that we have 14 elements.
1372 	 * Let z1, z2,... zE be the 14 values to invert (index noted in
1373 	 * hexadecimal, starting at 1).
1374 	 *
1375 	 *  - Depth 1:
1376 	 *      swap(z1, z2); z12 = z1*z2
1377 	 *      swap(z3, z4); z34 = z3*z4
1378 	 *      swap(z5, z6); z56 = z5*z6
1379 	 *      swap(z7, z8); z78 = z7*z8
1380 	 *      swap(z9, zA); z9A = z9*zA
1381 	 *      swap(zB, zC); zBC = zB*zC
1382 	 *      swap(zD, zE); zDE = zD*zE
1383 	 *
1384 	 *  - Depth 2:
1385 	 *      z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
1386 	 *      z1234 = z12*z34
1387 	 *      z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
1388 	 *      z5678 = z56*z78
1389 	 *      z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
1390 	 *      z9ABC = z9A*zBC
1391 	 *
1392 	 *  - Depth 3:
1393 	 *      z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
1394 	 *      z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
1395 	 *      z12345678 = z1234*z5678
1396 	 *      z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
1397 	 *      zD <- zD*z9ABC, zE*z9ABC
1398 	 *      z9ABCDE = z9ABC*zDE
1399 	 *
1400 	 *  - Depth 4:
1401 	 *      multiply z1..z8 by z9ABCDE
1402 	 *      multiply z9..zE by z12345678
1403 	 *      final z = z12345678*z9ABCDE
1404 	 */
1405 
1406 	uint64_t z[16][4];
1407 	int i, k, s;
1408 #define zt   (z[15])
1409 #define zu   (z[14])
1410 #define zv   (z[13])
1411 
1412 	/*
1413 	 * First recursion step (pairwise swapping and multiplication).
1414 	 * If there is an odd number of elements, then we "invent" an
1415 	 * extra one with coordinate Z = 1 (in Montgomery representation).
1416 	 */
1417 	for (i = 0; (i + 1) < num; i += 2) {
1418 		memcpy(zt, jac[i].z, sizeof zt);
1419 		memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
1420 		memcpy(jac[i + 1].z, zt, sizeof zt);
1421 		f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
1422 	}
1423 	if ((num & 1) != 0) {
1424 		memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
1425 		memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
1426 	}
1427 
1428 	/*
1429 	 * Perform further recursion steps. At the entry of each step,
1430 	 * the process has been done for groups of 's' points. The
1431 	 * integer k is the log2 of s.
1432 	 */
1433 	for (k = 1, s = 2; s < num; k ++, s <<= 1) {
1434 		int n;
1435 
1436 		for (i = 0; i < num; i ++) {
1437 			f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
1438 		}
1439 		n = (num + s - 1) >> k;
1440 		for (i = 0; i < (n >> 1); i ++) {
1441 			f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
1442 		}
1443 		if ((n & 1) != 0) {
1444 			memmove(z[n >> 1], z[n], sizeof zt);
1445 		}
1446 	}
1447 
1448 	/*
1449 	 * Invert the final result, and convert all points.
1450 	 */
1451 	f256_invert(zt, z[0]);
1452 	for (i = 0; i < num; i ++) {
1453 		f256_montymul(zv, jac[i].z, zt);
1454 		f256_montysquare(zu, zv);
1455 		f256_montymul(zv, zv, zu);
1456 		f256_montymul(aff[i].x, jac[i].x, zu);
1457 		f256_montymul(aff[i].y, jac[i].y, zv);
1458 	}
1459 }
1460 
1461 /*
1462  * Multiply the provided point by an integer.
1463  * Assumptions:
1464  *  - Source point is a valid curve point.
1465  *  - Source point is not the point-at-infinity.
1466  *  - Integer is not 0, and is lower than the curve order.
1467  * If these conditions are not met, then the result is indeterminate
1468  * (but the process is still constant-time).
