1 /*-
2  * Copyright (c) 2009-2015 Kai Wang
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/param.h>
28 #include <sys/queue.h>
29 
30 #include <ar.h>
31 #include <assert.h>
32 #include <capsicum_helpers.h>
33 #include <ctype.h>
34 #include <dwarf.h>
35 #include <err.h>
36 #include <fcntl.h>
37 #include <gelf.h>
38 #include <getopt.h>
39 #include <libdwarf.h>
40 #include <libelftc.h>
41 #include <libgen.h>
42 #include <stdarg.h>
43 #include <stdbool.h>
44 #include <stdint.h>
45 #include <stdio.h>
46 #include <stdlib.h>
47 #include <string.h>
48 #include <time.h>
49 #include <unistd.h>
50 #include <zlib.h>
51 
52 #include <libcasper.h>
53 #include <casper/cap_fileargs.h>
54 
55 #include "_elftc.h"
56 
57 ELFTC_VCSID("$Id: readelf.c 3769 2019-06-29 15:15:02Z emaste $");
58 
59 /* Backwards compatability for older FreeBSD releases. */
60 #ifndef	STB_GNU_UNIQUE
61 #define	STB_GNU_UNIQUE 10
62 #endif
63 #ifndef	STT_SPARC_REGISTER
64 #define	STT_SPARC_REGISTER 13
65 #endif
66 
67 
68 /*
69  * readelf(1) options.
70  */
71 #define	RE_AA	0x00000001
72 #define	RE_C	0x00000002
73 #define	RE_DD	0x00000004
74 #define	RE_D	0x00000008
75 #define	RE_G	0x00000010
76 #define	RE_H	0x00000020
77 #define	RE_II	0x00000040
78 #define	RE_I	0x00000080
79 #define	RE_L	0x00000100
80 #define	RE_NN	0x00000200
81 #define	RE_N	0x00000400
82 #define	RE_P	0x00000800
83 #define	RE_R	0x00001000
84 #define	RE_SS	0x00002000
85 #define	RE_S	0x00004000
86 #define	RE_T	0x00008000
87 #define	RE_U	0x00010000
88 #define	RE_VV	0x00020000
89 #define	RE_WW	0x00040000
90 #define	RE_W	0x00080000
91 #define	RE_X	0x00100000
92 #define	RE_Z	0x00200000
93 
94 /*
95  * dwarf dump options.
96  */
97 #define	DW_A	0x00000001
98 #define	DW_FF	0x00000002
99 #define	DW_F	0x00000004
100 #define	DW_I	0x00000008
101 #define	DW_LL	0x00000010
102 #define	DW_L	0x00000020
103 #define	DW_M	0x00000040
104 #define	DW_O	0x00000080
105 #define	DW_P	0x00000100
106 #define	DW_RR	0x00000200
107 #define	DW_R	0x00000400
108 #define	DW_S	0x00000800
109 
110 #define	DW_DEFAULT_OPTIONS (DW_A | DW_F | DW_I | DW_L | DW_O | DW_P | \
111 	    DW_R | DW_RR | DW_S)
112 
113 /*
114  * readelf(1) run control flags.
115  */
116 #define	DISPLAY_FILENAME	0x0001
117 
118 /*
119  * Internal data structure for sections.
120  */
121 struct section {
122 	const char	*name;		/* section name */
123 	Elf_Scn		*scn;		/* section scn */
124 	uint64_t	 off;		/* section offset */
125 	uint64_t	 sz;		/* section size */
126 	uint64_t	 entsize;	/* section entsize */
127 	uint64_t	 align;		/* section alignment */
128 	uint64_t	 type;		/* section type */
129 	uint64_t	 flags;		/* section flags */
130 	uint64_t	 addr;		/* section virtual addr */
131 	uint32_t	 link;		/* section link ndx */
132 	uint32_t	 info;		/* section info ndx */
133 };
134 
135 struct dumpop {
136 	union {
137 		size_t si;		/* section index */
138 		const char *sn;		/* section name */
139 	} u;
140 	enum {
141 		DUMP_BY_INDEX = 0,
142 		DUMP_BY_NAME
143 	} type;				/* dump type */
144 #define HEX_DUMP	0x0001
145 #define STR_DUMP	0x0002
146 	int op;				/* dump operation */
147 	STAILQ_ENTRY(dumpop) dumpop_list;
148 };
149 
150 struct symver {
151 	const char *name;
152 	int type;
153 };
154 
155 /*
156  * Structure encapsulates the global data for readelf(1).
157  */
158 struct readelf {
159 	const char	 *filename;	/* current processing file. */
160 	int		  options;	/* command line options. */
161 	int		  flags;	/* run control flags. */
162 	int		  dop;		/* dwarf dump options. */
163 	Elf		 *elf;		/* underlying ELF descriptor. */
164 	Elf		 *ar;		/* archive ELF descriptor. */
165 	Dwarf_Debug	  dbg;		/* DWARF handle. */
166 	Dwarf_Half	  cu_psize;	/* DWARF CU pointer size. */
167 	Dwarf_Half	  cu_osize;	/* DWARF CU offset size. */
168 	Dwarf_Half	  cu_ver;	/* DWARF CU version. */
169 	GElf_Ehdr	  ehdr;		/* ELF header. */
170 	int		  ec;		/* ELF class. */
171 	size_t		  shnum;	/* #sections. */
172 	struct section	 *vd_s;		/* Verdef section. */
173 	struct section	 *vn_s;		/* Verneed section. */
174 	struct section	 *vs_s;		/* Versym section. */
175 	uint16_t	 *vs;		/* Versym array. */
176 	int		  vs_sz;	/* Versym array size. */
177 	struct symver	 *ver;		/* Version array. */
178 	int		  ver_sz;	/* Size of version array. */
179 	struct section	 *sl;		/* list of sections. */
180 	STAILQ_HEAD(, dumpop) v_dumpop; /* list of dump ops. */
181 	uint64_t	(*dw_read)(Elf_Data *, uint64_t *, int);
182 	uint64_t	(*dw_decode)(uint8_t **, int);
183 };
184 
185 enum options
186 {
187 	OPTION_DEBUG_DUMP
188 };
189 
190 static struct option longopts[] = {
191 	{"all", no_argument, NULL, 'a'},
192 	{"arch-specific", no_argument, NULL, 'A'},
193 	{"archive-index", no_argument, NULL, 'c'},
194 	{"debug-dump", optional_argument, NULL, OPTION_DEBUG_DUMP},
195 	{"decompress", no_argument, 0, 'z'},
196 	{"dynamic", no_argument, NULL, 'd'},
197 	{"file-header", no_argument, NULL, 'h'},
198 	{"full-section-name", no_argument, NULL, 'N'},
199 	{"headers", no_argument, NULL, 'e'},
200 	{"help", no_argument, 0, 'H'},
201 	{"hex-dump", required_argument, NULL, 'x'},
202 	{"histogram", no_argument, NULL, 'I'},
203 	{"notes", no_argument, NULL, 'n'},
204 	{"program-headers", no_argument, NULL, 'l'},
205 	{"relocs", no_argument, NULL, 'r'},
206 	{"sections", no_argument, NULL, 'S'},
207 	{"section-headers", no_argument, NULL, 'S'},
208 	{"section-groups", no_argument, NULL, 'g'},
209 	{"section-details", no_argument, NULL, 't'},
210 	{"segments", no_argument, NULL, 'l'},
211 	{"string-dump", required_argument, NULL, 'p'},
212 	{"symbols", no_argument, NULL, 's'},
213 	{"syms", no_argument, NULL, 's'},
214 	{"unwind", no_argument, NULL, 'u'},
215 	{"use-dynamic", no_argument, NULL, 'D'},
216 	{"version-info", no_argument, 0, 'V'},
217 	{"version", no_argument, 0, 'v'},
218 	{"wide", no_argument, 0, 'W'},
219 	{NULL, 0, NULL, 0}
220 };
221 
222 struct eflags_desc {
223 	uint64_t flag;
224 	const char *desc;
225 };
226 
227 struct flag_desc {
228 	uint64_t flag;
229 	const char *desc;
230 };
231 
232 struct flag_desc_list {
233 	uint32_t type;
234 	const char *desc_str;
235 	struct flag_desc *desc;
236 };
237 
238 struct mips_option {
239 	uint64_t flag;
240 	const char *desc;
241 };
242 
243 struct loc_at {
244 	Dwarf_Attribute la_at;
245 	Dwarf_Unsigned la_off;
246 	Dwarf_Unsigned la_lowpc;
247 	Dwarf_Half la_cu_psize;
248 	Dwarf_Half la_cu_osize;
249 	Dwarf_Half la_cu_ver;
250 };
251 
252 static void add_dumpop(struct readelf *re, size_t si, const char *sn, int op,
253     int t);
254 static const char *aeabi_adv_simd_arch(uint64_t simd);
255 static const char *aeabi_align_needed(uint64_t an);
256 static const char *aeabi_align_preserved(uint64_t ap);
257 static const char *aeabi_arm_isa(uint64_t ai);
258 static const char *aeabi_cpu_arch(uint64_t arch);
259 static const char *aeabi_cpu_arch_profile(uint64_t pf);
260 static const char *aeabi_div(uint64_t du);
261 static const char *aeabi_enum_size(uint64_t es);
262 static const char *aeabi_fp_16bit_format(uint64_t fp16);
263 static const char *aeabi_fp_arch(uint64_t fp);
264 static const char *aeabi_fp_denormal(uint64_t fd);
265 static const char *aeabi_fp_exceptions(uint64_t fe);
266 static const char *aeabi_fp_hpext(uint64_t fh);
267 static const char *aeabi_fp_number_model(uint64_t fn);
268 static const char *aeabi_fp_optm_goal(uint64_t fog);
269 static const char *aeabi_fp_rounding(uint64_t fr);
270 static const char *aeabi_hardfp(uint64_t hfp);
271 static const char *aeabi_mpext(uint64_t mp);
272 static const char *aeabi_optm_goal(uint64_t og);
273 static const char *aeabi_pcs_config(uint64_t pcs);
274 static const char *aeabi_pcs_got(uint64_t got);
275 static const char *aeabi_pcs_r9(uint64_t r9);
276 static const char *aeabi_pcs_ro(uint64_t ro);
277 static const char *aeabi_pcs_rw(uint64_t rw);
278 static const char *aeabi_pcs_wchar_t(uint64_t wt);
279 static const char *aeabi_t2ee(uint64_t t2ee);
280 static const char *aeabi_thumb_isa(uint64_t ti);
281 static const char *aeabi_fp_user_exceptions(uint64_t fu);
282 static const char *aeabi_unaligned_access(uint64_t ua);
283 static const char *aeabi_vfp_args(uint64_t va);
284 static const char *aeabi_virtual(uint64_t vt);
285 static const char *aeabi_wmmx_arch(uint64_t wmmx);
286 static const char *aeabi_wmmx_args(uint64_t wa);
287 static const char *elf_class(unsigned int class);
288 static const char *elf_endian(unsigned int endian);
289 static const char *elf_machine(unsigned int mach);
290 static const char *elf_osabi(unsigned int abi);
291 static const char *elf_type(unsigned int type);
292 static const char *elf_ver(unsigned int ver);
293 static const char *dt_type(unsigned int mach, unsigned int dtype);
294 static bool dump_ar(struct readelf *re, int);
295 static void dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
296 static void dump_attributes(struct readelf *re);
297 static uint8_t *dump_compatibility_tag(uint8_t *p, uint8_t *pe);
298 static void dump_dwarf(struct readelf *re);
299 static void dump_dwarf_abbrev(struct readelf *re);
300 static void dump_dwarf_aranges(struct readelf *re);
301 static void dump_dwarf_block(struct readelf *re, uint8_t *b,
302     Dwarf_Unsigned len);
303 static void dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level);
304 static void dump_dwarf_frame(struct readelf *re, int alt);
305 static void dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie,
306     uint8_t *insts, Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf,
307     Dwarf_Addr pc, Dwarf_Debug dbg);
308 static int dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde,
309     Dwarf_Addr pc, Dwarf_Unsigned func_len, Dwarf_Half cie_ra);
310 static void dump_dwarf_frame_section(struct readelf *re, struct section *s,
311     int alt);
312 static void dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info);
313 static void dump_dwarf_macinfo(struct readelf *re);
314 static void dump_dwarf_line(struct readelf *re);
315 static void dump_dwarf_line_decoded(struct readelf *re);
316 static void dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr);
317 static void dump_dwarf_loclist(struct readelf *re);
318 static void dump_dwarf_pubnames(struct readelf *re);
319 static void dump_dwarf_ranges(struct readelf *re);
320 static void dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die,
321     Dwarf_Addr base);
322 static void dump_dwarf_str(struct readelf *re);
323 static void dump_eflags(struct readelf *re, uint64_t e_flags);
324 static bool dump_elf(struct readelf *re);
325 static void dump_flags(struct flag_desc *fd, uint64_t flags);
326 static void dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab);
327 static void dump_dynamic(struct readelf *re);
328 static void dump_liblist(struct readelf *re);
329 static void dump_mips_abiflags(struct readelf *re, struct section *s);
330 static void dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe);
331 static void dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz);
332 static void dump_mips_options(struct readelf *re, struct section *s);
333 static void dump_mips_option_flags(const char *name, struct mips_option *opt,
334     uint64_t info);
335 static void dump_mips_reginfo(struct readelf *re, struct section *s);
336 static void dump_mips_specific_info(struct readelf *re);
337 static void dump_notes(struct readelf *re);
338 static void dump_notes_content(struct readelf *re, const char *buf, size_t sz,
339     off_t off);
340 static void dump_notes_data(struct readelf *re, const char *name,
341     uint32_t type, const char *buf, size_t sz);
342 static void dump_svr4_hash(struct section *s);
343 static void dump_svr4_hash64(struct readelf *re, struct section *s);
344 static void dump_gnu_hash(struct readelf *re, struct section *s);
345 static void dump_gnu_property_type_0(struct readelf *re, const char *buf,
346     size_t sz);
347 static void dump_hash(struct readelf *re);
348 static void dump_phdr(struct readelf *re);
349 static void dump_ppc_attributes(uint8_t *p, uint8_t *pe);
350 static void dump_section_groups(struct readelf *re);
351 static void dump_symtab(struct readelf *re, int i);
352 static void dump_symtabs(struct readelf *re);
353 static uint8_t *dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe);
354 static void dump_ver(struct readelf *re);
355 static void dump_verdef(struct readelf *re, int dump);
356 static void dump_verneed(struct readelf *re, int dump);
357 static void dump_versym(struct readelf *re);
358 static const char *dwarf_reg(unsigned int mach, unsigned int reg);
359 static const char *dwarf_regname(struct readelf *re, unsigned int num);
360 static struct dumpop *find_dumpop(struct readelf *re, size_t si,
361     const char *sn, int op, int t);
362 static int get_ent_count(struct section *s, int *ent_count);
363 static int get_mips_register_size(uint8_t flag);
364 static char *get_regoff_str(struct readelf *re, Dwarf_Half reg,
365     Dwarf_Addr off);
366 static const char *get_string(struct readelf *re, int strtab, size_t off);
367 static const char *get_symbol_name(struct readelf *re, int symtab, int i);
368 static uint64_t get_symbol_value(struct readelf *re, int symtab, int i);
369 static void load_sections(struct readelf *re);
370 static int loc_at_comparator(const void *la1, const void *la2);
371 static const char *mips_abi_fp(uint64_t fp);
372 static const char *note_type(const char *note_name, unsigned int et,
373     unsigned int nt);
374 static const char *note_type_freebsd(unsigned int nt);
375 static const char *note_type_freebsd_core(unsigned int nt);
376 static const char *note_type_go(unsigned int nt);
377 static const char *note_type_gnu(unsigned int nt);
378 static const char *note_type_linux_core(unsigned int nt);
379 static const char *note_type_netbsd(unsigned int nt);
380 static const char *note_type_openbsd(unsigned int nt);
381 static const char *note_type_unknown(unsigned int nt);
382 static const char *note_type_xen(unsigned int nt);
383 static const char *option_kind(uint8_t kind);
384 static const char *phdr_type(unsigned int mach, unsigned int ptype);
385 static const char *ppc_abi_fp(uint64_t fp);
386 static const char *ppc_abi_vector(uint64_t vec);
387 static void readelf_usage(int status);
388 static void readelf_version(void);
389 static void search_loclist_at(struct readelf *re, Dwarf_Die die,
390     Dwarf_Unsigned lowpc, struct loc_at **la_list,
391     size_t *la_list_len, size_t *la_list_cap);
392 static void search_ver(struct readelf *re);
393 static const char *section_type(unsigned int mach, unsigned int stype);
394 static void set_cu_context(struct readelf *re, Dwarf_Half psize,
395     Dwarf_Half osize, Dwarf_Half ver);
396 static const char *st_bind(unsigned int sbind);
397 static const char *st_shndx(unsigned int shndx);
398 static const char *st_type(unsigned int mach, unsigned int os,
399     unsigned int stype);
400 static const char *st_vis(unsigned int svis);
401 static const char *top_tag(unsigned int tag);
402 static void unload_sections(struct readelf *re);
403 static uint64_t _read_lsb(Elf_Data *d, uint64_t *offsetp,
404     int bytes_to_read);
405 static uint64_t _read_msb(Elf_Data *d, uint64_t *offsetp,
406     int bytes_to_read);
407 static uint64_t _decode_lsb(uint8_t **data, int bytes_to_read);
408 static uint64_t _decode_msb(uint8_t **data, int bytes_to_read);
409 static int64_t _decode_sleb128(uint8_t **dp, uint8_t *dpe);
410 static uint64_t _decode_uleb128(uint8_t **dp, uint8_t *dpe);
411 
412 static struct eflags_desc arm_eflags_desc[] = {
413 	{EF_ARM_RELEXEC, "relocatable executable"},
414 	{EF_ARM_HASENTRY, "has entry point"},
415 	{EF_ARM_SYMSARESORTED, "sorted symbol tables"},
416 	{EF_ARM_DYNSYMSUSESEGIDX, "dynamic symbols use segment index"},
417 	{EF_ARM_MAPSYMSFIRST, "mapping symbols precede others"},
418 	{EF_ARM_BE8, "BE8"},
419 	{EF_ARM_LE8, "LE8"},
420 	{EF_ARM_INTERWORK, "interworking enabled"},
421 	{EF_ARM_APCS_26, "uses APCS/26"},
422 	{EF_ARM_APCS_FLOAT, "uses APCS/float"},
423 	{EF_ARM_PIC, "position independent"},
424 	{EF_ARM_ALIGN8, "8 bit structure alignment"},
425 	{EF_ARM_NEW_ABI, "uses new ABI"},
426 	{EF_ARM_OLD_ABI, "uses old ABI"},
427 	{EF_ARM_SOFT_FLOAT, "software FP"},
428 	{EF_ARM_VFP_FLOAT, "VFP"},
429 	{EF_ARM_MAVERICK_FLOAT, "Maverick FP"},
430 	{0, NULL}
431 };
432 
433 static struct eflags_desc mips_eflags_desc[] = {
434 	{EF_MIPS_NOREORDER, "noreorder"},
435 	{EF_MIPS_PIC, "pic"},
436 	{EF_MIPS_CPIC, "cpic"},
437 	{EF_MIPS_UCODE, "ugen_reserved"},
438 	{EF_MIPS_ABI2, "abi2"},
439 	{EF_MIPS_OPTIONS_FIRST, "odk first"},
440 	{EF_MIPS_ARCH_ASE_MDMX, "mdmx"},
441 	{EF_MIPS_ARCH_ASE_M16, "mips16"},
442 	{0, NULL}
443 };
444 
445 static struct eflags_desc powerpc_eflags_desc[] = {
446 	{EF_PPC_EMB, "emb"},
447 	{EF_PPC_RELOCATABLE, "relocatable"},
448 	{EF_PPC_RELOCATABLE_LIB, "relocatable-lib"},
449 	{0, NULL}
450 };
451 
452 static struct eflags_desc riscv_eflags_desc[] = {
453 	{EF_RISCV_RVC, "RVC"},
454 	{EF_RISCV_RVE, "RVE"},
455 	{EF_RISCV_TSO, "TSO"},
456 	{0, NULL}
457 };
458 
459 static struct eflags_desc sparc_eflags_desc[] = {
460 	{EF_SPARC_32PLUS, "v8+"},
461 	{EF_SPARC_SUN_US1, "ultrasparcI"},
462 	{EF_SPARC_HAL_R1, "halr1"},
463 	{EF_SPARC_SUN_US3, "ultrasparcIII"},
464 	{0, NULL}
465 };
466 
467 static const char *
468 elf_osabi(unsigned int abi)
469 {
470 	static char s_abi[32];
471 
472 	switch(abi) {
473 	case ELFOSABI_NONE: return "NONE";
474 	case ELFOSABI_HPUX: return "HPUX";
475 	case ELFOSABI_NETBSD: return "NetBSD";
476 	case ELFOSABI_GNU: return "GNU";
477 	case ELFOSABI_HURD: return "HURD";
478 	case ELFOSABI_86OPEN: return "86OPEN";
479 	case ELFOSABI_SOLARIS: return "Solaris";
480 	case ELFOSABI_AIX: return "AIX";
481 	case ELFOSABI_IRIX: return "IRIX";
482 	case ELFOSABI_FREEBSD: return "FreeBSD";
483 	case ELFOSABI_TRU64: return "TRU64";
484 	case ELFOSABI_MODESTO: return "MODESTO";
485 	case ELFOSABI_OPENBSD: return "OpenBSD";
486 	case ELFOSABI_OPENVMS: return "OpenVMS";
487 	case ELFOSABI_NSK: return "NSK";
488 	case ELFOSABI_CLOUDABI: return "CloudABI";
489 	case ELFOSABI_ARM_AEABI: return "ARM EABI";
490 	case ELFOSABI_ARM: return "ARM";
491 	case ELFOSABI_STANDALONE: return "StandAlone";
492 	default:
493 		snprintf(s_abi, sizeof(s_abi), "<unknown: %#x>", abi);
494 		return (s_abi);
495 	}
496 };
497 
498 static const char *
499 elf_machine(unsigned int mach)
500 {
501 	static char s_mach[32];
502 
503 	switch (mach) {
504 	case EM_NONE: return "Unknown machine";
505 	case EM_M32: return "AT&T WE32100";
506 	case EM_SPARC: return "Sun SPARC";
507 	case EM_386: return "Intel i386";
508 	case EM_68K: return "Motorola 68000";
509 	case EM_IAMCU: return "Intel MCU";
510 	case EM_88K: return "Motorola 88000";
511 	case EM_860: return "Intel i860";
512 	case EM_MIPS: return "MIPS R3000 Big-Endian only";
513 	case EM_S370: return "IBM System/370";
514 	case EM_MIPS_RS3_LE: return "MIPS R3000 Little-Endian";
515 	case EM_PARISC: return "HP PA-RISC";
516 	case EM_VPP500: return "Fujitsu VPP500";
517 	case EM_SPARC32PLUS: return "SPARC v8plus";
518 	case EM_960: return "Intel 80960";
519 	case EM_PPC: return "PowerPC 32-bit";
520 	case EM_PPC64: return "PowerPC 64-bit";
521 	case EM_S390: return "IBM System/390";
522 	case EM_V800: return "NEC V800";
523 	case EM_FR20: return "Fujitsu FR20";
524 	case EM_RH32: return "TRW RH-32";
525 	case EM_RCE: return "Motorola RCE";
526 	case EM_ARM: return "ARM";
527 	case EM_SH: return "Hitachi SH";
528 	case EM_SPARCV9: return "SPARC v9 64-bit";
529 	case EM_TRICORE: return "Siemens TriCore embedded processor";
530 	case EM_ARC: return "Argonaut RISC Core";
531 	case EM_H8_300: return "Hitachi H8/300";
532 	case EM_H8_300H: return "Hitachi H8/300H";
533 	case EM_H8S: return "Hitachi H8S";
534 	case EM_H8_500: return "Hitachi H8/500";
535 	case EM_IA_64: return "Intel IA-64 Processor";
536 	case EM_MIPS_X: return "Stanford MIPS-X";
537 	case EM_COLDFIRE: return "Motorola ColdFire";
538 	case EM_68HC12: return "Motorola M68HC12";
539 	case EM_MMA: return "Fujitsu MMA";
540 	case EM_PCP: return "Siemens PCP";
541 	case EM_NCPU: return "Sony nCPU";
542 	case EM_NDR1: return "Denso NDR1 microprocessor";
543 	case EM_STARCORE: return "Motorola Star*Core processor";
544 	case EM_ME16: return "Toyota ME16 processor";
545 	case EM_ST100: return "STMicroelectronics ST100 processor";
546 	case EM_TINYJ: return "Advanced Logic Corp. TinyJ processor";
547 	case EM_X86_64: return "Advanced Micro Devices x86-64";
548 	case EM_PDSP: return "Sony DSP Processor";
549 	case EM_FX66: return "Siemens FX66 microcontroller";
550 	case EM_ST9PLUS: return "STMicroelectronics ST9+ 8/16 microcontroller";
551 	case EM_ST7: return "STmicroelectronics ST7 8-bit microcontroller";
552 	case EM_68HC16: return "Motorola MC68HC16 microcontroller";
553 	case EM_68HC11: return "Motorola MC68HC11 microcontroller";
554 	case EM_68HC08: return "Motorola MC68HC08 microcontroller";
555 	case EM_68HC05: return "Motorola MC68HC05 microcontroller";
556 	case EM_SVX: return "Silicon Graphics SVx";
557 	case EM_ST19: return "STMicroelectronics ST19 8-bit mc";
558 	case EM_VAX: return "Digital VAX";
559 	case EM_CRIS: return "Axis Communications 32-bit embedded processor";
560 	case EM_JAVELIN: return "Infineon Tech. 32bit embedded processor";
561 	case EM_FIREPATH: return "Element 14 64-bit DSP Processor";
562 	case EM_ZSP: return "LSI Logic 16-bit DSP Processor";
563 	case EM_MMIX: return "Donald Knuth's educational 64-bit proc";
564 	case EM_HUANY: return "Harvard University MI object files";
565 	case EM_PRISM: return "SiTera Prism";
566 	case EM_AVR: return "Atmel AVR 8-bit microcontroller";
567 	case EM_FR30: return "Fujitsu FR30";
568 	case EM_D10V: return "Mitsubishi D10V";
569 	case EM_D30V: return "Mitsubishi D30V";
570 	case EM_V850: return "NEC v850";
571 	case EM_M32R: return "Mitsubishi M32R";
572 	case EM_MN10300: return "Matsushita MN10300";
573 	case EM_MN10200: return "Matsushita MN10200";
574 	case EM_PJ: return "picoJava";
575 	case EM_OPENRISC: return "OpenRISC 32-bit embedded processor";
576 	case EM_ARC_A5: return "ARC Cores Tangent-A5";
577 	case EM_XTENSA: return "Tensilica Xtensa Architecture";
578 	case EM_VIDEOCORE: return "Alphamosaic VideoCore processor";
579 	case EM_TMM_GPP: return "Thompson Multimedia General Purpose Processor";
580 	case EM_NS32K: return "National Semiconductor 32000 series";
581 	case EM_TPC: return "Tenor Network TPC processor";
582 	case EM_SNP1K: return "Trebia SNP 1000 processor";
583 	case EM_ST200: return "STMicroelectronics ST200 microcontroller";
584 	case EM_IP2K: return "Ubicom IP2xxx microcontroller family";
585 	case EM_MAX: return "MAX Processor";
586 	case EM_CR: return "National Semiconductor CompactRISC microprocessor";
587 	case EM_F2MC16: return "Fujitsu F2MC16";
588 	case EM_MSP430: return "TI embedded microcontroller msp430";
589 	case EM_BLACKFIN: return "Analog Devices Blackfin (DSP) processor";
590 	case EM_SE_C33: return "S1C33 Family of Seiko Epson processors";
591 	case EM_SEP: return "Sharp embedded microprocessor";
592 	case EM_ARCA: return "Arca RISC Microprocessor";
593 	case EM_UNICORE: return "Microprocessor series from PKU-Unity Ltd";
594 	case EM_AARCH64: return "AArch64";
595 	case EM_RISCV: return "RISC-V";
596 	default:
597 		snprintf(s_mach, sizeof(s_mach), "<unknown: %#x>", mach);
598 		return (s_mach);
599 	}
600 
601 }
602 
603 static const char *
604 elf_class(unsigned int class)
605 {
606 	static char s_class[32];
607 
608 	switch (class) {
609 	case ELFCLASSNONE: return "none";
610 	case ELFCLASS32: return "ELF32";
611 	case ELFCLASS64: return "ELF64";
612 	default:
613 		snprintf(s_class, sizeof(s_class), "<unknown: %#x>", class);
614 		return (s_class);
615 	}
616 }
617 
618 static const char *
619 elf_endian(unsigned int endian)
620 {
621 	static char s_endian[32];
622 
623 	switch (endian) {
624 	case ELFDATANONE: return "none";
625 	case ELFDATA2LSB: return "2's complement, little endian";
626 	case ELFDATA2MSB: return "2's complement, big endian";
627 	default:
628 		snprintf(s_endian, sizeof(s_endian), "<unknown: %#x>", endian);
629 		return (s_endian);
630 	}
631 }
632 
633 static const char *
634 elf_type(unsigned int type)
635 {
636 	static char s_type[32];
637 
638 	switch (type) {
639 	case ET_NONE: return "NONE (None)";
640 	case ET_REL: return "REL (Relocatable file)";
641 	case ET_EXEC: return "EXEC (Executable file)";
642 	case ET_DYN: return "DYN (Shared object file)";
643 	case ET_CORE: return "CORE (Core file)";
644 	default:
645 		if (type >= ET_LOPROC)
646 			snprintf(s_type, sizeof(s_type), "<proc: %#x>", type);
647 		else if (type >= ET_LOOS && type <= ET_HIOS)
648 			snprintf(s_type, sizeof(s_type), "<os: %#x>", type);
649 		else
650 			snprintf(s_type, sizeof(s_type), "<unknown: %#x>",
651 			    type);
652 		return (s_type);
653 	}
654 }
655 
656 static const char *
657 elf_ver(unsigned int ver)
658 {
659 	static char s_ver[32];
660 
661 	switch (ver) {
662 	case EV_CURRENT: return "(current)";
663 	case EV_NONE: return "(none)";
664 	default:
665 		snprintf(s_ver, sizeof(s_ver), "<unknown: %#x>",
666 		    ver);
667 		return (s_ver);
668 	}
669 }
670 
671 static const char *
672 phdr_type(unsigned int mach, unsigned int ptype)
673 {
674 	static char s_ptype[32];
675 
676 	if (ptype >= PT_LOPROC && ptype <= PT_HIPROC) {
677 		switch (mach) {
678 		case EM_ARM:
679 			switch (ptype) {
680 			case PT_ARM_ARCHEXT: return "ARM_ARCHEXT";
681 			case PT_ARM_EXIDX: return "ARM_EXIDX";
682 			}
683 			break;
684 		}
685 		snprintf(s_ptype, sizeof(s_ptype), "LOPROC+%#x",
686 		    ptype - PT_LOPROC);
687 		return (s_ptype);
688 	}
689 
690 	switch (ptype) {
691 	case PT_NULL: return "NULL";
692 	case PT_LOAD: return "LOAD";
693 	case PT_DYNAMIC: return "DYNAMIC";
694 	case PT_INTERP: return "INTERP";
695 	case PT_NOTE: return "NOTE";
696 	case PT_SHLIB: return "SHLIB";
697 	case PT_PHDR: return "PHDR";
698 	case PT_TLS: return "TLS";
699 	case PT_GNU_EH_FRAME: return "GNU_EH_FRAME";
700 	case PT_GNU_STACK: return "GNU_STACK";
701 	case PT_GNU_RELRO: return "GNU_RELRO";
702 	case PT_OPENBSD_RANDOMIZE: return "OPENBSD_RANDOMIZE";
703 	case PT_OPENBSD_WXNEEDED: return "OPENBSD_WXNEEDED";
704 	case PT_OPENBSD_BOOTDATA: return "OPENBSD_BOOTDATA";
705 	default:
706 		if (ptype >= PT_LOOS && ptype <= PT_HIOS)
707 			snprintf(s_ptype, sizeof(s_ptype), "LOOS+%#x",
708 			    ptype - PT_LOOS);
709 		else
710 			snprintf(s_ptype, sizeof(s_ptype), "<unknown: %#x>",
711 			    ptype);
712 		return (s_ptype);
713 	}
714 }
715 
716 static const char *
717 section_type(unsigned int mach, unsigned int stype)
718 {
719 	static char s_stype[32];
720 
721 	if (stype >= SHT_LOPROC && stype <= SHT_HIPROC) {
722 		switch (mach) {
723 		case EM_ARM:
724 			switch (stype) {
725 			case SHT_ARM_EXIDX: return "ARM_EXIDX";
726 			case SHT_ARM_PREEMPTMAP: return "ARM_PREEMPTMAP";
727 			case SHT_ARM_ATTRIBUTES: return "ARM_ATTRIBUTES";
728 			case SHT_ARM_DEBUGOVERLAY: return "ARM_DEBUGOVERLAY";
729 			case SHT_ARM_OVERLAYSECTION: return "ARM_OVERLAYSECTION";
730 			}
731 			break;
732 		case EM_X86_64:
733 			switch (stype) {
734 			case SHT_X86_64_UNWIND: return "X86_64_UNWIND";
735 			default:
736 				break;
737 			}
738 			break;
739 		case EM_MIPS:
740 		case EM_MIPS_RS3_LE:
741 			switch (stype) {
742 			case SHT_MIPS_LIBLIST: return "MIPS_LIBLIST";
743 			case SHT_MIPS_MSYM: return "MIPS_MSYM";
744 			case SHT_MIPS_CONFLICT: return "MIPS_CONFLICT";
745 			case SHT_MIPS_GPTAB: return "MIPS_GPTAB";
746 			case SHT_MIPS_UCODE: return "MIPS_UCODE";
747 			case SHT_MIPS_DEBUG: return "MIPS_DEBUG";
748 			case SHT_MIPS_REGINFO: return "MIPS_REGINFO";
749 			case SHT_MIPS_PACKAGE: return "MIPS_PACKAGE";
750 			case SHT_MIPS_PACKSYM: return "MIPS_PACKSYM";
751 			case SHT_MIPS_RELD: return "MIPS_RELD";
752 			case SHT_MIPS_IFACE: return "MIPS_IFACE";
753 			case SHT_MIPS_CONTENT: return "MIPS_CONTENT";
754 			case SHT_MIPS_OPTIONS: return "MIPS_OPTIONS";
755 			case SHT_MIPS_DELTASYM: return "MIPS_DELTASYM";
756 			case SHT_MIPS_DELTAINST: return "MIPS_DELTAINST";
757 			case SHT_MIPS_DELTACLASS: return "MIPS_DELTACLASS";
758 			case SHT_MIPS_DWARF: return "MIPS_DWARF";
759 			case SHT_MIPS_DELTADECL: return "MIPS_DELTADECL";
760 			case SHT_MIPS_SYMBOL_LIB: return "MIPS_SYMBOL_LIB";
761 			case SHT_MIPS_EVENTS: return "MIPS_EVENTS";
762 			case SHT_MIPS_TRANSLATE: return "MIPS_TRANSLATE";
763 			case SHT_MIPS_PIXIE: return "MIPS_PIXIE";
764 			case SHT_MIPS_XLATE: return "MIPS_XLATE";
765 			case SHT_MIPS_XLATE_DEBUG: return "MIPS_XLATE_DEBUG";
766 			case SHT_MIPS_WHIRL: return "MIPS_WHIRL";
767 			case SHT_MIPS_EH_REGION: return "MIPS_EH_REGION";
768 			case SHT_MIPS_XLATE_OLD: return "MIPS_XLATE_OLD";
769 			case SHT_MIPS_PDR_EXCEPTION: return "MIPS_PDR_EXCEPTION";
770 			case SHT_MIPS_ABIFLAGS: return "MIPS_ABIFLAGS";
771 			default:
772 				break;
773 			}
774 			break;
775 		default:
776 			break;
777 		}
778 
779 		snprintf(s_stype, sizeof(s_stype), "LOPROC+%#x",
780 		    stype - SHT_LOPROC);
781 		return (s_stype);
782 	}
783 
784 	switch (stype) {
785 	case SHT_NULL: return "NULL";
786 	case SHT_PROGBITS: return "PROGBITS";
787 	case SHT_SYMTAB: return "SYMTAB";
788 	case SHT_STRTAB: return "STRTAB";
789 	case SHT_RELA: return "RELA";
790 	case SHT_HASH: return "HASH";
791 	case SHT_DYNAMIC: return "DYNAMIC";
792 	case SHT_NOTE: return "NOTE";