1469  */
1470 static void
1471 p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
1472 {
1473 	union {
1474 		p256_affine aff[15];
1475 		p256_jacobian jac[15];
1476 	} window;
1477 	int i;
1478 
1479 	/*
1480 	 * Compute window, in Jacobian coordinates.
1481 	 */
1482 	window.jac[0] = *P;
1483 	for (i = 2; i < 16; i ++) {
1484 		window.jac[i - 1] = window.jac[(i >> 1) - 1];
1485 		if ((i & 1) == 0) {
1486 			p256_double(&window.jac[i - 1]);
1487 		} else {
1488 			p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
1489 		}
1490 	}
1491 
1492 	/*
1493 	 * Convert the window points to affine coordinates. Point
1494 	 * window[0] is the source point, already in affine coordinates.
1495 	 */
1496 	window_to_affine(window.aff, window.jac, 15);
1497 
1498 	/*
1499 	 * Perform point multiplication.
1500 	 */
1501 	point_mul_inner(P, window.aff, k, klen);
1502 }
1503 
1504 /*
1505  * Precomputed window for the conventional generator: P256_Gwin[n]
1506  * contains (n+1)*G (affine coordinates, in Montgomery representation).
1507  */
1508 static const p256_affine P256_Gwin[] = {
1509 	{
1510 		{ 0x79E730D418A9143C, 0x75BA95FC5FEDB601,
1511 		  0x79FB732B77622510, 0x18905F76A53755C6 },
1512 		{ 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C,
1513 		  0xD2E88688DD21F325, 0x8571FF1825885D85 }
1514 	},
1515 	{
1516 		{ 0x850046D410DDD64D, 0xAA6AE3C1A433827D,
1517 		  0x732205038D1490D9, 0xF6BB32E43DCF3A3B },
1518 		{ 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8,
1519 		  0x19A8FB0E92042DBE, 0x78C577510A5B8A3B }
1520 	},
1521 	{
1522 		{ 0xFFAC3F904EEBC127, 0xB027F84A087D81FB,
1523 		  0x66AD77DD87CBBC98, 0x26936A3FB6FF747E },
1524 		{ 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A,
1525 		  0x788208311A2EE98E, 0xD5F06A29E587CC07 }
1526 	},
1527 	{
1528 		{ 0x74B0B50D46918DCC, 0x4650A6EDC623C173,
1529 		  0x0CDAACACE8100AF2, 0x577362F541B0176B },
1530 		{ 0x2D96F24CE4CBABA6, 0x17628471FAD6F447,
1531 		  0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 }
1532 	},
1533 	{
1534 		{ 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D,
1535 		  0x941CB5AAD076C20C, 0xC9079605890523C8 },
1536 		{ 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B,
1537 		  0x3540A9877E7A1F68, 0x73A076BB2DD1E916 }
1538 	},
1539 	{
1540 		{ 0x403947373E77664A, 0x55AE744F346CEE3E,
1541 		  0xD50A961A5B17A3AD, 0x13074B5954213673 },
1542 		{ 0x93D36220D377E44B, 0x299C2B53ADFF14B5,
1543 		  0xF424D44CEF639F11, 0xA4C9916D4A07F75F }
1544 	},
1545 	{
1546 		{ 0x0746354EA0173B4F, 0x2BD20213D23C00F7,
1547 		  0xF43EAAB50C23BB08, 0x13BA5119C3123E03 },
1548 		{ 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD,
1549 		  0xEF933BDC77C94195, 0xEAEDD9156E240867 }
1550 	},
1551 	{
1552 		{ 0x27F14CD19499A78F, 0x462AB5C56F9B3455,
1553 		  0x8F90F02AF02CFC6B, 0xB763891EB265230D },
1554 		{ 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15,
1555 		  0x123C7B84BE60BBF0, 0x56EC12F27706DF76 }
1556 	},
1557 	{
1558 		{ 0x75C96E8F264E20E8, 0xABE6BFED59A7A841,
1559 		  0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B },
1560 		{ 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3,
1561 		  0x2B6E019A88B12F1A, 0x086659CDFD835F9B }
1562 	},
1563 	{
1564 		{ 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139,
1565 		  0x737D2CD648250B49, 0xCC61C94724B3428F },
1566 		{ 0x0C2B407880DD9E76, 0xC43A8991383FBE08,
1567 		  0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 }
1568 	},
1569 	{
1570 		{ 0xEA7D260A6245E404, 0x9DE407956E7FDFE0,