793 	case SHT_NOBITS: return "NOBITS";
794 	case SHT_REL: return "REL";
795 	case SHT_SHLIB: return "SHLIB";
796 	case SHT_DYNSYM: return "DYNSYM";
797 	case SHT_INIT_ARRAY: return "INIT_ARRAY";
798 	case SHT_FINI_ARRAY: return "FINI_ARRAY";
799 	case SHT_PREINIT_ARRAY: return "PREINIT_ARRAY";
800 	case SHT_GROUP: return "GROUP";
801 	case SHT_SYMTAB_SHNDX: return "SYMTAB_SHNDX";
802 	case SHT_SUNW_dof: return "SUNW_dof";
803 	case SHT_SUNW_cap: return "SUNW_cap";
804 	case SHT_GNU_HASH: return "GNU_HASH";
805 	case SHT_SUNW_ANNOTATE: return "SUNW_ANNOTATE";
806 	case SHT_SUNW_DEBUGSTR: return "SUNW_DEBUGSTR";
807 	case SHT_SUNW_DEBUG: return "SUNW_DEBUG";
808 	case SHT_SUNW_move: return "SUNW_move";
809 	case SHT_SUNW_COMDAT: return "SUNW_COMDAT";
810 	case SHT_SUNW_syminfo: return "SUNW_syminfo";
811 	case SHT_SUNW_verdef: return "SUNW_verdef";
812 	case SHT_SUNW_verneed: return "SUNW_verneed";
813 	case SHT_SUNW_versym: return "SUNW_versym";
814 	default:
815 		if (stype >= SHT_LOOS && stype <= SHT_HIOS)
816 			snprintf(s_stype, sizeof(s_stype), "LOOS+%#x",
817 			    stype - SHT_LOOS);
818 		else if (stype >= SHT_LOUSER)
819 			snprintf(s_stype, sizeof(s_stype), "LOUSER+%#x",
820 			    stype - SHT_LOUSER);
821 		else
822 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
823 			    stype);
824 		return (s_stype);
825 	}
826 }
827 
828 static const char *
829 dt_type(unsigned int mach, unsigned int dtype)
830 {
831 	static char s_dtype[32];
832 
833 	switch (dtype) {
834 	case DT_NULL: return "NULL";
835 	case DT_NEEDED: return "NEEDED";
836 	case DT_PLTRELSZ: return "PLTRELSZ";
837 	case DT_PLTGOT: return "PLTGOT";
838 	case DT_HASH: return "HASH";
839 	case DT_STRTAB: return "STRTAB";
840 	case DT_SYMTAB: return "SYMTAB";
841 	case DT_RELA: return "RELA";
842 	case DT_RELASZ: return "RELASZ";
843 	case DT_RELAENT: return "RELAENT";
844 	case DT_STRSZ: return "STRSZ";
845 	case DT_SYMENT: return "SYMENT";
846 	case DT_INIT: return "INIT";
847 	case DT_FINI: return "FINI";
848 	case DT_SONAME: return "SONAME";
849 	case DT_RPATH: return "RPATH";
850 	case DT_SYMBOLIC: return "SYMBOLIC";
851 	case DT_REL: return "REL";
852 	case DT_RELSZ: return "RELSZ";
853 	case DT_RELENT: return "RELENT";
854 	case DT_PLTREL: return "PLTREL";
855 	case DT_DEBUG: return "DEBUG";
856 	case DT_TEXTREL: return "TEXTREL";
857 	case DT_JMPREL: return "JMPREL";
858 	case DT_BIND_NOW: return "BIND_NOW";
859 	case DT_INIT_ARRAY: return "INIT_ARRAY";
860 	case DT_FINI_ARRAY: return "FINI_ARRAY";
861 	case DT_INIT_ARRAYSZ: return "INIT_ARRAYSZ";
862 	case DT_FINI_ARRAYSZ: return "FINI_ARRAYSZ";
863 	case DT_RUNPATH: return "RUNPATH";
864 	case DT_FLAGS: return "FLAGS";
865 	case DT_PREINIT_ARRAY: return "PREINIT_ARRAY";
866 	case DT_PREINIT_ARRAYSZ: return "PREINIT_ARRAYSZ";
867 	case DT_MAXPOSTAGS: return "MAXPOSTAGS";
868 	case DT_SUNW_AUXILIARY: return "SUNW_AUXILIARY";
869 	case DT_SUNW_RTLDINF: return "SUNW_RTLDINF";
870 	case DT_SUNW_FILTER: return "SUNW_FILTER";
871 	case DT_SUNW_CAP: return "SUNW_CAP";
872 	case DT_SUNW_ASLR: return "SUNW_ASLR";
873 	case DT_CHECKSUM: return "CHECKSUM";
874 	case DT_PLTPADSZ: return "PLTPADSZ";
875 	case DT_MOVEENT: return "MOVEENT";
876 	case DT_MOVESZ: return "MOVESZ";
877 	case DT_FEATURE: return "FEATURE";
878 	case DT_POSFLAG_1: return "POSFLAG_1";
879 	case DT_SYMINSZ: return "SYMINSZ";
880 	case DT_SYMINENT: return "SYMINENT";
881 	case DT_GNU_HASH: return "GNU_HASH";
882 	case DT_TLSDESC_PLT: return "DT_TLSDESC_PLT";
883 	case DT_TLSDESC_GOT: return "DT_TLSDESC_GOT";
884 	case DT_GNU_CONFLICT: return "GNU_CONFLICT";
885 	case DT_GNU_LIBLIST: return "GNU_LIBLIST";
886 	case DT_CONFIG: return "CONFIG";
887 	case DT_DEPAUDIT: return "DEPAUDIT";
888 	case DT_AUDIT: return "AUDIT";
889 	case DT_PLTPAD: return "PLTPAD";
890 	case DT_MOVETAB: return "MOVETAB";
891 	case DT_SYMINFO: return "SYMINFO";
892 	case DT_VERSYM: return "VERSYM";
893 	case DT_RELACOUNT: return "RELACOUNT";
894 	case DT_RELCOUNT: return "RELCOUNT";
895 	case DT_FLAGS_1: return "FLAGS_1";
896 	case DT_VERDEF: return "VERDEF";
897 	case DT_VERDEFNUM: return "VERDEFNUM";
898 	case DT_VERNEED: return "VERNEED";
899 	case DT_VERNEEDNUM: return "VERNEEDNUM";
900 	case DT_AUXILIARY: return "AUXILIARY";
901 	case DT_USED: return "USED";
902 	case DT_FILTER: return "FILTER";
903 	case DT_GNU_PRELINKED: return "GNU_PRELINKED";
904 	case DT_GNU_CONFLICTSZ: return "GNU_CONFLICTSZ";
905 	case DT_GNU_LIBLISTSZ: return "GNU_LIBLISTSZ";
906 	}
907 
908 	if (dtype >= DT_LOPROC && dtype <= DT_HIPROC) {
909 		switch (mach) {
910 		case EM_ARM:
911 			switch (dtype) {
912 			case DT_ARM_SYMTABSZ:
913 				return "ARM_SYMTABSZ";
914 			default:
915 				break;
916 			}
917 			break;
918 		case EM_MIPS:
919 		case EM_MIPS_RS3_LE:
920 			switch (dtype) {
921 			case DT_MIPS_RLD_VERSION:
922 				return "MIPS_RLD_VERSION";
923 			case DT_MIPS_TIME_STAMP:
924 				return "MIPS_TIME_STAMP";
925 			case DT_MIPS_ICHECKSUM:
926 				return "MIPS_ICHECKSUM";
927 			case DT_MIPS_IVERSION:
928 				return "MIPS_IVERSION";
929 			case DT_MIPS_FLAGS:
930 				return "MIPS_FLAGS";
931 			case DT_MIPS_BASE_ADDRESS:
932 				return "MIPS_BASE_ADDRESS";
933 			case DT_MIPS_CONFLICT:
934 				return "MIPS_CONFLICT";
935 			case DT_MIPS_LIBLIST:
936 				return "MIPS_LIBLIST";
937 			case DT_MIPS_LOCAL_GOTNO:
938 				return "MIPS_LOCAL_GOTNO";
939 			case DT_MIPS_CONFLICTNO:
940 				return "MIPS_CONFLICTNO";
941 			case DT_MIPS_LIBLISTNO:
942 				return "MIPS_LIBLISTNO";
943 			case DT_MIPS_SYMTABNO:
944 				return "MIPS_SYMTABNO";
945 			case DT_MIPS_UNREFEXTNO:
946 				return "MIPS_UNREFEXTNO";
947 			case DT_MIPS_GOTSYM:
948 				return "MIPS_GOTSYM";
949 			case DT_MIPS_HIPAGENO:
950 				return "MIPS_HIPAGENO";
951 			case DT_MIPS_RLD_MAP:
952 				return "MIPS_RLD_MAP";
953 			case DT_MIPS_DELTA_CLASS:
954 				return "MIPS_DELTA_CLASS";
955 			case DT_MIPS_DELTA_CLASS_NO:
956 				return "MIPS_DELTA_CLASS_NO";
957 			case DT_MIPS_DELTA_INSTANCE:
958 				return "MIPS_DELTA_INSTANCE";
959 			case DT_MIPS_DELTA_INSTANCE_NO:
960 				return "MIPS_DELTA_INSTANCE_NO";
961 			case DT_MIPS_DELTA_RELOC:
962 				return "MIPS_DELTA_RELOC";
963 			case DT_MIPS_DELTA_RELOC_NO:
964 				return "MIPS_DELTA_RELOC_NO";
965 			case DT_MIPS_DELTA_SYM:
966 				return "MIPS_DELTA_SYM";
967 			case DT_MIPS_DELTA_SYM_NO:
968 				return "MIPS_DELTA_SYM_NO";
969 			case DT_MIPS_DELTA_CLASSSYM:
970 				return "MIPS_DELTA_CLASSSYM";
971 			case DT_MIPS_DELTA_CLASSSYM_NO:
972 				return "MIPS_DELTA_CLASSSYM_NO";
973 			case DT_MIPS_CXX_FLAGS:
974 				return "MIPS_CXX_FLAGS";
975 			case DT_MIPS_PIXIE_INIT:
976 				return "MIPS_PIXIE_INIT";
977 			case DT_MIPS_SYMBOL_LIB:
978 				return "MIPS_SYMBOL_LIB";
979 			case DT_MIPS_LOCALPAGE_GOTIDX:
980 				return "MIPS_LOCALPAGE_GOTIDX";
981 			case DT_MIPS_LOCAL_GOTIDX:
982 				return "MIPS_LOCAL_GOTIDX";
983 			case DT_MIPS_HIDDEN_GOTIDX:
984 				return "MIPS_HIDDEN_GOTIDX";
985 			case DT_MIPS_PROTECTED_GOTIDX:
986 				return "MIPS_PROTECTED_GOTIDX";
987 			case DT_MIPS_OPTIONS:
988 				return "MIPS_OPTIONS";
989 			case DT_MIPS_INTERFACE:
990 				return "MIPS_INTERFACE";
991 			case DT_MIPS_DYNSTR_ALIGN:
992 				return "MIPS_DYNSTR_ALIGN";
993 			case DT_MIPS_INTERFACE_SIZE:
994 				return "MIPS_INTERFACE_SIZE";
995 			case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
996 				return "MIPS_RLD_TEXT_RESOLVE_ADDR";
997 			case DT_MIPS_PERF_SUFFIX:
998 				return "MIPS_PERF_SUFFIX";
999 			case DT_MIPS_COMPACT_SIZE:
1000 				return "MIPS_COMPACT_SIZE";
1001 			case DT_MIPS_GP_VALUE:
1002 				return "MIPS_GP_VALUE";
1003 			case DT_MIPS_AUX_DYNAMIC:
1004 				return "MIPS_AUX_DYNAMIC";
1005 			case DT_MIPS_PLTGOT:
1006 				return "MIPS_PLTGOT";
1007 			case DT_MIPS_RLD_OBJ_UPDATE:
1008 				return "MIPS_RLD_OBJ_UPDATE";
1009 			case DT_MIPS_RWPLT:
1010 				return "MIPS_RWPLT";
1011 			default:
1012 				break;
1013 			}
1014 			break;
1015 		case EM_SPARC:
1016 		case EM_SPARC32PLUS:
1017 		case EM_SPARCV9:
1018 			switch (dtype) {
1019 			case DT_SPARC_REGISTER:
1020 				return "DT_SPARC_REGISTER";
1021 			default:
1022 				break;
1023 			}
1024 			break;
1025 		default:
1026 			break;
1027 		}
1028 	}
1029 
1030 	snprintf(s_dtype, sizeof(s_dtype), "<unknown: %#x>", dtype);
1031 	return (s_dtype);
1032 }
1033 
1034 static const char *
1035 st_bind(unsigned int sbind)
1036 {
1037 	static char s_sbind[32];
1038 
1039 	switch (sbind) {
1040 	case STB_LOCAL: return "LOCAL";
1041 	case STB_GLOBAL: return "GLOBAL";
1042 	case STB_WEAK: return "WEAK";
1043 	case STB_GNU_UNIQUE: return "UNIQUE";
1044 	default:
1045 		if (sbind >= STB_LOOS && sbind <= STB_HIOS)
1046 			return "OS";
1047 		else if (sbind >= STB_LOPROC && sbind <= STB_HIPROC)
1048 			return "PROC";
1049 		else
1050 			snprintf(s_sbind, sizeof(s_sbind), "<unknown: %#x>",
1051 			    sbind);
1052 		return (s_sbind);
1053 	}
1054 }
1055 
1056 static const char *
1057 st_type(unsigned int mach, unsigned int os, unsigned int stype)
1058 {
1059 	static char s_stype[32];
1060 
1061 	switch (stype) {
1062 	case STT_NOTYPE: return "NOTYPE";
1063 	case STT_OBJECT: return "OBJECT";
1064 	case STT_FUNC: return "FUNC";
1065 	case STT_SECTION: return "SECTION";
1066 	case STT_FILE: return "FILE";
1067 	case STT_COMMON: return "COMMON";
1068 	case STT_TLS: return "TLS";
1069 	default:
1070 		if (stype >= STT_LOOS && stype <= STT_HIOS) {
1071 			if ((os == ELFOSABI_GNU || os == ELFOSABI_FREEBSD) &&
1072 			    stype == STT_GNU_IFUNC)
1073 				return "IFUNC";
1074 			snprintf(s_stype, sizeof(s_stype), "OS+%#x",
1075 			    stype - STT_LOOS);
1076 		} else if (stype >= STT_LOPROC && stype <= STT_HIPROC) {
1077 			if (mach == EM_SPARCV9 && stype == STT_SPARC_REGISTER)
1078 				return "REGISTER";
1079 			snprintf(s_stype, sizeof(s_stype), "PROC+%#x",
1080 			    stype - STT_LOPROC);
1081 		} else
1082 			snprintf(s_stype, sizeof(s_stype), "<unknown: %#x>",
1083 			    stype);
1084 		return (s_stype);
1085 	}
1086 }
1087 
1088 static const char *
1089 st_vis(unsigned int svis)
1090 {
1091 	static char s_svis[32];
1092 
1093 	switch(svis) {
1094 	case STV_DEFAULT: return "DEFAULT";
1095 	case STV_INTERNAL: return "INTERNAL";
1096 	case STV_HIDDEN: return "HIDDEN";
1097 	case STV_PROTECTED: return "PROTECTED";
1098 	default:
1099 		snprintf(s_svis, sizeof(s_svis), "<unknown: %#x>", svis);
1100 		return (s_svis);
1101 	}
1102 }
1103 
1104 static const char *
1105 st_shndx(unsigned int shndx)
1106 {
1107 	static char s_shndx[32];
1108 
1109 	switch (shndx) {
1110 	case SHN_UNDEF: return "UND";
1111 	case SHN_ABS: return "ABS";
1112 	case SHN_COMMON: return "COM";
1113 	default:
1114 		if (shndx >= SHN_LOPROC && shndx <= SHN_HIPROC)
1115 			return "PRC";
1116 		else if (shndx >= SHN_LOOS && shndx <= SHN_HIOS)
1117 			return "OS";
1118 		else
1119 			snprintf(s_shndx, sizeof(s_shndx), "%u", shndx);
1120 		return (s_shndx);
1121 	}
1122 }
1123 
1124 static struct {
1125 	const char *ln;
1126 	char sn;
1127 	int value;
1128 } section_flag[] = {
1129 	{"WRITE", 'W', SHF_WRITE},
1130 	{"ALLOC", 'A', SHF_ALLOC},
1131 	{"EXEC", 'X', SHF_EXECINSTR},
1132 	{"MERGE", 'M', SHF_MERGE},
1133 	{"STRINGS", 'S', SHF_STRINGS},
1134 	{"INFO LINK", 'I', SHF_INFO_LINK},
1135 	{"OS NONCONF", 'O', SHF_OS_NONCONFORMING},
1136 	{"GROUP", 'G', SHF_GROUP},
1137 	{"TLS", 'T', SHF_TLS},
1138 	{"COMPRESSED", 'C', SHF_COMPRESSED},
1139 	{NULL, 0, 0}
1140 };
1141 
1142 static const char *
1143 note_type(const char *name, unsigned int et, unsigned int nt)
1144 {
1145 	if ((strcmp(name, "CORE") == 0 || strcmp(name, "LINUX") == 0) &&
1146 	    et == ET_CORE)
1147 		return note_type_linux_core(nt);
1148 	else if (strcmp(name, "FreeBSD") == 0)
1149 		if (et == ET_CORE)
1150 			return note_type_freebsd_core(nt);
1151 		else
1152 			return note_type_freebsd(nt);
1153 	else if (strcmp(name, "GNU") == 0 && et != ET_CORE)
1154 		return note_type_gnu(nt);
1155 	else if (strcmp(name, "Go") == 0 && et != ET_CORE)
1156 		return note_type_go(nt);
1157 	else if (strcmp(name, "NetBSD") == 0 && et != ET_CORE)
1158 		return note_type_netbsd(nt);
1159 	else if (strcmp(name, "OpenBSD") == 0 && et != ET_CORE)
1160 		return note_type_openbsd(nt);
1161 	else if (strcmp(name, "Xen") == 0 && et != ET_CORE)
1162 		return note_type_xen(nt);
1163 	return note_type_unknown(nt);
1164 }
1165 
1166 static const char *
1167 note_type_freebsd(unsigned int nt)
1168 {
1169 	switch (nt) {
1170 	case 1: return "NT_FREEBSD_ABI_TAG";
1171 	case 2: return "NT_FREEBSD_NOINIT_TAG";
1172 	case 3: return "NT_FREEBSD_ARCH_TAG";
1173 	case 4: return "NT_FREEBSD_FEATURE_CTL";
1174 	default: return (note_type_unknown(nt));
1175 	}
1176 }
1177 
1178 static const char *
1179 note_type_freebsd_core(unsigned int nt)
1180 {
1181 	switch (nt) {
1182 	case 1: return "NT_PRSTATUS";
1183 	case 2: return "NT_FPREGSET";
1184 	case 3: return "NT_PRPSINFO";
1185 	case 7: return "NT_THRMISC";
1186 	case 8: return "NT_PROCSTAT_PROC";
1187 	case 9: return "NT_PROCSTAT_FILES";
1188 	case 10: return "NT_PROCSTAT_VMMAP";
1189 	case 11: return "NT_PROCSTAT_GROUPS";
1190 	case 12: return "NT_PROCSTAT_UMASK";
1191 	case 13: return "NT_PROCSTAT_RLIMIT";
1192 	case 14: return "NT_PROCSTAT_OSREL";
1193 	case 15: return "NT_PROCSTAT_PSSTRINGS";
1194 	case 16: return "NT_PROCSTAT_AUXV";
1195 	case 17: return "NT_PTLWPINFO";
1196 	case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1197 	case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1198 	case 0x200: return "NT_X86_SEGBASES (x86 segment base registers)";
1199 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1200 	case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1201 	case 0x401: return "NT_ARM_TLS (arm TLS register)";
1202 	case 0x406: return "NT_ARM_ADDR_MASK (arm address mask)";
1203 	default: return (note_type_unknown(nt));
1204 	}
1205 }
1206 
1207 static const char *
1208 note_type_linux_core(unsigned int nt)
1209 {
1210 	switch (nt) {
1211 	case 1: return "NT_PRSTATUS (Process status)";
1212 	case 2: return "NT_FPREGSET (Floating point information)";
1213 	case 3: return "NT_PRPSINFO (Process information)";
1214 	case 4: return "NT_TASKSTRUCT (Task structure)";
1215 	case 6: return "NT_AUXV (Auxiliary vector)";
1216 	case 10: return "NT_PSTATUS (Linux process status)";
1217 	case 12: return "NT_FPREGS (Linux floating point regset)";
1218 	case 13: return "NT_PSINFO (Linux process information)";
1219 	case 16: return "NT_LWPSTATUS (Linux lwpstatus_t type)";
1220 	case 17: return "NT_LWPSINFO (Linux lwpinfo_t type)";
1221 	case 18: return "NT_WIN32PSTATUS (win32_pstatus structure)";
1222 	case 0x100: return "NT_PPC_VMX (ppc Altivec registers)";
1223 	case 0x102: return "NT_PPC_VSX (ppc VSX registers)";