1571 		  0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 },
1572 		{ 0x1A7685612B944E88, 0x250F939EE57F61C8,
1573 		  0x0C0DAA891EAD643D, 0x68930023E125B88E }
1574 	},
1575 	{
1576 		{ 0x04B71AA7D2697768, 0xABDEDEF5CA345A33,
1577 		  0x2409D29DEE37385E, 0x4EE1DF77CB83E156 },
1578 		{ 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637,
1579 		  0x28228CFA8ADE6D66, 0x7FF57C9553238ACA }
1580 	},
1581 	{
1582 		{ 0xCCC425634B2ED709, 0x0E356769856FD30D,
1583 		  0xBCBCD43F559E9811, 0x738477AC5395B759 },
1584 		{ 0x35752B90C00EE17F, 0x68748390742ED2E3,
1585 		  0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 }
1586 	},
1587 	{
1588 		{ 0xA242A35BB0CF664A, 0x126E48F77F9707E3,
1589 		  0x1717BF54C6832660, 0xFAAE7332FD12C72E },
1590 		{ 0x27B52DB7995D586B, 0xBE29569E832237C2,
1591 		  0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB }
1592 	},
1593 	{
1594 		{ 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B,
1595 		  0xEE337424E4819370, 0xE2AA0E430AD3DA09 },
1596 		{ 0x40B8524F6383C45D, 0xD766355442A41B25,
1597 		  0x64EFA6DE778A4797, 0x2042170A7079ADF4 }
1598 	}
1599 };
1600 
1601 /*
1602  * Multiply the conventional generator of the curve by the provided
1603  * integer. Return is written in *P.
1604  *
1605  * Assumptions:
1606  *  - Integer is not 0, and is lower than the curve order.
1607  * If this conditions is not met, then the result is indeterminate
1608  * (but the process is still constant-time).
1609  */
1610 static void
1611 p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
1612 {
1613 	point_mul_inner(P, P256_Gwin, k, klen);
1614 }
1615 
1616 /*
1617  * Return 1 if all of the following hold:
1618  *  - klen <= 32
1619  *  - k != 0
1620  *  - k is lower than the curve order
1621  * Otherwise, return 0.
1622  *
1623  * Constant-time behaviour: only klen may be observable.
1624  */
1625 static uint32_t
1626 check_scalar(const unsigned char *k, size_t klen)
1627 {
1628 	uint32_t z;
1629 	int32_t c;
1630 	size_t u;
1631 
1632 	if (klen > 32) {
1633 		return 0;
1634 	}
1635 	z = 0;
1636 	for (u = 0; u < klen; u ++) {
1637 		z |= k[u];
1638 	}
1639 	if (klen == 32) {
1640 		c = 0;
1641 		for (u = 0; u < klen; u ++) {
1642 			c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
1643 		}
1644 	} else {
1645 		c = -1;
1646 	}
1647 	return NEQ(z, 0) & LT0(c);
1648 }
1649 
1650 static uint32_t
1651 api_mul(unsigned char *G, size_t Glen,
1652 	const unsigned char *k, size_t klen, int curve)
1653 {
1654 	uint32_t r;
1655 	p256_jacobian P;
1656 
1657 	(void)curve;
1658 	if (Glen != 65) {
1659 		return 0;
1660 	}
1661 	r = check_scalar(k, klen);
1662 	r &= point_decode(&P, G);
1663 	p256_mul(&P, k, klen);
1664 	r &= point_encode(G, &P);
1665 	return r;
1666 }
1667 
1668 static size_t
1669 api_mulgen(unsigned char *R,
1670 	const unsigned char *k, size_t klen, int curve)
1671 {
1672 	p256_jacobian P;
1673 
1674 	(void)curve;
1675 	p256_mulgen(&P, k, klen);
1676 	point_encode(R, &P);
1677 	return 65;
1678 }
1679 
1680 static uint32_t
1681 api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1682 	const unsigned char *x, size_t xlen,
1683 	const unsigned char *y, size_t ylen, int curve)
1684 {
1685 	/*
1686 	 * We might want to use Shamir's trick here: make a composite
1687 	 * window of u*P+v*Q points, to merge the two doubling-ladders
1688 	 * into one. This, however, has some complications:
1689 	 *
1690 	 *  - During the computation, we may hit the point-at-infinity.