1224 	case 0x202: return "NT_X86_XSTATE (x86 XSAVE extended state)";
1225 	case 0x300: return "NT_S390_HIGH_GPRS (s390 upper register halves)";
1226 	case 0x301: return "NT_S390_TIMER (s390 timer register)";
1227 	case 0x302: return "NT_S390_TODCMP (s390 TOD comparator register)";
1228 	case 0x303: return "NT_S390_TODPREG (s390 TOD programmable register)";
1229 	case 0x304: return "NT_S390_CTRS (s390 control registers)";
1230 	case 0x305: return "NT_S390_PREFIX (s390 prefix register)";
1231 	case 0x400: return "NT_ARM_VFP (arm VFP registers)";
1232 	case 0x401: return "NT_ARM_TLS (arm TLS register)";
1233 	case 0x402: return "NT_ARM_HW_BREAK (arm hardware breakpoint registers)";
1234 	case 0x403: return "NT_ARM_HW_WATCH (arm hardware watchpoint registers)";
1235 	case 0x404: return "NT_ARM_SYSTEM_CALL (arm system call number)";
1236 	case 0x405: return "NT_ARM_SVE (arm scalable vector extension registers)";
1237 	case 0x406: return "NT_ARM_PAC_MASK (arm pointer authentication code mask)";
1238 	case 0x407: return "NT_ARM_PACA_KEYS (arm pointer authentication address keys)";
1239 	case 0x408: return "NT_ARM_PACG_KEYS (arm pointer authentication generic keys)";
1240 	case 0x409: return "NT_ARM_TAGGED_ADDR_CTRL (arm64 tagged address control)";
1241 	case 0x40a: return "NT_ARM_PAC_ENABLED_KEYS (arm64 ptr auth enabled keys)";
1242 	case 0x46494c45UL: return "NT_FILE (mapped files)";
1243 	case 0x46E62B7FUL: return "NT_PRXFPREG (Linux user_xfpregs structure)";
1244 	case 0x53494749UL: return "NT_SIGINFO (siginfo_t data)";
1245 	default: return (note_type_unknown(nt));
1246 	}
1247 }
1248 
1249 static const char *
1250 note_type_gnu(unsigned int nt)
1251 {
1252 	switch (nt) {
1253 	case 1: return "NT_GNU_ABI_TAG";
1254 	case 2: return "NT_GNU_HWCAP (Hardware capabilities)";
1255 	case 3: return "NT_GNU_BUILD_ID (Build id set by ld(1))";
1256 	case 4: return "NT_GNU_GOLD_VERSION (GNU gold version)";
1257 	case 5: return "NT_GNU_PROPERTY_TYPE_0";
1258 	default: return (note_type_unknown(nt));
1259 	}
1260 }
1261 
1262 static const char *
1263 note_type_go(unsigned int nt)
1264 {
1265 	switch (nt) {
1266 	case 4: return "elfGoBuildIDTag";
1267 	default: return (note_type_unknown(nt));
1268 	}
1269 }
1270 
1271 static const char *
1272 note_type_netbsd(unsigned int nt)
1273 {
1274 	switch (nt) {
1275 	case 1: return "NT_NETBSD_IDENT";
1276 	default: return (note_type_unknown(nt));
1277 	}
1278 }
1279 
1280 static const char *
1281 note_type_openbsd(unsigned int nt)
1282 {
1283 	switch (nt) {
1284 	case 1: return "NT_OPENBSD_IDENT";
1285 	default: return (note_type_unknown(nt));
1286 	}
1287 }
1288 
1289 static const char *
1290 note_type_unknown(unsigned int nt)
1291 {
1292 	static char s_nt[32];
1293 
1294 	snprintf(s_nt, sizeof(s_nt),
1295 	    nt >= 0x100 ? "<unknown: 0x%x>" : "<unknown: %u>", nt);
1296 	return (s_nt);
1297 }
1298 
1299 static const char *
1300 note_type_xen(unsigned int nt)
1301 {
1302 	switch (nt) {
1303 	case 0: return "XEN_ELFNOTE_INFO";
1304 	case 1: return "XEN_ELFNOTE_ENTRY";
1305 	case 2: return "XEN_ELFNOTE_HYPERCALL_PAGE";
1306 	case 3: return "XEN_ELFNOTE_VIRT_BASE";
1307 	case 4: return "XEN_ELFNOTE_PADDR_OFFSET";
1308 	case 5: return "XEN_ELFNOTE_XEN_VERSION";
1309 	case 6: return "XEN_ELFNOTE_GUEST_OS";
1310 	case 7: return "XEN_ELFNOTE_GUEST_VERSION";
1311 	case 8: return "XEN_ELFNOTE_LOADER";
1312 	case 9: return "XEN_ELFNOTE_PAE_MODE";
1313 	case 10: return "XEN_ELFNOTE_FEATURES";
1314 	case 11: return "XEN_ELFNOTE_BSD_SYMTAB";
1315 	case 12: return "XEN_ELFNOTE_HV_START_LOW";
1316 	case 13: return "XEN_ELFNOTE_L1_MFN_VALID";
1317 	case 14: return "XEN_ELFNOTE_SUSPEND_CANCEL";
1318 	case 15: return "XEN_ELFNOTE_INIT_P2M";
1319 	case 16: return "XEN_ELFNOTE_MOD_START_PFN";
1320 	case 17: return "XEN_ELFNOTE_SUPPORTED_FEATURES";
1321 	case 18: return "XEN_ELFNOTE_PHYS32_ENTRY";
1322 	default: return (note_type_unknown(nt));
1323 	}
1324 }
1325 
1326 static struct {
1327 	const char *name;
1328 	int value;
1329 } l_flag[] = {
1330 	{"EXACT_MATCH", LL_EXACT_MATCH},
1331 	{"IGNORE_INT_VER", LL_IGNORE_INT_VER},
1332 	{"REQUIRE_MINOR", LL_REQUIRE_MINOR},
1333 	{"EXPORTS", LL_EXPORTS},
1334 	{"DELAY_LOAD", LL_DELAY_LOAD},
1335 	{"DELTA", LL_DELTA},
1336 	{NULL, 0}
1337 };
1338 
1339 static struct mips_option mips_exceptions_option[] = {
1340 	{OEX_PAGE0, "PAGE0"},
1341 	{OEX_SMM, "SMM"},
1342 	{OEX_PRECISEFP, "PRECISEFP"},
1343 	{OEX_DISMISS, "DISMISS"},
1344 	{0, NULL}
1345 };
1346 
1347 static struct mips_option mips_pad_option[] = {
1348 	{OPAD_PREFIX, "PREFIX"},
1349 	{OPAD_POSTFIX, "POSTFIX"},
1350 	{OPAD_SYMBOL, "SYMBOL"},
1351 	{0, NULL}
1352 };
1353 
1354 static struct mips_option mips_hwpatch_option[] = {
1355 	{OHW_R4KEOP, "R4KEOP"},
1356 	{OHW_R8KPFETCH, "R8KPFETCH"},
1357 	{OHW_R5KEOP, "R5KEOP"},
1358 	{OHW_R5KCVTL, "R5KCVTL"},
1359 	{0, NULL}
1360 };
1361 
1362 static struct mips_option mips_hwa_option[] = {
1363 	{OHWA0_R4KEOP_CHECKED, "R4KEOP_CHECKED"},
1364 	{OHWA0_R4KEOP_CLEAN, "R4KEOP_CLEAN"},
1365 	{0, NULL}
1366 };
1367 
1368 static struct mips_option mips_hwo_option[] = {
1369 	{OHWO0_FIXADE, "FIXADE"},
1370 	{0, NULL}
1371 };
1372 
1373 static const char *
1374 option_kind(uint8_t kind)
1375 {
1376 	static char s_kind[32];
1377 
1378 	switch (kind) {
1379 	case ODK_NULL: return "NULL";
1380 	case ODK_REGINFO: return "REGINFO";
1381 	case ODK_EXCEPTIONS: return "EXCEPTIONS";
1382 	case ODK_PAD: return "PAD";
1383 	case ODK_HWPATCH: return "HWPATCH";
1384 	case ODK_FILL: return "FILL";
1385 	case ODK_TAGS: return "TAGS";
1386 	case ODK_HWAND: return "HWAND";
1387 	case ODK_HWOR: return "HWOR";
1388 	case ODK_GP_GROUP: return "GP_GROUP";
1389 	case ODK_IDENT: return "IDENT";
1390 	default:
1391 		snprintf(s_kind, sizeof(s_kind), "<unknown: %u>", kind);
1392 		return (s_kind);
1393 	}
1394 }
1395 
1396 static const char *
1397 top_tag(unsigned int tag)
1398 {
1399 	static char s_top_tag[32];
1400 
1401 	switch (tag) {
1402 	case 1: return "File Attributes";
1403 	case 2: return "Section Attributes";
1404 	case 3: return "Symbol Attributes";
1405 	default:
1406 		snprintf(s_top_tag, sizeof(s_top_tag), "Unknown tag: %u", tag);
1407 		return (s_top_tag);
1408 	}
1409 }
1410 
1411 static const char *
1412 aeabi_cpu_arch(uint64_t arch)
1413 {
1414 	static char s_cpu_arch[32];
1415 
1416 	switch (arch) {
1417 	case 0: return "Pre-V4";
1418 	case 1: return "ARM v4";
1419 	case 2: return "ARM v4T";
1420 	case 3: return "ARM v5T";
1421 	case 4: return "ARM v5TE";
1422 	case 5: return "ARM v5TEJ";
1423 	case 6: return "ARM v6";
1424 	case 7: return "ARM v6KZ";
1425 	case 8: return "ARM v6T2";
1426 	case 9: return "ARM v6K";
1427 	case 10: return "ARM v7";
1428 	case 11: return "ARM v6-M";
1429 	case 12: return "ARM v6S-M";
1430 	case 13: return "ARM v7E-M";
1431 	default:
1432 		snprintf(s_cpu_arch, sizeof(s_cpu_arch),
1433 		    "Unknown (%ju)", (uintmax_t) arch);
1434 		return (s_cpu_arch);
1435 	}
1436 }
1437 
1438 static const char *
1439 aeabi_cpu_arch_profile(uint64_t pf)
1440 {
1441 	static char s_arch_profile[32];
1442 
1443 	switch (pf) {
1444 	case 0:
1445 		return "Not applicable";
1446 	case 0x41:		/* 'A' */
1447 		return "Application Profile";
1448 	case 0x52:		/* 'R' */
1449 		return "Real-Time Profile";
1450 	case 0x4D:		/* 'M' */
1451 		return "Microcontroller Profile";
1452 	case 0x53:		/* 'S' */
1453 		return "Application or Real-Time Profile";
1454 	default:
1455 		snprintf(s_arch_profile, sizeof(s_arch_profile),
1456 		    "Unknown (%ju)\n", (uintmax_t) pf);
1457 		return (s_arch_profile);
1458 	}
1459 }
1460 
1461 static const char *
1462 aeabi_arm_isa(uint64_t ai)
1463 {
1464 	static char s_ai[32];
1465 
1466 	switch (ai) {
1467 	case 0: return "No";
1468 	case 1: return "Yes";
1469 	default:
1470 		snprintf(s_ai, sizeof(s_ai), "Unknown (%ju)\n",
1471 		    (uintmax_t) ai);
1472 		return (s_ai);
1473 	}
1474 }
1475 
1476 static const char *
1477 aeabi_thumb_isa(uint64_t ti)
1478 {
1479 	static char s_ti[32];
1480 
1481 	switch (ti) {
1482 	case 0: return "No";
1483 	case 1: return "16-bit Thumb";
1484 	case 2: return "32-bit Thumb";
1485 	default:
1486 		snprintf(s_ti, sizeof(s_ti), "Unknown (%ju)\n",
1487 		    (uintmax_t) ti);
1488 		return (s_ti);
1489 	}
1490 }
1491 
1492 static const char *
1493 aeabi_fp_arch(uint64_t fp)
1494 {
1495 	static char s_fp_arch[32];
1496 
1497 	switch (fp) {
1498 	case 0: return "No";
1499 	case 1: return "VFPv1";
1500 	case 2: return "VFPv2";
1501 	case 3: return "VFPv3";
1502 	case 4: return "VFPv3-D16";
1503 	case 5: return "VFPv4";
1504 	case 6: return "VFPv4-D16";
1505 	default:
1506 		snprintf(s_fp_arch, sizeof(s_fp_arch), "Unknown (%ju)",
1507 		    (uintmax_t) fp);
1508 		return (s_fp_arch);
1509 	}
1510 }
1511 
1512 static const char *
1513 aeabi_wmmx_arch(uint64_t wmmx)
1514 {
1515 	static char s_wmmx[32];
1516 
1517 	switch (wmmx) {
1518 	case 0: return "No";
1519 	case 1: return "WMMXv1";
1520 	case 2: return "WMMXv2";
1521 	default:
1522 		snprintf(s_wmmx, sizeof(s_wmmx), "Unknown (%ju)",
1523 		    (uintmax_t) wmmx);
1524 		return (s_wmmx);
1525 	}
1526 }
1527 
1528 static const char *
1529 aeabi_adv_simd_arch(uint64_t simd)
1530 {
1531 	static char s_simd[32];
1532 
1533 	switch (simd) {
1534 	case 0: return "No";
1535 	case 1: return "NEONv1";
1536 	case 2: return "NEONv2";
1537 	default:
1538 		snprintf(s_simd, sizeof(s_simd), "Unknown (%ju)",
1539 		    (uintmax_t) simd);
1540 		return (s_simd);
1541 	}
1542 }
1543 
1544 static const char *
1545 aeabi_pcs_config(uint64_t pcs)
1546 {
1547 	static char s_pcs[32];
1548 
1549 	switch (pcs) {
1550 	case 0: return "None";
1551 	case 1: return "Bare platform";
1552 	case 2: return "Linux";
1553 	case 3: return "Linux DSO";
1554 	case 4: return "Palm OS 2004";
1555 	case 5: return "Palm OS (future)";
1556 	case 6: return "Symbian OS 2004";
1557 	case 7: return "Symbian OS (future)";
1558 	default:
1559 		snprintf(s_pcs, sizeof(s_pcs), "Unknown (%ju)",
1560 		    (uintmax_t) pcs);
1561 		return (s_pcs);
1562 	}
1563 }
1564 
1565 static const char *
1566 aeabi_pcs_r9(uint64_t r9)
1567 {
1568 	static char s_r9[32];
1569 
1570 	switch (r9) {
1571 	case 0: return "V6";
1572 	case 1: return "SB";
1573 	case 2: return "TLS pointer";
1574 	case 3: return "Unused";
1575 	default:
1576 		snprintf(s_r9, sizeof(s_r9), "Unknown (%ju)", (uintmax_t) r9);
1577 		return (s_r9);
1578 	}
1579 }
1580 
1581 static const char *
1582 aeabi_pcs_rw(uint64_t rw)
1583 {
1584 	static char s_rw[32];
1585 
1586 	switch (rw) {
1587 	case 0: return "Absolute";
1588 	case 1: return "PC-relative";
1589 	case 2: return "SB-relative";
1590 	case 3: return "None";
1591 	default:
1592 		snprintf(s_rw, sizeof(s_rw), "Unknown (%ju)", (uintmax_t) rw);
1593 		return (s_rw);
1594 	}
1595 }
1596 
1597 static const char *
1598 aeabi_pcs_ro(uint64_t ro)
1599 {
1600 	static char s_ro[32];
1601 
1602 	switch (ro) {
1603 	case 0: return "Absolute";
1604 	case 1: return "PC-relative";
1605 	case 2: return "None";
1606 	default:
1607 		snprintf(s_ro, sizeof(s_ro), "Unknown (%ju)", (uintmax_t) ro);
1608 		return (s_ro);
1609 	}
1610 }
1611 
1612 static const char *
1613 aeabi_pcs_got(uint64_t got)
1614 {
1615 	static char s_got[32];
1616 
1617 	switch (got) {
1618 	case 0: return "None";
1619 	case 1: return "direct";
1620 	case 2: return "indirect via GOT";
1621 	default:
1622 		snprintf(s_got, sizeof(s_got), "Unknown (%ju)",
1623 		    (uintmax_t) got);
1624 		return (s_got);
1625 	}
1626 }
1627 
1628 static const char *
1629 aeabi_pcs_wchar_t(uint64_t wt)
1630 {
1631 	static char s_wt[32];
1632 
1633 	switch (wt) {
1634 	case 0: return "None";
1635 	case 2: return "wchar_t size 2";
1636 	case 4: return "wchar_t size 4";
1637 	default:
1638 		snprintf(s_wt, sizeof(s_wt), "Unknown (%ju)", (uintmax_t) wt);
1639 		return (s_wt);
1640 	}
1641 }
1642 
1643 static const char *
1644 aeabi_enum_size(uint64_t es)
1645 {
1646 	static char s_es[32];
1647 
1648 	switch (es) {
1649 	case 0: return "None";
1650 	case 1: return "smallest";
1651 	case 2: return "32-bit";
1652 	case 3: return "visible 32-bit";
1653 	default:
1654 		snprintf(s_es, sizeof(s_es), "Unknown (%ju)", (uintmax_t) es);
1655 		return (s_es);
1656 	}
1657 }
1658 
1659 static const char *
1660 aeabi_align_needed(uint64_t an)
1661 {
1662 	static char s_align_n[64];
1663 
1664 	switch (an) {
1665 	case 0: return "No";
1666 	case 1: return "8-byte align";
1667 	case 2: return "4-byte align";
1668 	case 3: return "Reserved";
1669 	default:
1670 		if (an >= 4 && an <= 12)
1671 			snprintf(s_align_n, sizeof(s_align_n), "8-byte align"
1672 			    " and up to 2^%ju-byte extended align",
1673 			    (uintmax_t) an);
1674 		else
1675 			snprintf(s_align_n, sizeof(s_align_n), "Unknown (%ju)",
1676 			    (uintmax_t) an);
1677 		return (s_align_n);
1678 	}
1679 }
1680 
1681 static const char *
1682 aeabi_align_preserved(uint64_t ap)
1683 {
1684 	static char s_align_p[128];
1685 
1686 	switch (ap) {
1687 	case 0: return "No";
1688 	case 1: return "8-byte align";
1689 	case 2: return "8-byte align and SP % 8 == 0";
1690 	case 3: return "Reserved";
1691 	default:
1692 		if (ap >= 4 && ap <= 12)
1693 			snprintf(s_align_p, sizeof(s_align_p), "8-byte align"
1694 			    " and SP %% 8 == 0 and up to 2^%ju-byte extended"
1695 			    " align", (uintmax_t) ap);
1696 		else
1697 			snprintf(s_align_p, sizeof(s_align_p), "Unknown (%ju)",
1698 			    (uintmax_t) ap);
1699 		return (s_align_p);
1700 	}
1701 }
1702 
1703 static const char *
1704 aeabi_fp_rounding(uint64_t fr)
1705 {
1706 	static char s_fp_r[32];
1707 
1708 	switch (fr) {
1709 	case 0: return "Unused";
1710 	case 1: return "Needed";
1711 	default:
1712 		snprintf(s_fp_r, sizeof(s_fp_r), "Unknown (%ju)",
1713 		    (uintmax_t) fr);
1714 		return (s_fp_r);
1715 	}
1716 }
1717 
1718 static const char *
1719 aeabi_fp_denormal(uint64_t fd)
1720 {
1721 	static char s_fp_d[32];
1722 
1723 	switch (fd) {
1724 	case 0: return "Unused";
1725 	case 1: return "Needed";
1726 	case 2: return "Sign Only";
1727 	default:
1728 		snprintf(s_fp_d, sizeof(s_fp_d), "Unknown (%ju)",
1729 		    (uintmax_t) fd);
1730 		return (s_fp_d);
1731 	}
1732 }
1733 
1734 static const char *
1735 aeabi_fp_exceptions(uint64_t fe)
1736 {
1737 	static char s_fp_e[32];
1738 
1739 	switch (fe) {
1740 	case 0: return "Unused";
1741 	case 1: return "Needed";
1742 	default:
1743 		snprintf(s_fp_e, sizeof(s_fp_e), "Unknown (%ju)",
1744 		    (uintmax_t) fe);
1745 		return (s_fp_e);
1746 	}
1747 }
1748 
1749 static const char *
1750 aeabi_fp_user_exceptions(uint64_t fu)
1751 {
1752 	static char s_fp_u[32];
1753 
1754 	switch (fu) {
1755 	case 0: return "Unused";
1756 	case 1: return "Needed";