1691 	 *    Thus, we would need p256_add_complete_mixed() (complete
1692 	 *    formulas for point addition), with a higher cost (17 muls
1693 	 *    instead of 11).
1694 	 *
1695 	 *  - A 4-bit window would be too large, since it would involve
1696 	 *    16*16-1 = 255 points. For the same window size as in the
1697 	 *    p256_mul() case, we would need to reduce the window size
1698 	 *    to 2 bits, and thus perform twice as many non-doubling
1699 	 *    point additions.
1700 	 *
1701 	 *  - The window may itself contain the point-at-infinity, and
1702 	 *    thus cannot be in all generality be made of affine points.
1703 	 *    Instead, we would need to make it a window of points in
1704 	 *    Jacobian coordinates. Even p256_add_complete_mixed() would
1705 	 *    be inappropriate.
1706 	 *
1707 	 * For these reasons, the code below performs two separate
1708 	 * point multiplications, then computes the final point addition
1709 	 * (which is both a "normal" addition, and a doubling, to handle
1710 	 * all cases).
1711 	 */
1712 
1713 	p256_jacobian P, Q;
1714 	uint32_t r, t, s;
1715 	uint64_t z;
1716 
1717 	(void)curve;
1718 	if (len != 65) {
1719 		return 0;
1720 	}
1721 	r = point_decode(&P, A);
1722 	p256_mul(&P, x, xlen);
1723 	if (B == NULL) {
1724 		p256_mulgen(&Q, y, ylen);
1725 	} else {
1726 		r &= point_decode(&Q, B);
1727 		p256_mul(&Q, y, ylen);
1728 	}
1729 
1730 	/*
1731 	 * The final addition may fail in case both points are equal.
1732 	 */
1733 	t = p256_add(&P, &Q);
1734 	f256_final_reduce(P.z);
1735 	z = P.z[0] | P.z[1] | P.z[2] | P.z[3];
1736 	s = EQ((uint32_t)(z | (z >> 32)), 0);
1737 	p256_double(&Q);
1738 
1739 	/*
1740 	 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1741 	 * have the following:
1742 	 *
1743 	 *   s = 0, t = 0   return P (normal addition)
1744 	 *   s = 0, t = 1   return P (normal addition)
1745 	 *   s = 1, t = 0   return Q (a 'double' case)
1746 	 *   s = 1, t = 1   report an error (P+Q = 0)
1747 	 */
1748 	CCOPY(s & ~t, &P, &Q, sizeof Q);
1749 	point_encode(A, &P);
1750 	r &= ~(s & t);
1751 	return r;
1752 }
1753 
1754 /* see bearssl_ec.h */
1755 const br_ec_impl br_ec_p256_m64 = {
1756 	(uint32_t)0x00800000,
1757 	&api_generator,
1758 	&api_order,
1759 	&api_xoff,
1760 	&api_mul,
1761 	&api_mulgen,
1762 	&api_muladd
1763 };
1764 
1765 /* see bearssl_ec.h */
1766 const br_ec_impl *
1767 br_ec_p256_m64_get(void)
1768 {
1769 	return &br_ec_p256_m64;
1770 }
1771 
1772 #else
1773 
1774 /* see bearssl_ec.h */
1775 const br_ec_impl *
1776 br_ec_p256_m64_get(void)
1777 {
1778 	return 0;
1779 }
1780 
1781 #endif
1782