1757 	default:
1758 		snprintf(s_fp_u, sizeof(s_fp_u), "Unknown (%ju)",
1759 		    (uintmax_t) fu);
1760 		return (s_fp_u);
1761 	}
1762 }
1763 
1764 static const char *
1765 aeabi_fp_number_model(uint64_t fn)
1766 {
1767 	static char s_fp_n[32];
1768 
1769 	switch (fn) {
1770 	case 0: return "Unused";
1771 	case 1: return "IEEE 754 normal";
1772 	case 2: return "RTABI";
1773 	case 3: return "IEEE 754";
1774 	default:
1775 		snprintf(s_fp_n, sizeof(s_fp_n), "Unknown (%ju)",
1776 		    (uintmax_t) fn);
1777 		return (s_fp_n);
1778 	}
1779 }
1780 
1781 static const char *
1782 aeabi_fp_16bit_format(uint64_t fp16)
1783 {
1784 	static char s_fp_16[64];
1785 
1786 	switch (fp16) {
1787 	case 0: return "None";
1788 	case 1: return "IEEE 754";
1789 	case 2: return "VFPv3/Advanced SIMD (alternative format)";
1790 	default:
1791 		snprintf(s_fp_16, sizeof(s_fp_16), "Unknown (%ju)",
1792 		    (uintmax_t) fp16);
1793 		return (s_fp_16);
1794 	}
1795 }
1796 
1797 static const char *
1798 aeabi_mpext(uint64_t mp)
1799 {
1800 	static char s_mp[32];
1801 
1802 	switch (mp) {
1803 	case 0: return "Not allowed";
1804 	case 1: return "Allowed";
1805 	default:
1806 		snprintf(s_mp, sizeof(s_mp), "Unknown (%ju)",
1807 		    (uintmax_t) mp);
1808 		return (s_mp);
1809 	}
1810 }
1811 
1812 static const char *
1813 aeabi_div(uint64_t du)
1814 {
1815 	static char s_du[32];
1816 
1817 	switch (du) {
1818 	case 0: return "Yes (V7-R/V7-M)";
1819 	case 1: return "No";
1820 	case 2: return "Yes (V7-A)";
1821 	default:
1822 		snprintf(s_du, sizeof(s_du), "Unknown (%ju)",
1823 		    (uintmax_t) du);
1824 		return (s_du);
1825 	}
1826 }
1827 
1828 static const char *
1829 aeabi_t2ee(uint64_t t2ee)
1830 {
1831 	static char s_t2ee[32];
1832 
1833 	switch (t2ee) {
1834 	case 0: return "Not allowed";
1835 	case 1: return "Allowed";
1836 	default:
1837 		snprintf(s_t2ee, sizeof(s_t2ee), "Unknown(%ju)",
1838 		    (uintmax_t) t2ee);
1839 		return (s_t2ee);
1840 	}
1841 
1842 }
1843 
1844 static const char *
1845 aeabi_hardfp(uint64_t hfp)
1846 {
1847 	static char s_hfp[32];
1848 
1849 	switch (hfp) {
1850 	case 0: return "Tag_FP_arch";
1851 	case 1: return "only SP";
1852 	case 2: return "only DP";
1853 	case 3: return "both SP and DP";
1854 	default:
1855 		snprintf(s_hfp, sizeof(s_hfp), "Unknown (%ju)",
1856 		    (uintmax_t) hfp);
1857 		return (s_hfp);
1858 	}
1859 }
1860 
1861 static const char *
1862 aeabi_vfp_args(uint64_t va)
1863 {
1864 	static char s_va[32];
1865 
1866 	switch (va) {
1867 	case 0: return "AAPCS (base variant)";
1868 	case 1: return "AAPCS (VFP variant)";
1869 	case 2: return "toolchain-specific";
1870 	default:
1871 		snprintf(s_va, sizeof(s_va), "Unknown (%ju)", (uintmax_t) va);
1872 		return (s_va);
1873 	}
1874 }
1875 
1876 static const char *
1877 aeabi_wmmx_args(uint64_t wa)
1878 {
1879 	static char s_wa[32];
1880 
1881 	switch (wa) {
1882 	case 0: return "AAPCS (base variant)";
1883 	case 1: return "Intel WMMX";
1884 	case 2: return "toolchain-specific";
1885 	default:
1886 		snprintf(s_wa, sizeof(s_wa), "Unknown(%ju)", (uintmax_t) wa);
1887 		return (s_wa);
1888 	}
1889 }
1890 
1891 static const char *
1892 aeabi_unaligned_access(uint64_t ua)
1893 {
1894 	static char s_ua[32];
1895 
1896 	switch (ua) {
1897 	case 0: return "Not allowed";
1898 	case 1: return "Allowed";
1899 	default:
1900 		snprintf(s_ua, sizeof(s_ua), "Unknown(%ju)", (uintmax_t) ua);
1901 		return (s_ua);
1902 	}
1903 }
1904 
1905 static const char *
1906 aeabi_fp_hpext(uint64_t fh)
1907 {
1908 	static char s_fh[32];
1909 
1910 	switch (fh) {
1911 	case 0: return "Not allowed";
1912 	case 1: return "Allowed";
1913 	default:
1914 		snprintf(s_fh, sizeof(s_fh), "Unknown(%ju)", (uintmax_t) fh);
1915 		return (s_fh);
1916 	}
1917 }
1918 
1919 static const char *
1920 aeabi_optm_goal(uint64_t og)
1921 {
1922 	static char s_og[32];
1923 
1924 	switch (og) {
1925 	case 0: return "None";
1926 	case 1: return "Speed";
1927 	case 2: return "Speed aggressive";
1928 	case 3: return "Space";
1929 	case 4: return "Space aggressive";
1930 	case 5: return "Debugging";
1931 	case 6: return "Best Debugging";
1932 	default:
1933 		snprintf(s_og, sizeof(s_og), "Unknown(%ju)", (uintmax_t) og);
1934 		return (s_og);
1935 	}
1936 }
1937 
1938 static const char *
1939 aeabi_fp_optm_goal(uint64_t fog)
1940 {
1941 	static char s_fog[32];
1942 
1943 	switch (fog) {
1944 	case 0: return "None";
1945 	case 1: return "Speed";
1946 	case 2: return "Speed aggressive";
1947 	case 3: return "Space";
1948 	case 4: return "Space aggressive";
1949 	case 5: return "Accurary";
1950 	case 6: return "Best Accurary";
1951 	default:
1952 		snprintf(s_fog, sizeof(s_fog), "Unknown(%ju)",
1953 		    (uintmax_t) fog);
1954 		return (s_fog);
1955 	}
1956 }
1957 
1958 static const char *
1959 aeabi_virtual(uint64_t vt)
1960 {
1961 	static char s_virtual[64];
1962 
1963 	switch (vt) {
1964 	case 0: return "No";
1965 	case 1: return "TrustZone";
1966 	case 2: return "Virtualization extension";
1967 	case 3: return "TrustZone and virtualization extension";
1968 	default:
1969 		snprintf(s_virtual, sizeof(s_virtual), "Unknown(%ju)",
1970 		    (uintmax_t) vt);
1971 		return (s_virtual);
1972 	}
1973 }
1974 
1975 static struct {
1976 	uint64_t tag;
1977 	const char *s_tag;
1978 	const char *(*get_desc)(uint64_t val);
1979 } aeabi_tags[] = {
1980 	{4, "Tag_CPU_raw_name", NULL},
1981 	{5, "Tag_CPU_name", NULL},
1982 	{6, "Tag_CPU_arch", aeabi_cpu_arch},
1983 	{7, "Tag_CPU_arch_profile", aeabi_cpu_arch_profile},
1984 	{8, "Tag_ARM_ISA_use", aeabi_arm_isa},
1985 	{9, "Tag_THUMB_ISA_use", aeabi_thumb_isa},
1986 	{10, "Tag_FP_arch", aeabi_fp_arch},
1987 	{11, "Tag_WMMX_arch", aeabi_wmmx_arch},
1988 	{12, "Tag_Advanced_SIMD_arch", aeabi_adv_simd_arch},
1989 	{13, "Tag_PCS_config", aeabi_pcs_config},
1990 	{14, "Tag_ABI_PCS_R9_use", aeabi_pcs_r9},
1991 	{15, "Tag_ABI_PCS_RW_data", aeabi_pcs_rw},
1992 	{16, "Tag_ABI_PCS_RO_data", aeabi_pcs_ro},
1993 	{17, "Tag_ABI_PCS_GOT_use", aeabi_pcs_got},
1994 	{18, "Tag_ABI_PCS_wchar_t", aeabi_pcs_wchar_t},
1995 	{19, "Tag_ABI_FP_rounding", aeabi_fp_rounding},
1996 	{20, "Tag_ABI_FP_denormal", aeabi_fp_denormal},
1997 	{21, "Tag_ABI_FP_exceptions", aeabi_fp_exceptions},
1998 	{22, "Tag_ABI_FP_user_exceptions", aeabi_fp_user_exceptions},
1999 	{23, "Tag_ABI_FP_number_model", aeabi_fp_number_model},
2000 	{24, "Tag_ABI_align_needed", aeabi_align_needed},
2001 	{25, "Tag_ABI_align_preserved", aeabi_align_preserved},
2002 	{26, "Tag_ABI_enum_size", aeabi_enum_size},
2003 	{27, "Tag_ABI_HardFP_use", aeabi_hardfp},
2004 	{28, "Tag_ABI_VFP_args", aeabi_vfp_args},
2005 	{29, "Tag_ABI_WMMX_args", aeabi_wmmx_args},
2006 	{30, "Tag_ABI_optimization_goals", aeabi_optm_goal},
2007 	{31, "Tag_ABI_FP_optimization_goals", aeabi_fp_optm_goal},
2008 	{32, "Tag_compatibility", NULL},
2009 	{34, "Tag_CPU_unaligned_access", aeabi_unaligned_access},
2010 	{36, "Tag_FP_HP_extension", aeabi_fp_hpext},
2011 	{38, "Tag_ABI_FP_16bit_format", aeabi_fp_16bit_format},
2012 	{42, "Tag_MPextension_use", aeabi_mpext},
2013 	{44, "Tag_DIV_use", aeabi_div},
2014 	{64, "Tag_nodefaults", NULL},
2015 	{65, "Tag_also_compatible_with", NULL},
2016 	{66, "Tag_T2EE_use", aeabi_t2ee},
2017 	{67, "Tag_conformance", NULL},
2018 	{68, "Tag_Virtualization_use", aeabi_virtual},
2019 	{70, "Tag_MPextension_use", aeabi_mpext},
2020 };
2021 
2022 static const char *
2023 mips_abi_fp(uint64_t fp)
2024 {
2025 	static char s_mips_abi_fp[64];
2026 
2027 	switch (fp) {
2028 	case 0: return "N/A";
2029 	case 1: return "Hard float (double precision)";
2030 	case 2: return "Hard float (single precision)";
2031 	case 3: return "Soft float";
2032 	case 4: return "64-bit float (-mips32r2 -mfp64)";
2033 	default:
2034 		snprintf(s_mips_abi_fp, sizeof(s_mips_abi_fp), "Unknown(%ju)",
2035 		    (uintmax_t) fp);
2036 		return (s_mips_abi_fp);
2037 	}
2038 }
2039 
2040 static const char *
2041 ppc_abi_fp(uint64_t fp)
2042 {
2043 	static char s_ppc_abi_fp[64];
2044 
2045 	switch (fp) {
2046 	case 0: return "N/A";
2047 	case 1: return "Hard float (double precision)";
2048 	case 2: return "Soft float";
2049 	case 3: return "Hard float (single precision)";
2050 	default:
2051 		snprintf(s_ppc_abi_fp, sizeof(s_ppc_abi_fp), "Unknown(%ju)",
2052 		    (uintmax_t) fp);
2053 		return (s_ppc_abi_fp);
2054 	}
2055 }
2056 
2057 static const char *
2058 ppc_abi_vector(uint64_t vec)
2059 {
2060 	static char s_vec[64];
2061 
2062 	switch (vec) {
2063 	case 0: return "N/A";
2064 	case 1: return "Generic purpose registers";
2065 	case 2: return "AltiVec registers";
2066 	case 3: return "SPE registers";
2067 	default:
2068 		snprintf(s_vec, sizeof(s_vec), "Unknown(%ju)", (uintmax_t) vec);
2069 		return (s_vec);
2070 	}
2071 }
2072 
2073 static const char *
2074 dwarf_reg(unsigned int mach, unsigned int reg)
2075 {
2076 
2077 	switch (mach) {
2078 	case EM_386:
2079 	case EM_IAMCU:
2080 		switch (reg) {
2081 		case 0: return "eax";
2082 		case 1: return "ecx";
2083 		case 2: return "edx";
2084 		case 3: return "ebx";
2085 		case 4: return "esp";
2086 		case 5: return "ebp";
2087 		case 6: return "esi";
2088 		case 7: return "edi";
2089 		case 8: return "eip";
2090 		case 9: return "eflags";
2091 		case 11: return "st0";
2092 		case 12: return "st1";
2093 		case 13: return "st2";
2094 		case 14: return "st3";
2095 		case 15: return "st4";
2096 		case 16: return "st5";
2097 		case 17: return "st6";
2098 		case 18: return "st7";
2099 		case 21: return "xmm0";
2100 		case 22: return "xmm1";
2101 		case 23: return "xmm2";
2102 		case 24: return "xmm3";
2103 		case 25: return "xmm4";
2104 		case 26: return "xmm5";
2105 		case 27: return "xmm6";
2106 		case 28: return "xmm7";
2107 		case 29: return "mm0";
2108 		case 30: return "mm1";
2109 		case 31: return "mm2";
2110 		case 32: return "mm3";
2111 		case 33: return "mm4";
2112 		case 34: return "mm5";
2113 		case 35: return "mm6";
2114 		case 36: return "mm7";
2115 		case 37: return "fcw";
2116 		case 38: return "fsw";
2117 		case 39: return "mxcsr";
2118 		case 40: return "es";
2119 		case 41: return "cs";
2120 		case 42: return "ss";
2121 		case 43: return "ds";
2122 		case 44: return "fs";
2123 		case 45: return "gs";
2124 		case 48: return "tr";
2125 		case 49: return "ldtr";
2126 		default: return (NULL);
2127 		}
2128 	case EM_RISCV:
2129 		switch (reg) {
2130 		case 0: return "zero";
2131 		case 1: return "ra";
2132 		case 2: return "sp";
2133 		case 3: return "gp";
2134 		case 4: return "tp";
2135 		case 5: return "t0";
2136 		case 6: return "t1";
2137 		case 7: return "t2";
2138 		case 8: return "s0";
2139 		case 9: return "s1";
2140 		case 10: return "a0";
2141 		case 11: return "a1";
2142 		case 12: return "a2";
2143 		case 13: return "a3";
2144 		case 14: return "a4";
2145 		case 15: return "a5";
2146 		case 16: return "a6";
2147 		case 17: return "a7";
2148 		case 18: return "s2";
2149 		case 19: return "s3";
2150 		case 20: return "s4";
2151 		case 21: return "s5";
2152 		case 22: return "s6";
2153 		case 23: return "s7";
2154 		case 24: return "s8";
2155 		case 25: return "s9";
2156 		case 26: return "s10";
2157 		case 27: return "s11";
2158 		case 28: return "t3";
2159 		case 29: return "t4";
2160 		case 30: return "t5";
2161 		case 31: return "t6";
2162 		case 32: return "ft0";
2163 		case 33: return "ft1";
2164 		case 34: return "ft2";
2165 		case 35: return "ft3";
2166 		case 36: return "ft4";
2167 		case 37: return "ft5";
2168 		case 38: return "ft6";
2169 		case 39: return "ft7";
2170 		case 40: return "fs0";
2171 		case 41: return "fs1";
2172 		case 42: return "fa0";
2173 		case 43: return "fa1";
2174 		case 44: return "fa2";
2175 		case 45: return "fa3";
2176 		case 46: return "fa4";
2177 		case 47: return "fa5";
2178 		case 48: return "fa6";
2179 		case 49: return "fa7";
2180 		case 50: return "fs2";
2181 		case 51: return "fs3";
2182 		case 52: return "fs4";
2183 		case 53: return "fs5";
2184 		case 54: return "fs6";
2185 		case 55: return "fs7";
2186 		case 56: return "fs8";
2187 		case 57: return "fs9";
2188 		case 58: return "fs10";
2189 		case 59: return "fs11";
2190 		case 60: return "ft8";
2191 		case 61: return "ft9";
2192 		case 62: return "ft10";
2193 		case 63: return "ft11";
2194 		default: return (NULL);
2195 		}
2196 	case EM_X86_64:
2197 		switch (reg) {
2198 		case 0: return "rax";
2199 		case 1: return "rdx";
2200 		case 2: return "rcx";
2201 		case 3: return "rbx";
2202 		case 4: return "rsi";
2203 		case 5: return "rdi";
2204 		case 6: return "rbp";
2205 		case 7: return "rsp";
2206 		case 16: return "rip";
2207 		case 17: return "xmm0";
2208 		case 18: return "xmm1";
2209 		case 19: return "xmm2";
2210 		case 20: return "xmm3";
2211 		case 21: return "xmm4";
2212 		case 22: return "xmm5";
2213 		case 23: return "xmm6";
2214 		case 24: return "xmm7";
2215 		case 25: return "xmm8";
2216 		case 26: return "xmm9";
2217 		case 27: return "xmm10";
2218 		case 28: return "xmm11";
2219 		case 29: return "xmm12";
2220 		case 30: return "xmm13";
2221 		case 31: return "xmm14";
2222 		case 32: return "xmm15";
2223 		case 33: return "st0";
2224 		case 34: return "st1";
2225 		case 35: return "st2";
2226 		case 36: return "st3";
2227 		case 37: return "st4";
2228 		case 38: return "st5";
2229 		case 39: return "st6";
2230 		case 40: return "st7";
2231 		case 41: return "mm0";
2232 		case 42: return "mm1";
2233 		case 43: return "mm2";
2234 		case 44: return "mm3";
2235 		case 45: return "mm4";
2236 		case 46: return "mm5";
2237 		case 47: return "mm6";
2238 		case 48: return "mm7";
2239 		case 49: return "rflags";
2240 		case 50: return "es";
2241 		case 51: return "cs";
2242 		case 52: return "ss";
2243 		case 53: return "ds";
2244 		case 54: return "fs";
2245 		case 55: return "gs";
2246 		case 58: return "fs.base";
2247 		case 59: return "gs.base";
2248 		case 62: return "tr";
2249 		case 63: return "ldtr";
2250 		case 64: return "mxcsr";
2251 		case 65: return "fcw";
2252 		case 66: return "fsw";
2253 		default: return (NULL);
2254 		}
2255 	default:
2256 		return (NULL);
2257 	}
2258 }
2259 
2260 static void
2261 dump_ehdr(struct readelf *re)
2262 {
2263 	size_t		 phnum, shnum, shstrndx;
2264 	int		 i;
2265 
2266 	printf("ELF Header:\n");
2267 
2268 	/* e_ident[]. */
2269 	printf("  Magic:   ");
2270 	for (i = 0; i < EI_NIDENT; i++)
2271 		printf("%.2x ", re->ehdr.e_ident[i]);
2272 	putchar('\n');
2273 
2274 	/* EI_CLASS. */
2275 	printf("%-37s%s\n", "  Class:", elf_class(re->ehdr.e_ident[EI_CLASS]));
2276 
2277 	/* EI_DATA. */
2278 	printf("%-37s%s\n", "  Data:", elf_endian(re->ehdr.e_ident[EI_DATA]));
2279 
2280 	/* EI_VERSION. */
2281 	printf("%-37s%d %s\n", "  Version:", re->ehdr.e_ident[EI_VERSION],
2282 	    elf_ver(re->ehdr.e_ident[EI_VERSION]));
2283 
2284 	/* EI_OSABI. */
2285 	printf("%-37s%s\n", "  OS/ABI:", elf_osabi(re->ehdr.e_ident[EI_OSABI]));
2286 
2287 	/* EI_ABIVERSION. */
2288 	printf("%-37s%d\n", "  ABI Version:", re->ehdr.e_ident[EI_ABIVERSION]);
2289 
2290 	/* e_type. */
2291 	printf("%-37s%s\n", "  Type:", elf_type(re->ehdr.e_type));
2292 
2293 	/* e_machine. */
2294 	printf("%-37s%s\n", "  Machine:", elf_machine(re->ehdr.e_machine));
2295 
2296 	/* e_version. */
2297 	printf("%-37s%#x\n", "  Version:", re->ehdr.e_version);
2298 
2299 	/* e_entry. */
2300 	printf("%-37s%#jx\n", "  Entry point address:",
2301 	    (uintmax_t)re->ehdr.e_entry);
2302 
2303 	/* e_phoff. */
2304 	printf("%-37s%ju (bytes into file)\n", "  Start of program headers:",
2305 	    (uintmax_t)re->ehdr.e_phoff);
2306 
2307 	/* e_shoff. */
2308 	printf("%-37s%ju (bytes into file)\n", "  Start of section headers:",
2309 	    (uintmax_t)re->ehdr.e_shoff);
2310 
2311 	/* e_flags. */
2312 	printf("%-37s%#x", "  Flags:", re->ehdr.e_flags);
2313 	dump_eflags(re, re->ehdr.e_flags);
2314 	putchar('\n');
2315 
2316 	/* e_ehsize. */
2317 	printf("%-37s%u (bytes)\n", "  Size of this header:",
2318 	    re->ehdr.e_ehsize);
2319 
2320 	/* e_phentsize. */
2321 	printf("%-37s%u (bytes)\n", "  Size of program headers:",
2322 	    re->ehdr.e_phentsize);
2323 
2324 	/* e_phnum. */
2325 	printf("%-37s%u", "  Number of program headers:", re->ehdr.e_phnum);
2326 	if (re->ehdr.e_phnum == PN_XNUM) {
2327 		/* Extended program header numbering is in use. */
2328 		if (elf_getphnum(re->elf, &phnum))
2329 			printf(" (%zu)", phnum);
2330 	}
2331 	putchar('\n');
2332 
2333 	/* e_shentsize. */
2334 	printf("%-37s%u (bytes)\n", "  Size of section headers:",
2335 	    re->ehdr.e_shentsize);
2336 
2337 	/* e_shnum. */
2338 	printf("%-37s%u", "  Number of section headers:", re->ehdr.e_shnum);
2339 	if (re->ehdr.e_shnum == SHN_UNDEF) {
2340 		/* Extended section numbering is in use. */
2341 		if (elf_getshnum(re->elf, &shnum))
2342 			printf(" (%ju)", (uintmax_t)shnum);
2343 	}
2344 	putchar('\n');
2345 
2346 	/* e_shstrndx. */
2347 	printf("%-37s%u", "  Section header string table index:",
2348 	    re->ehdr.e_shstrndx);
2349 	if (re->ehdr.e_shstrndx == SHN_XINDEX) {
2350 		/* Extended section numbering is in use. */
2351 		if (elf_getshstrndx(re->elf, &shstrndx))
2352 			printf(" (%ju)", (uintmax_t)shstrndx);
2353 	}
2354 	putchar('\n');
2355 }
2356 
2357 static void
2358 dump_eflags(struct readelf *re, uint64_t e_flags)
2359 {
2360 	struct eflags_desc *edesc;
2361 	int arm_eabi;
2362 
2363 	edesc = NULL;
2364 	switch (re->ehdr.e_machine) {
2365 	case EM_ARM:
2366 		arm_eabi = (e_flags & EF_ARM_EABIMASK) >> 24;
2367 		if (arm_eabi == 0)
2368 			printf(", GNU EABI");
2369 		else if (arm_eabi <= 5)
2370 			printf(", Version%d EABI", arm_eabi);
2371 		edesc = arm_eflags_desc;
2372 		break;
2373 	case EM_MIPS:
2374 	case EM_MIPS_RS3_LE:
2375 		switch ((e_flags & EF_MIPS_ARCH) >> 28) {
2376 		case 0:	printf(", mips1"); break;
2377 		case 1: printf(", mips2"); break;
2378 		case 2: printf(", mips3"); break;
2379 		case 3: printf(", mips4"); break;
2380 		case 4: printf(", mips5"); break;
2381 		case 5: printf(", mips32"); break;
2382 		case 6: printf(", mips64"); break;
2383 		case 7: printf(", mips32r2"); break;
2384 		case 8: printf(", mips64r2"); break;
2385 		default: break;
2386 		}
2387 		switch ((e_flags & 0x00FF0000) >> 16) {
2388 		case 0x81: printf(", 3900"); break;
2389 		case 0x82: printf(", 4010"); break;
2390 		case 0x83: printf(", 4100"); break;
2391 		case 0x85: printf(", 4650"); break;
2392 		case 0x87: printf(", 4120"); break;
2393 		case 0x88: printf(", 4111"); break;
2394 		case 0x8a: printf(", sb1"); break;
2395 		case 0x8b: printf(", octeon"); break;
2396 		case 0x8c: printf(", xlr"); break;
2397 		case 0x91: printf(", 5400"); break;
2398 		case 0x98: printf(", 5500"); break;
2399 		case 0x99: printf(", 9000"); break;
2400 		case 0xa0: printf(", loongson-2e"); break;
2401 		case 0xa1: printf(", loongson-2f"); break;
2402 		default: break;
2403 		}
2404 		switch ((e_flags & 0x0000F000) >> 12) {
2405 		case 1: printf(", o32"); break;
2406 		case 2: printf(", o64"); break;
2407 		case 3: printf(", eabi32"); break;
2408 		case 4: printf(", eabi64"); break;
2409 		default: break;
2410 		}
2411 		edesc = mips_eflags_desc;
2412 		break;
2413 	case EM_PPC64:
2414 		switch (e_flags) {
2415 		case 0: printf(", Unspecified or Power ELF V1 ABI"); break;
2416 		case 1: printf(", Power ELF V1 ABI"); break;
2417 		case 2: printf(", OpenPOWER ELF V2 ABI"); break;
2418 		default: break;
2419 		}
2420 		/* FALLTHROUGH */
2421 	case EM_PPC:
2422 		edesc = powerpc_eflags_desc;
2423 		break;
2424 	case EM_RISCV:
2425 		switch (e_flags & EF_RISCV_FLOAT_ABI_MASK) {
2426 		case EF_RISCV_FLOAT_ABI_SOFT:
2427 			printf(", soft-float ABI");
2428 			break;
2429 		case EF_RISCV_FLOAT_ABI_SINGLE:
2430 			printf(", single-float ABI");
2431 			break;
2432 		case EF_RISCV_FLOAT_ABI_DOUBLE:
2433 			printf(", double-float ABI");
2434 			break;
2435 		case EF_RISCV_FLOAT_ABI_QUAD:
2436 			printf(", quad-float ABI");
2437 			break;
2438 		}
2439 		edesc = riscv_eflags_desc;
2440 		break;
2441 	case EM_SPARC:
2442 	case EM_SPARC32PLUS:
2443 	case EM_SPARCV9:
2444 		switch ((e_flags & EF_SPARCV9_MM)) {
2445 		case EF_SPARCV9_TSO: printf(", tso"); break;
2446 		case EF_SPARCV9_PSO: printf(", pso"); break;
2447 		case EF_SPARCV9_MM: printf(", rmo"); break;
2448 		default: break;
2449 		}
2450 		edesc = sparc_eflags_desc;
2451 		break;
2452 	default:
2453 		break;
2454 	}
2455 
2456 	if (edesc != NULL) {
2457 		while (edesc->desc != NULL) {
2458 			if (e_flags & edesc->flag)
2459 				printf(", %s", edesc->desc);
2460 			edesc++;
2461 		}
2462 	}
2463 }
2464 
2465 static void
2466 dump_phdr(struct readelf *re)
2467 {
2468 	const char	*rawfile;
2469 	GElf_Phdr	 phdr;
2470 	size_t		 phnum, size;
2471 	int		 i, j;
2472 
2473 #define	PH_HDR	"Type", "Offset", "VirtAddr", "PhysAddr", "FileSiz",	\
2474 		"MemSiz", "Flg", "Align"
2475 #define	PH_CT	phdr_type(re->ehdr.e_machine, phdr.p_type),		\
2476 		(uintmax_t)phdr.p_offset, (uintmax_t)phdr.p_vaddr,	\
2477 		(uintmax_t)phdr.p_paddr, (uintmax_t)phdr.p_filesz,	\
2478 		(uintmax_t)phdr.p_memsz,				\
2479 		phdr.p_flags & PF_R ? 'R' : ' ',			\
2480 		phdr.p_flags & PF_W ? 'W' : ' ',			\
2481 		phdr.p_flags & PF_X ? 'E' : ' ',			\
2482 		(uintmax_t)phdr.p_align
2483 
2484 	if (elf_getphnum(re->elf, &phnum) == 0) {
2485 		warnx("elf_getphnum failed: %s", elf_errmsg(-1));
2486 		return;
2487 	}
2488 	if (phnum == 0) {
2489 		printf("\nThere are no program headers in this file.\n");
2490 		return;
2491 	}
2492 
2493 	printf("\nElf file type is %s", elf_type(re->ehdr.e_type));
2494 	printf("\nEntry point 0x%jx\n", (uintmax_t)re->ehdr.e_entry);
2495 	printf("There are %ju program headers, starting at offset %ju\n",
2496 	    (uintmax_t)phnum, (uintmax_t)re->ehdr.e_phoff);
2497 
2498 	/* Dump program headers. */
2499 	printf("\nProgram Headers:\n");
2500 	if (re->ec == ELFCLASS32)
2501 		printf("  %-15s%-9s%-11s%-11s%-8s%-8s%-4s%s\n", PH_HDR);
2502 	else if (re->options & RE_WW)
2503 		printf("  %-15s%-9s%-19s%-19s%-9s%-9s%-4s%s\n", PH_HDR);
2504 	else
2505 		printf("  %-15s%-19s%-19s%s\n                 %-19s%-20s"
2506 		    "%-7s%s\n", PH_HDR);
2507 	for (i = 0; (size_t) i < phnum; i++) {
2508 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2509 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2510 			continue;
2511 		}
2512 		/* TODO: Add arch-specific segment type dump. */
2513 		if (re->ec == ELFCLASS32)
2514 			printf("  %-14.14s 0x%6.6jx 0x%8.8jx 0x%8.8jx "
2515 			    "0x%5.5jx 0x%5.5jx %c%c%c %#jx\n", PH_CT);
2516 		else if (re->options & RE_WW)
2517 			printf("  %-14.14s 0x%6.6jx 0x%16.16jx 0x%16.16jx "
2518 			    "0x%6.6jx 0x%6.6jx %c%c%c %#jx\n", PH_CT);
2519 		else
2520 			printf("  %-14.14s 0x%16.16jx 0x%16.16jx 0x%16.16jx\n"
2521 			    "                 0x%16.16jx 0x%16.16jx  %c%c%c"
2522 			    "    %#jx\n", PH_CT);
2523 		if (phdr.p_type == PT_INTERP) {
2524 			if ((rawfile = elf_rawfile(re->elf, &size)) == NULL) {
2525 				warnx("elf_rawfile failed: %s", elf_errmsg(-1));
2526 				continue;
2527 			}
2528 			if (phdr.p_offset >= size) {
2529 				warnx("invalid program header offset");
2530 				continue;
2531 			}
2532 			printf("      [Requesting program interpreter: %s]\n",
2533 				rawfile + phdr.p_offset);
2534 		}
2535 	}
2536 
2537 	/* Dump section to segment mapping. */
2538 	if (re->shnum == 0)
2539 		return;
2540 	printf("\n Section to Segment mapping:\n");
2541 	printf("  Segment Sections...\n");
2542 	for (i = 0; (size_t)i < phnum; i++) {
2543 		if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
2544 			warnx("gelf_getphdr failed: %s", elf_errmsg(-1));
2545 			continue;
2546 		}
2547 		printf("   %2.2d     ", i);
2548 		/* skip NULL section. */
2549 		for (j = 1; (size_t)j < re->shnum; j++) {
2550 			if (re->sl[j].off < phdr.p_offset)
2551 				continue;
2552 			if (re->sl[j].off + re->sl[j].sz >
2553 			    phdr.p_offset + phdr.p_filesz &&
2554 			    re->sl[j].type != SHT_NOBITS)
2555 				continue;
2556 			if (re->sl[j].addr < phdr.p_vaddr ||
2557 			    re->sl[j].addr + re->sl[j].sz >
2558 			    phdr.p_vaddr + phdr.p_memsz)
2559 				continue;
2560 			if (phdr.p_type == PT_TLS &&
2561 			    (re->sl[j].flags & SHF_TLS) == 0)
2562 				continue;
2563 			printf("%s ", re->sl[j].name);
2564 		}
2565 		printf("\n");
2566 	}
2567 #undef	PH_HDR
2568 #undef	PH_CT
2569 }
2570 
2571 static char *
2572 section_flags(struct readelf *re, struct section *s)
2573 {
2574 #define BUF_SZ 256
2575 	static char	buf[BUF_SZ];
2576 	int		i, p, nb;
2577 
2578 	p = 0;
2579 	nb = re->ec == ELFCLASS32 ? 8 : 16;
2580 	if (re->options & RE_T) {
2581 		snprintf(buf, BUF_SZ, "[%*.*jx]: ", nb, nb,
2582 		    (uintmax_t)s->flags);
2583 		p += nb + 4;
2584 	}
2585 	for (i = 0; section_flag[i].ln != NULL; i++) {
2586 		if ((s->flags & section_flag[i].value) == 0)
2587 			continue;
2588 		if (re->options & RE_T) {
2589 			snprintf(&buf[p], BUF_SZ - p, "%s, ",
2590 			    section_flag[i].ln);
2591 			p += strlen(section_flag[i].ln) + 2;
2592 		} else
2593 			buf[p++] = section_flag[i].sn;
2594 	}
2595 	if (re->options & RE_T && p > nb + 4)
2596 		p -= 2;
2597 	buf[p] = '\0';
2598 
2599 	return (buf);
2600 }
2601 
2602 static void
2603 dump_shdr(struct readelf *re)
2604 {
2605 	struct section	*s;
2606 	int		 i;
2607 
2608 #define	S_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2609 		"Flg", "Lk", "Inf", "Al"
2610 #define	S_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Size",	\
2611 		"EntSize", "Flags", "Link", "Info", "Align"
2612 #define	ST_HDR	"[Nr] Name", "Type", "Addr", "Off", "Size", "ES",	\
2613 		"Lk", "Inf", "Al", "Flags"
2614 #define	ST_HDRL	"[Nr] Name", "Type", "Address", "Offset", "Link",	\
2615 		"Size", "EntSize", "Info", "Align", "Flags"
2616 #define	S_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),	\
2617 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2618 		(uintmax_t)s->entsize, section_flags(re, s),		\
2619 		s->link, s->info, (uintmax_t)s->align
2620 #define	ST_CT	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2621 		(uintmax_t)s->addr, (uintmax_t)s->off, (uintmax_t)s->sz,\
2622 		(uintmax_t)s->entsize, s->link, s->info,		\
2623 		(uintmax_t)s->align, section_flags(re, s)
2624 #define	ST_CTL	i, s->name, section_type(re->ehdr.e_machine, s->type),  \
2625 		(uintmax_t)s->addr, (uintmax_t)s->off, s->link,		\
2626 		(uintmax_t)s->sz, (uintmax_t)s->entsize, s->info,	\
2627 		(uintmax_t)s->align, section_flags(re, s)
2628 
2629 	if (re->shnum == 0) {
2630 		printf("\nThere are no sections in this file.\n");
2631 		return;
2632 	}
2633 	printf("There are %ju section headers, starting at offset 0x%jx:\n",
2634 	    (uintmax_t)re->shnum, (uintmax_t)re->ehdr.e_shoff);
2635 	printf("\nSection Headers:\n");
2636 	if (re->ec == ELFCLASS32) {
2637 		if (re->options & RE_T)
2638 			printf("  %s\n       %-16s%-9s%-7s%-7s%-5s%-3s%-4s%s\n"
2639 			    "%12s\n", ST_HDR);
2640 		else
2641 			printf("  %-23s%-16s%-9s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2642 			    S_HDR);
2643 	} else if (re->options & RE_WW) {
2644 		if (re->options & RE_T)
2645 			printf("  %s\n       %-16s%-17s%-7s%-7s%-5s%-3s%-4s%s\n"
2646 			    "%12s\n", ST_HDR);
2647 		else
2648 			printf("  %-23s%-16s%-17s%-7s%-7s%-3s%-4s%-3s%-4s%s\n",
2649 			    S_HDR);
2650 	} else {
2651 		if (re->options & RE_T)
2652 			printf("  %s\n       %-18s%-17s%-18s%s\n       %-18s"
2653 			    "%-17s%-18s%s\n%12s\n", ST_HDRL);
2654 		else
2655 			printf("  %-23s%-17s%-18s%s\n       %-18s%-17s%-7s%"
2656 			    "-6s%-6s%s\n", S_HDRL);
2657 	}
2658 	for (i = 0; (size_t)i < re->shnum; i++) {
2659 		s = &re->sl[i];
2660 		if (re->ec == ELFCLASS32) {
2661 			if (re->options & RE_T)
2662 				printf("  [%2d] %s\n       %-15.15s %8.8jx"
2663 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2664 				    "       %s\n", ST_CT);
2665 			else
2666 				if (re->options & RE_WW)
2667 					printf("  [%2d] %-17s %-15.15s "
2668 					    "%8.8jx %6.6jx %6.6jx %2.2jx %3s "
2669 					    "%2u %3u %2ju\n", S_CT);
2670 				else
2671 					printf("  [%2d] %-17.17s %-15.15s "
2672 					    "%8.8jx %6.6jx %6.6jx %2.2jx %3s "
2673 					    "%2u %3u %2ju\n", S_CT);
2674 		} else if (re->options & RE_WW) {
2675 			if (re->options & RE_T)
2676 				printf("  [%2d] %s\n       %-15.15s %16.16jx"
2677 				    " %6.6jx %6.6jx %2.2jx  %2u %3u %2ju\n"
2678 				    "       %s\n", ST_CT);
2679 			else
2680 				printf("  [%2d] %-17s %-15.15s %16.16jx"
2681 				    " %6.6jx %6.6jx %2.2jx %3s %2u %3u %2ju\n",
2682 				    S_CT);
2683 		} else {
2684 			if (re->options & RE_T)
2685 				printf("  [%2d] %s\n       %-15.15s  %16.16jx"
2686 				    "  %16.16jx  %u\n       %16.16jx %16.16jx"
2687 				    "  %-16u  %ju\n       %s\n", ST_CTL);
2688 			else
2689 				printf("  [%2d] %-17.17s %-15.15s  %16.16jx"
2690 				    "  %8.8jx\n       %16.16jx  %16.16jx "
2691 				    "%3s      %2u   %3u     %ju\n", S_CT);
2692 		}
2693 	}
2694 	if ((re->options & RE_T) == 0)
2695 		printf("Key to Flags:\n  W (write), A (alloc),"
2696 		    " X (execute), M (merge), S (strings)\n"
2697 		    "  I (info), L (link order), G (group), x (unknown)\n"
2698 		    "  O (extra OS processing required)"
2699 		    " o (OS specific), p (processor specific)\n");
2700 
2701 #undef	S_HDR
2702 #undef	S_HDRL
2703 #undef	ST_HDR
2704 #undef	ST_HDRL
2705 #undef	S_CT
2706 #undef	ST_CT
2707 #undef	ST_CTL
2708 }
2709 
2710 /*
2711  * Return number of entries in the given section. We'd prefer ent_count be a
2712  * size_t *, but libelf APIs already use int for section indices.
2713  */
2714 static int
2715 get_ent_count(struct section *s, int *ent_count)
2716 {
2717 	if (s->entsize == 0) {
2718 		warnx("section %s has entry size 0", s->name);
2719 		return (0);
2720 	} else if (s->sz / s->entsize > INT_MAX) {
2721 		warnx("section %s has invalid section count", s->name);
2722 		return (0);
2723 	}
2724 	*ent_count = (int)(s->sz / s->entsize);
2725 	return (1);
2726 }
2727 
2728 static void
2729 dump_dynamic(struct readelf *re)
2730 {
2731 	GElf_Dyn	 dyn;
2732 	Elf_Data	*d;
2733 	struct section	*s;
2734 	int		 elferr, i, is_dynamic, j, jmax, nentries;
2735 
2736 	is_dynamic = 0;
2737 
2738 	for (i = 0; (size_t)i < re->shnum; i++) {
2739 		s = &re->sl[i];
2740 		if (s->type != SHT_DYNAMIC)
2741 			continue;
2742 		(void) elf_errno();
2743 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
2744 			elferr = elf_errno();
2745 			if (elferr != 0)
2746 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
2747 			continue;
2748 		}
2749 		if (d->d_size <= 0)
2750 			continue;
2751 
2752 		is_dynamic = 1;
2753 
2754 		/* Determine the actual number of table entries. */
2755 		nentries = 0;
2756 		if (!get_ent_count(s, &jmax))
2757 			continue;
2758 		for (j = 0; j < jmax; j++) {
2759 			if (gelf_getdyn(d, j, &dyn) != &dyn) {
2760 				warnx("gelf_getdyn failed: %s",
2761 				    elf_errmsg(-1));
2762 				continue;
2763 			}
2764 			nentries ++;
2765 			if (dyn.d_tag == DT_NULL)
2766 				break;
2767                 }
2768 
2769 		printf("\nDynamic section at offset 0x%jx", (uintmax_t)s->off);
2770 		printf(" contains %u entries:\n", nentries);
2771 
2772 		if (re->ec == ELFCLASS32)
2773 			printf("%5s%12s%28s\n", "Tag", "Type", "Name/Value");
2774 		else
2775 			printf("%5s%20s%28s\n", "Tag", "Type", "Name/Value");
2776 
2777 		for (j = 0; j < nentries; j++) {
2778 			if (gelf_getdyn(d, j, &dyn) != &dyn)
2779 				continue;
2780 			/* Dump dynamic entry type. */
2781 			if (re->ec == ELFCLASS32)
2782 				printf(" 0x%8.8jx", (uintmax_t)dyn.d_tag);
2783 			else
2784 				printf(" 0x%16.16jx", (uintmax_t)dyn.d_tag);
2785 			printf(" %-20s", dt_type(re->ehdr.e_machine,
2786 			    dyn.d_tag));
2787 			/* Dump dynamic entry value. */
2788 			dump_dyn_val(re, &dyn, s->link);
2789 		}
2790 	}
2791 
2792 	if (!is_dynamic)
2793 		printf("\nThere is no dynamic section in this file.\n");
2794 }
2795 
2796 static char *
2797 timestamp(time_t ti)
2798 {
2799 	static char ts[32];
2800 	struct tm *t;
2801 
2802 	t = gmtime(&ti);
2803 	snprintf(ts, sizeof(ts), "%04d-%02d-%02dT%02d:%02d:%02d",
2804 	    t->tm_year + 1900, t->tm_mon + 1, t->tm_mday, t->tm_hour,
2805 	    t->tm_min, t->tm_sec);
2806 
2807 	return (ts);
2808 }
2809 
2810 static const char *
2811 dyn_str(struct readelf *re, uint32_t stab, uint64_t d_val)
2812 {
2813 	const char *name;
2814 
2815 	if (stab == SHN_UNDEF)
2816 		name = "ERROR";
2817 	else if ((name = elf_strptr(re->elf, stab, d_val)) == NULL) {
2818 		(void) elf_errno(); /* clear error */
2819 		name = "ERROR";
2820 	}
2821 
2822 	return (name);
2823 }
2824 
2825 static void
2826 dump_arch_dyn_val(struct readelf *re, GElf_Dyn *dyn)
2827 {
2828 	switch (re->ehdr.e_machine) {
2829 	case EM_MIPS:
2830 	case EM_MIPS_RS3_LE:
2831 		switch (dyn->d_tag) {
2832 		case DT_MIPS_RLD_VERSION:
2833 		case DT_MIPS_LOCAL_GOTNO:
2834 		case DT_MIPS_CONFLICTNO:
2835 		case DT_MIPS_LIBLISTNO:
2836 		case DT_MIPS_SYMTABNO:
2837 		case DT_MIPS_UNREFEXTNO:
2838 		case DT_MIPS_GOTSYM:
2839 		case DT_MIPS_HIPAGENO:
2840 		case DT_MIPS_DELTA_CLASS_NO:
2841 		case DT_MIPS_DELTA_INSTANCE_NO:
2842 		case DT_MIPS_DELTA_RELOC_NO:
2843 		case DT_MIPS_DELTA_SYM_NO:
2844 		case DT_MIPS_DELTA_CLASSSYM_NO:
2845 		case DT_MIPS_LOCALPAGE_GOTIDX:
2846 		case DT_MIPS_LOCAL_GOTIDX:
2847 		case DT_MIPS_HIDDEN_GOTIDX:
2848 		case DT_MIPS_PROTECTED_GOTIDX:
2849 			printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
2850 			break;
2851 		case DT_MIPS_ICHECKSUM:
2852 		case DT_MIPS_FLAGS:
2853 		case DT_MIPS_BASE_ADDRESS:
2854 		case DT_MIPS_CONFLICT:
2855 		case DT_MIPS_LIBLIST:
2856 		case DT_MIPS_RLD_MAP:
2857 		case DT_MIPS_DELTA_CLASS:
2858 		case DT_MIPS_DELTA_INSTANCE:
2859 		case DT_MIPS_DELTA_RELOC:
2860 		case DT_MIPS_DELTA_SYM:
2861 		case DT_MIPS_DELTA_CLASSSYM:
2862 		case DT_MIPS_CXX_FLAGS:
2863 		case DT_MIPS_PIXIE_INIT:
2864 		case DT_MIPS_SYMBOL_LIB:
2865 		case DT_MIPS_OPTIONS:
2866 		case DT_MIPS_INTERFACE:
2867 		case DT_MIPS_DYNSTR_ALIGN:
2868 		case DT_MIPS_INTERFACE_SIZE:
2869 		case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2870 		case DT_MIPS_COMPACT_SIZE:
2871 		case DT_MIPS_GP_VALUE:
2872 		case DT_MIPS_AUX_DYNAMIC:
2873 		case DT_MIPS_PLTGOT:
2874 		case DT_MIPS_RLD_OBJ_UPDATE:
2875 		case DT_MIPS_RWPLT:
2876 			printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2877 			break;
2878 		case DT_MIPS_IVERSION:
2879 		case DT_MIPS_PERF_SUFFIX:
2880 		case DT_MIPS_TIME_STAMP:
2881 			printf(" %s\n", timestamp(dyn->d_un.d_val));
2882 			break;
2883 		default:
2884 			printf("\n");
2885 			break;
2886 		}
2887 		break;
2888 	default:
2889 		printf("\n");
2890 		break;
2891 	}
2892 }
2893 
2894 static void
2895 dump_flags(struct flag_desc *desc, uint64_t val)
2896 {
2897 	struct flag_desc *fd;
2898 
2899 	for (fd = desc; fd->flag != 0; fd++) {
2900 		if (val & fd->flag) {
2901 			val &= ~fd->flag;
2902 			printf(" %s", fd->desc);
2903 		}
2904 	}
2905 	if (val != 0)
2906 		printf(" unknown (0x%jx)", (uintmax_t)val);
2907 	printf("\n");
2908 }
2909 
2910 static struct flag_desc dt_flags[] = {
2911 	{ DF_ORIGIN,		"ORIGIN" },
2912 	{ DF_SYMBOLIC,		"SYMBOLIC" },
2913 	{ DF_TEXTREL,		"TEXTREL" },
2914 	{ DF_BIND_NOW,		"BIND_NOW" },
2915 	{ DF_STATIC_TLS,	"STATIC_TLS" },
2916 	{ 0, NULL }
2917 };
2918 
2919 static struct flag_desc dt_flags_1[] = {
2920 	{ DF_1_BIND_NOW,	"NOW" },
2921 	{ DF_1_GLOBAL,		"GLOBAL" },
2922 	{ 0x4,			"GROUP" },
2923 	{ DF_1_NODELETE,	"NODELETE" },
2924 	{ DF_1_LOADFLTR,	"LOADFLTR" },
2925 	{ 0x20,			"INITFIRST" },
2926 	{ DF_1_NOOPEN,		"NOOPEN" },
2927 	{ DF_1_ORIGIN,		"ORIGIN" },
2928 	{ 0x100,		"DIRECT" },
2929 	{ DF_1_INTERPOSE,	"INTERPOSE" },
2930 	{ DF_1_NODEFLIB,	"NODEFLIB" },
2931 	{ 0x1000,		"NODUMP" },
2932 	{ 0x2000,		"CONFALT" },
2933 	{ 0x4000,		"ENDFILTEE" },
2934 	{ 0x8000,		"DISPRELDNE" },
2935 	{ 0x10000,		"DISPRELPND" },
2936 	{ 0x20000,		"NODIRECT" },
2937 	{ 0x40000,		"IGNMULDEF" },
2938 	{ 0x80000,		"NOKSYMS" },
2939 	{ 0x100000,		"NOHDR" },
2940 	{ 0x200000,		"EDITED" },
2941 	{ 0x400000,		"NORELOC" },
2942 	{ 0x800000,		"SYMINTPOSE" },
2943 	{ 0x1000000,		"GLOBAUDIT" },
2944 	{ 0x02000000,		"SINGLETON" },
2945 	{ 0x04000000,		"STUB" },
2946 	{ DF_1_PIE,		"PIE" },
2947 	{ 0, NULL }
2948 };
2949 
2950 static void
2951 dump_dyn_val(struct readelf *re, GElf_Dyn *dyn, uint32_t stab)
2952 {
2953 	const char *name;
2954 
2955 	if (dyn->d_tag >= DT_LOPROC && dyn->d_tag <= DT_HIPROC &&
2956 	    dyn->d_tag != DT_AUXILIARY && dyn->d_tag != DT_FILTER) {
2957 		dump_arch_dyn_val(re, dyn);
2958 		return;
2959 	}
2960 
2961 	/* These entry values are index into the string table. */
2962 	name = NULL;
2963 	if (dyn->d_tag == DT_AUXILIARY || dyn->d_tag == DT_FILTER ||
2964 	    dyn->d_tag == DT_NEEDED || dyn->d_tag == DT_SONAME ||
2965 	    dyn->d_tag == DT_RPATH || dyn->d_tag == DT_RUNPATH)
2966 		name = dyn_str(re, stab, dyn->d_un.d_val);
2967 
2968 	switch(dyn->d_tag) {
2969 	case DT_NULL:
2970 	case DT_PLTGOT:
2971 	case DT_HASH:
2972 	case DT_STRTAB:
2973 	case DT_SYMTAB:
2974 	case DT_RELA:
2975 	case DT_INIT:
2976 	case DT_SYMBOLIC:
2977 	case DT_REL:
2978 	case DT_DEBUG:
2979 	case DT_TEXTREL:
2980 	case DT_JMPREL:
2981 	case DT_FINI:
2982 	case DT_VERDEF:
2983 	case DT_VERNEED:
2984 	case DT_VERSYM:
2985 	case DT_GNU_HASH:
2986 	case DT_GNU_LIBLIST:
2987 	case DT_GNU_CONFLICT:
2988 		printf(" 0x%jx\n", (uintmax_t) dyn->d_un.d_val);
2989 		break;
2990 	case DT_PLTRELSZ:
2991 	case DT_RELASZ:
2992 	case DT_RELAENT:
2993 	case DT_STRSZ:
2994 	case DT_SYMENT:
2995 	case DT_RELSZ:
2996 	case DT_RELENT:
2997 	case DT_PREINIT_ARRAYSZ:
2998 	case DT_INIT_ARRAYSZ:
2999 	case DT_FINI_ARRAYSZ:
3000 	case DT_GNU_CONFLICTSZ:
3001 	case DT_GNU_LIBLISTSZ:
3002 		printf(" %ju (bytes)\n", (uintmax_t) dyn->d_un.d_val);
3003 		break;
3004  	case DT_RELACOUNT:
3005 	case DT_RELCOUNT:
3006 	case DT_VERDEFNUM:
3007 	case DT_VERNEEDNUM:
3008 		printf(" %ju\n", (uintmax_t) dyn->d_un.d_val);
3009 		break;
3010 	case DT_AUXILIARY:
3011 		printf(" Auxiliary library: [%s]\n", name);
3012 		break;
3013 	case DT_FILTER:
3014 		printf(" Filter library: [%s]\n", name);
3015 		break;
3016 	case DT_NEEDED:
3017 		printf(" Shared library: [%s]\n", name);
3018 		break;
3019 	case DT_SONAME:
3020 		printf(" Library soname: [%s]\n", name);
3021 		break;
3022 	case DT_RPATH:
3023 		printf(" Library rpath: [%s]\n", name);
3024 		break;
3025 	case DT_RUNPATH:
3026 		printf(" Library runpath: [%s]\n", name);
3027 		break;
3028 	case DT_PLTREL:
3029 		printf(" %s\n", dt_type(re->ehdr.e_machine, dyn->d_un.d_val));
3030 		break;
3031 	case DT_GNU_PRELINKED:
3032 		printf(" %s\n", timestamp(dyn->d_un.d_val));
3033 		break;
3034 	case DT_FLAGS:
3035 		dump_flags(dt_flags, dyn->d_un.d_val);
3036 		break;
3037 	case DT_FLAGS_1:
3038 		dump_flags(dt_flags_1, dyn->d_un.d_val);
3039 		break;
3040 	default:
3041 		printf("\n");
3042 	}
3043 }
3044 
3045 static void
3046 dump_rel(struct readelf *re, struct section *s, Elf_Data *d)
3047 {
3048 	GElf_Rel r;
3049 	const char *symname;
3050 	uint64_t symval;
3051 	int i, len;
3052 	uint32_t type;
3053 	uint8_t type2, type3;
3054 
3055 	if (s->link >= re->shnum)
3056 		return;
3057 
3058 #define	REL_HDR "r_offset", "r_info", "r_type", "st_value", "st_name"
3059 #define	REL_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3060 		elftc_reloc_type_str(re->ehdr.e_machine,	    \
3061 		ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
3062 #define	REL_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3063 		elftc_reloc_type_str(re->ehdr.e_machine, type),	    \
3064 		(uintmax_t)symval, symname
3065 
3066 	printf("\nRelocation section (%s):\n", s->name);
3067 	if (re->ec == ELFCLASS32)
3068 		printf("%-8s %-8s %-19s %-8s %s\n", REL_HDR);
3069 	else {
3070 		if (re->options & RE_WW)
3071 			printf("%-16s %-16s %-24s %-16s %s\n", REL_HDR);
3072 		else
3073 			printf("%-12s %-12s %-19s %-16s %s\n", REL_HDR);
3074 	}
3075 	assert(d->d_size == s->sz);
3076 	if (!get_ent_count(s, &len))
3077 		return;
3078 	for (i = 0; i < len; i++) {
3079 		if (gelf_getrel(d, i, &r) != &r) {
3080 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3081 			continue;
3082 		}
3083 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3084 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3085 		if (re->ec == ELFCLASS32) {
3086 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3087 			    ELF64_R_TYPE(r.r_info));
3088 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s\n", REL_CT32);
3089 		} else {
3090 			type = ELF64_R_TYPE(r.r_info);
3091 			if (re->ehdr.e_machine == EM_MIPS) {
3092 				type2 = (type >> 8) & 0xFF;
3093 				type3 = (type >> 16) & 0xFF;
3094 				type = type & 0xFF;
3095 			} else {
3096 				type2 = type3 = 0;
3097 			}
3098 			if (re->options & RE_WW)
3099 				printf("%16.16jx %16.16jx %-24.24s"
3100 				    " %16.16jx %s\n", REL_CT64);
3101 			else
3102 				printf("%12.12jx %12.12jx %-19.19s"
3103 				    " %16.16jx %s\n", REL_CT64);
3104 			if (re->ehdr.e_machine == EM_MIPS) {
3105 				if (re->options & RE_WW) {
3106 					printf("%32s: %s\n", "Type2",
3107 					    elftc_reloc_type_str(EM_MIPS,
3108 					    type2));
3109 					printf("%32s: %s\n", "Type3",
3110 					    elftc_reloc_type_str(EM_MIPS,
3111 					    type3));
3112 				} else {
3113 					printf("%24s: %s\n", "Type2",
3114 					    elftc_reloc_type_str(EM_MIPS,
3115 					    type2));
3116 					printf("%24s: %s\n", "Type3",
3117 					    elftc_reloc_type_str(EM_MIPS,
3118 					    type3));
3119 				}
3120 			}
3121 		}
3122 	}
3123 
3124 #undef	REL_HDR
3125 #undef	REL_CT
3126 }
3127 
3128 static void
3129 dump_rela(struct readelf *re, struct section *s, Elf_Data *d)
3130 {
3131 	GElf_Rela r;
3132 	const char *symname;
3133 	uint64_t symval;
3134 	int i, len;
3135 	uint32_t type;
3136 	uint8_t type2, type3;
3137 
3138 	if (s->link >= re->shnum)
3139 		return;
3140 
3141 #define	RELA_HDR "r_offset", "r_info", "r_type", "st_value", \
3142 		"st_name + r_addend"
3143 #define	RELA_CT32 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3144 		elftc_reloc_type_str(re->ehdr.e_machine,	    \
3145 		ELF32_R_TYPE(r.r_info)), (uintmax_t)symval, symname
3146 #define	RELA_CT64 (uintmax_t)r.r_offset, (uintmax_t)r.r_info,	    \
3147 		elftc_reloc_type_str(re->ehdr.e_machine, type),	    \
3148 		(uintmax_t)symval, symname
3149 
3150 	printf("\nRelocation section with addend (%s):\n", s->name);
3151 	if (re->ec == ELFCLASS32)
3152 		printf("%-8s %-8s %-19s %-8s %s\n", RELA_HDR);
3153 	else {
3154 		if (re->options & RE_WW)
3155 			printf("%-16s %-16s %-24s %-16s %s\n", RELA_HDR);
3156 		else
3157 			printf("%-12s %-12s %-19s %-16s %s\n", RELA_HDR);
3158 	}
3159 	assert(d->d_size == s->sz);
3160 	if (!get_ent_count(s, &len))
3161 		return;
3162 	for (i = 0; i < len; i++) {
3163 		if (gelf_getrela(d, i, &r) != &r) {
3164 			warnx("gelf_getrel failed: %s", elf_errmsg(-1));
3165 			continue;
3166 		}
3167 		symname = get_symbol_name(re, s->link, GELF_R_SYM(r.r_info));
3168 		symval = get_symbol_value(re, s->link, GELF_R_SYM(r.r_info));
3169 		if (re->ec == ELFCLASS32) {
3170 			r.r_info = ELF32_R_INFO(ELF64_R_SYM(r.r_info),
3171 			    ELF64_R_TYPE(r.r_info));
3172 			printf("%8.8jx %8.8jx %-19.19s %8.8jx %s", RELA_CT32);
3173 			printf(" + %x\n", (uint32_t) r.r_addend);
3174 		} else {
3175 			type = ELF64_R_TYPE(r.r_info);
3176 			if (re->ehdr.e_machine == EM_MIPS) {
3177 				type2 = (type >> 8) & 0xFF;
3178 				type3 = (type >> 16) & 0xFF;
3179 				type = type & 0xFF;
3180 			} else {
3181 				type2 = type3 = 0;
3182 			}
3183 			if (re->options & RE_WW)
3184 				printf("%16.16jx %16.16jx %-24.24s"
3185 				    " %16.16jx %s", RELA_CT64);
3186 			else
3187 				printf("%12.12jx %12.12jx %-19.19s"
3188 				    " %16.16jx %s", RELA_CT64);
3189 			printf(" + %jx\n", (uintmax_t) r.r_addend);
3190 			if (re->ehdr.e_machine == EM_MIPS) {
3191 				if (re->options & RE_WW) {
3192 					printf("%32s: %s\n", "Type2",
3193 					    elftc_reloc_type_str(EM_MIPS,
3194 					    type2));
3195 					printf("%32s: %s\n", "Type3",
3196 					    elftc_reloc_type_str(EM_MIPS,
3197 					    type3));
3198 				} else {
3199 					printf("%24s: %s\n", "Type2",
3200 					    elftc_reloc_type_str(EM_MIPS,
3201 					    type2));
3202 					printf("%24s: %s\n", "Type3",
3203 					    elftc_reloc_type_str(EM_MIPS,
3204 					    type3));
3205 				}
3206 			}
3207 		}
3208 	}
3209 
3210 #undef	RELA_HDR
3211 #undef	RELA_CT
3212 }
3213 
3214 static void
3215 dump_reloc(struct readelf *re)
3216 {
3217 	struct section *s;
3218 	Elf_Data *d;
3219 	int i, elferr;
3220 
3221 	for (i = 0; (size_t)i < re->shnum; i++) {
3222 		s = &re->sl[i];
3223 		if (s->type == SHT_REL || s->type == SHT_RELA) {
3224 			(void) elf_errno();
3225 			if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3226 				elferr = elf_errno();
3227 				if (elferr != 0)
3228 					warnx("elf_getdata failed: %s",
3229 					    elf_errmsg(elferr));
3230 				continue;
3231 			}
3232 			if (s->type == SHT_REL)
3233 				dump_rel(re, s, d);
3234 			else
3235 				dump_rela(re, s, d);
3236 		}
3237 	}
3238 }
3239 
3240 static void
3241 dump_symtab(struct readelf *re, int i)
3242 {
3243 	struct section *s;
3244 	Elf_Data *d;
3245 	GElf_Sym sym;
3246 	const char *name;
3247 	uint32_t stab;
3248 	int elferr, j, len;
3249 	uint16_t vs;
3250 
3251 	s = &re->sl[i];
3252 	if (s->link >= re->shnum)
3253 		return;
3254 	stab = s->link;
3255 	(void) elf_errno();
3256 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3257 		elferr = elf_errno();
3258 		if (elferr != 0)
3259 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3260 		return;
3261 	}
3262 	if (d->d_size <= 0)
3263 		return;
3264 	if (!get_ent_count(s, &len))
3265 		return;
3266 	printf("\nSymbol table '%s' contains %d entries:\n", s->name, len);
3267 	printf("%7s%9s%14s%5s%8s%6s%9s%5s\n", "Num:", "Value", "Size", "Type",
3268 	    "Bind", "Vis", "Ndx", "Name");
3269 
3270 	for (j = 0; j < len; j++) {
3271 		if (gelf_getsym(d, j, &sym) != &sym) {
3272 			warnx("gelf_getsym failed: %s", elf_errmsg(-1));
3273 			continue;
3274 		}
3275 		printf("%6d:", j);
3276 		printf(" %16.16jx", (uintmax_t) sym.st_value);
3277 		printf(" %5ju", (uintmax_t) sym.st_size);
3278 		printf(" %-7s", st_type(re->ehdr.e_machine,
3279 		    re->ehdr.e_ident[EI_OSABI], GELF_ST_TYPE(sym.st_info)));
3280 		printf(" %-6s", st_bind(GELF_ST_BIND(sym.st_info)));
3281 		printf(" %-8s", st_vis(GELF_ST_VISIBILITY(sym.st_other)));
3282 		printf(" %3s", st_shndx(sym.st_shndx));
3283 		if ((name = elf_strptr(re->elf, stab, sym.st_name)) != NULL)
3284 			printf(" %s", name);
3285 		/* Append symbol version string for SHT_DYNSYM symbol table. */
3286 		if (s->type == SHT_DYNSYM && re->ver != NULL &&
3287 		    re->vs != NULL && re->vs[j] > 1) {
3288 			vs = re->vs[j] & VERSYM_VERSION;
3289 			if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
3290 				warnx("invalid versym version index %u", vs);
3291 				break;
3292 			}
3293 			if (re->vs[j] & VERSYM_HIDDEN || re->ver[vs].type == 0)
3294 				printf("@%s (%d)", re->ver[vs].name, vs);
3295 			else
3296 				printf("@@%s (%d)", re->ver[vs].name, vs);
3297 		}
3298 		putchar('\n');
3299 	}
3300 
3301 }
3302 
3303 static void
3304 dump_symtabs(struct readelf *re)
3305 {
3306 	GElf_Dyn dyn;
3307 	Elf_Data *d;
3308 	struct section *s;
3309 	uint64_t dyn_off;
3310 	int elferr, i, len;
3311 
3312 	/*
3313 	 * If -D is specified, only dump the symbol table specified by
3314 	 * the DT_SYMTAB entry in the .dynamic section.
3315 	 */
3316 	dyn_off = 0;
3317 	if (re->options & RE_DD) {
3318 		s = NULL;
3319 		for (i = 0; (size_t)i < re->shnum; i++)
3320 			if (re->sl[i].type == SHT_DYNAMIC) {
3321 				s = &re->sl[i];
3322 				break;
3323 			}
3324 		if (s == NULL)
3325 			return;
3326 		(void) elf_errno();
3327 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3328 			elferr = elf_errno();
3329 			if (elferr != 0)
3330 				warnx("elf_getdata failed: %s", elf_errmsg(-1));
3331 			return;
3332 		}
3333 		if (d->d_size <= 0)
3334 			return;
3335 		if (!get_ent_count(s, &len))
3336 			return;
3337 
3338 		for (i = 0; i < len; i++) {
3339 			if (gelf_getdyn(d, i, &dyn) != &dyn) {
3340 				warnx("gelf_getdyn failed: %s", elf_errmsg(-1));
3341 				continue;
3342 			}
3343 			if (dyn.d_tag == DT_SYMTAB) {
3344 				dyn_off = dyn.d_un.d_val;
3345 				break;
3346 			}
3347 		}
3348 	}
3349 
3350 	/* Find and dump symbol tables. */
3351 	for (i = 0; (size_t)i < re->shnum; i++) {
3352 		s = &re->sl[i];
3353 		if (s->type == SHT_SYMTAB || s->type == SHT_DYNSYM) {
3354 			if (re->options & RE_DD) {
3355 				if (dyn_off == s->addr) {
3356 					dump_symtab(re, i);
3357 					break;
3358 				}
3359 			} else
3360 				dump_symtab(re, i);
3361 		}
3362 	}
3363 }
3364 
3365 static void
3366 dump_svr4_hash(struct section *s)
3367 {
3368 	Elf_Data	*d;
3369 	uint32_t	*buf;
3370 	uint32_t	 nbucket, nchain;
3371 	uint32_t	*bucket, *chain;
3372 	uint32_t	*bl, *c, maxl, total;
3373 	int		 elferr, i, j;
3374 
3375 	/* Read and parse the content of .hash section. */
3376 	(void) elf_errno();
3377 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3378 		elferr = elf_errno();
3379 		if (elferr != 0)
3380 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3381 		return;
3382 	}
3383 	if (d->d_size < 2 * sizeof(uint32_t)) {
3384 		warnx(".hash section too small");
3385 		return;
3386 	}
3387 	buf = d->d_buf;
3388 	nbucket = buf[0];
3389 	nchain = buf[1];
3390 	if (nbucket <= 0 || nchain <= 0) {
3391 		warnx("Malformed .hash section");
3392 		return;
3393 	}
3394 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3395 		warnx("Malformed .hash section");
3396 		return;
3397 	}
3398 	bucket = &buf[2];
3399 	chain = &buf[2 + nbucket];
3400 
3401 	maxl = 0;
3402 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3403 		errx(EXIT_FAILURE, "calloc failed");
3404 	for (i = 0; (uint32_t)i < nbucket; i++)
3405 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3406 			if (++bl[i] > maxl)
3407 				maxl = bl[i];
3408 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3409 		errx(EXIT_FAILURE, "calloc failed");
3410 	for (i = 0; (uint32_t)i < nbucket; i++)
3411 		c[bl[i]]++;
3412 	printf("\nHistogram for bucket list length (total of %u buckets):\n",
3413 	    nbucket);
3414 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3415 	total = 0;
3416 	for (i = 0; (uint32_t)i <= maxl; i++) {
3417 		total += c[i] * i;
3418 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3419 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3420 	}
3421 	free(c);
3422 	free(bl);
3423 }
3424 
3425 static void
3426 dump_svr4_hash64(struct readelf *re, struct section *s)
3427 {
3428 	Elf_Data	*d, dst;
3429 	uint64_t	*buf;
3430 	uint64_t	 nbucket, nchain;
3431 	uint64_t	*bucket, *chain;
3432 	uint64_t	*bl, *c, maxl, total;
3433 	int		 elferr, i, j;
3434 
3435 	/*
3436 	 * ALPHA uses 64-bit hash entries. Since libelf assumes that
3437 	 * .hash section contains only 32-bit entry, an explicit
3438 	 * gelf_xlatetom is needed here.
3439 	 */
3440 	(void) elf_errno();
3441 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
3442 		elferr = elf_errno();
3443 		if (elferr != 0)
3444 			warnx("elf_rawdata failed: %s",
3445 			    elf_errmsg(elferr));
3446 		return;
3447 	}
3448 	d->d_type = ELF_T_XWORD;
3449 	memcpy(&dst, d, sizeof(Elf_Data));
3450 	if (gelf_xlatetom(re->elf, &dst, d,
3451 		re->ehdr.e_ident[EI_DATA]) != &dst) {
3452 		warnx("gelf_xlatetom failed: %s", elf_errmsg(-1));
3453 		return;
3454 	}
3455 	if (dst.d_size < 2 * sizeof(uint64_t)) {
3456 		warnx(".hash section too small");
3457 		return;
3458 	}
3459 	buf = dst.d_buf;
3460 	nbucket = buf[0];
3461 	nchain = buf[1];
3462 	if (nbucket <= 0 || nchain <= 0) {
3463 		warnx("Malformed .hash section");
3464 		return;
3465 	}
3466 	if (d->d_size != (nbucket + nchain + 2) * sizeof(uint32_t)) {
3467 		warnx("Malformed .hash section");
3468 		return;
3469 	}
3470 	bucket = &buf[2];
3471 	chain = &buf[2 + nbucket];
3472 
3473 	maxl = 0;
3474 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3475 		errx(EXIT_FAILURE, "calloc failed");
3476 	for (i = 0; (uint32_t)i < nbucket; i++)
3477 		for (j = bucket[i]; j > 0 && (uint32_t)j < nchain; j = chain[j])
3478 			if (++bl[i] > maxl)
3479 				maxl = bl[i];
3480 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3481 		errx(EXIT_FAILURE, "calloc failed");
3482 	for (i = 0; (uint64_t)i < nbucket; i++)
3483 		c[bl[i]]++;
3484 	printf("Histogram for bucket list length (total of %ju buckets):\n",
3485 	    (uintmax_t)nbucket);
3486 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3487 	total = 0;
3488 	for (i = 0; (uint64_t)i <= maxl; i++) {
3489 		total += c[i] * i;
3490 		printf("%7u\t%-10ju\t(%5.1f%%)\t%5.1f%%\n", i, (uintmax_t)c[i],
3491 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3492 	}
3493 	free(c);
3494 	free(bl);
3495 }
3496 
3497 static void
3498 dump_gnu_hash(struct readelf *re, struct section *s)
3499 {
3500 	struct section	*ds;
3501 	Elf_Data	*d;
3502 	uint32_t	*buf;
3503 	uint32_t	*bucket, *chain;
3504 	uint32_t	 nbucket, nchain, symndx, maskwords;
3505 	uint32_t	*bl, *c, maxl, total;
3506 	int		 elferr, dynsymcount, i, j;
3507 
3508 	(void) elf_errno();
3509 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3510 		elferr = elf_errno();
3511 		if (elferr != 0)
3512 			warnx("elf_getdata failed: %s",
3513 			    elf_errmsg(elferr));
3514 		return;
3515 	}
3516 	if (d->d_size < 4 * sizeof(uint32_t)) {
3517 		warnx(".gnu.hash section too small");
3518 		return;
3519 	}
3520 	buf = d->d_buf;
3521 	nbucket = buf[0];
3522 	symndx = buf[1];
3523 	maskwords = buf[2];
3524 	buf += 4;
3525 	if (s->link >= re->shnum)
3526 		return;
3527 	ds = &re->sl[s->link];
3528 	if (!get_ent_count(ds, &dynsymcount))
3529 		return;
3530 	if (symndx >= (uint32_t)dynsymcount) {
3531 		warnx("Malformed .gnu.hash section (symndx out of range)");
3532 		return;
3533 	}
3534 	nchain = dynsymcount - symndx;
3535 	if (d->d_size != 4 * sizeof(uint32_t) + maskwords *
3536 	    (re->ec == ELFCLASS32 ? sizeof(uint32_t) : sizeof(uint64_t)) +
3537 	    (nbucket + nchain) * sizeof(uint32_t)) {
3538 		warnx("Malformed .gnu.hash section");
3539 		return;
3540 	}
3541 	bucket = buf + (re->ec == ELFCLASS32 ? maskwords : maskwords * 2);
3542 	chain = bucket + nbucket;
3543 
3544 	maxl = 0;
3545 	if ((bl = calloc(nbucket, sizeof(*bl))) == NULL)
3546 		errx(EXIT_FAILURE, "calloc failed");
3547 	for (i = 0; (uint32_t)i < nbucket; i++)
3548 		for (j = bucket[i]; j > 0 && (uint32_t)j - symndx < nchain;
3549 		     j++) {
3550 			if (++bl[i] > maxl)
3551 				maxl = bl[i];
3552 			if (chain[j - symndx] & 1)
3553 				break;
3554 		}
3555 	if ((c = calloc(maxl + 1, sizeof(*c))) == NULL)
3556 		errx(EXIT_FAILURE, "calloc failed");
3557 	for (i = 0; (uint32_t)i < nbucket; i++)
3558 		c[bl[i]]++;
3559 	printf("Histogram for bucket list length (total of %u buckets):\n",
3560 	    nbucket);
3561 	printf(" Length\tNumber\t\t%% of total\tCoverage\n");
3562 	total = 0;
3563 	for (i = 0; (uint32_t)i <= maxl; i++) {
3564 		total += c[i] * i;
3565 		printf("%7u\t%-10u\t(%5.1f%%)\t%5.1f%%\n", i, c[i],
3566 		    c[i] * 100.0 / nbucket, total * 100.0 / (nchain - 1));
3567 	}
3568 	free(c);
3569 	free(bl);
3570 }
3571 
3572 static struct flag_desc gnu_property_aarch64_feature_1_and_bits[] = {
3573 	{ GNU_PROPERTY_AARCH64_FEATURE_1_BTI,	"BTI" },
3574 	{ GNU_PROPERTY_AARCH64_FEATURE_1_PAC,	"PAC" },
3575 	{ 0, NULL }
3576 };
3577 
3578 static struct flag_desc_list gnu_property_aarch64[] = {
3579 	{
3580 	    GNU_PROPERTY_AARCH64_FEATURE_1_AND,
3581 	    "AArch64 features",
3582 	    gnu_property_aarch64_feature_1_and_bits
3583 	},
3584 	{ 0, NULL, NULL }
3585 };
3586 
3587 static struct flag_desc gnu_property_x86_feature_1_and_bits[] = {
3588 	{ GNU_PROPERTY_X86_FEATURE_1_IBT,	"IBT" },
3589 	{ GNU_PROPERTY_X86_FEATURE_1_SHSTK,	"SHSTK" },
3590 	{ 0, NULL }
3591 };
3592 
3593 static struct flag_desc_list gnu_property_x86[] = {
3594 	{
3595 	    GNU_PROPERTY_X86_FEATURE_1_AND,
3596 	    "x64 features",
3597 	    gnu_property_x86_feature_1_and_bits
3598 	},
3599 	{ 0, NULL, NULL }
3600 };
3601 
3602 static struct {
3603 	unsigned int emachine;
3604 	struct flag_desc_list *flag_list;
3605 } gnu_property_archs[] = {
3606 	{ EM_AARCH64, gnu_property_aarch64 },
3607 	{ EM_X86_64, gnu_property_x86 },
3608 	{ 0, NULL }
3609 };
3610 
3611 static void
3612 dump_gnu_property_type_0(struct readelf *re, const char *buf, size_t sz)
3613 {
3614 	struct flag_desc_list *desc_list;
3615 	struct flag_desc *desc;
3616 	size_t i;
3617 	uint32_t type, prop_sz;
3618 
3619 	printf("      Properties: ");
3620 	while (sz > 0) {
3621 		if (sz < 8)
3622 			goto bad;
3623 
3624 		type = *(const uint32_t *)(const void *)buf;
3625 		prop_sz = *(const uint32_t *)(const void *)(buf + 4);
3626 		buf += 8;
3627 		sz -= 8;
3628 
3629 		if (prop_sz > sz)
3630 			goto bad;
3631 
3632 		if (type >= GNU_PROPERTY_LOPROC &&
3633 		    type <= GNU_PROPERTY_HIPROC) {
3634 			desc_list = NULL;
3635 			for (i = 0; gnu_property_archs[i].flag_list != NULL;
3636 			    i++) {
3637 				if (gnu_property_archs[i].emachine ==
3638 				    re->ehdr.e_machine) {
3639 					desc_list =
3640 					    gnu_property_archs[i].flag_list;
3641 					break;
3642 				}
3643 			}
3644 			if (desc_list == NULL) {
3645 				printf("machine type %x unknown\n",
3646 				    re->ehdr.e_machine);
3647 				goto unknown;
3648 			}
3649 
3650 			desc = NULL;
3651 			for (i = 0; desc_list[i].desc != NULL; i++) {
3652 				if (desc_list[i].type == type) {
3653 					desc = desc_list[i].desc;
3654 					break;
3655 				}
3656 			}
3657 			if (desc != NULL) {
3658 				printf("%s:", desc_list[i].desc_str);
3659 				if (prop_sz != 4)
3660 					goto bad;
3661 				dump_flags(desc,
3662 				    *(const uint32_t *)(const void *)buf);
3663 			}
3664 		}
3665 
3666 		buf += roundup2(prop_sz, 8);
3667 		sz -= roundup2(prop_sz, 8);
3668 	}
3669 	return;
3670 bad:
3671 	printf("corrupt GNU property\n");
3672 unknown:
3673 	printf("remaining description data:");
3674 	for (i = 0; i < sz; i++)
3675 		printf(" %02x", (unsigned char)buf[i]);
3676 	printf("\n");
3677 }
3678 
3679 static void
3680 dump_hash(struct readelf *re)
3681 {
3682 	struct section	*s;
3683 	int		 i;
3684 
3685 	for (i = 0; (size_t) i < re->shnum; i++) {
3686 		s = &re->sl[i];
3687 		if (s->type == SHT_HASH || s->type == SHT_GNU_HASH) {
3688 			if (s->type == SHT_GNU_HASH)
3689 				dump_gnu_hash(re, s);
3690 			else if (re->ehdr.e_machine == EM_ALPHA &&
3691 			    s->entsize == 8)
3692 				dump_svr4_hash64(re, s);
3693 			else
3694 				dump_svr4_hash(s);
3695 		}
3696 	}
3697 }
3698 
3699 static void
3700 dump_notes(struct readelf *re)
3701 {
3702 	struct section *s;
3703 	const char *rawfile;
3704 	GElf_Phdr phdr;
3705 	Elf_Data *d;
3706 	size_t filesize, phnum;
3707 	int i, elferr;
3708 
3709 	if (re->ehdr.e_type == ET_CORE) {
3710 		/*
3711 		 * Search program headers in the core file for
3712 		 * PT_NOTE entry.
3713 		 */
3714 		if (elf_getphnum(re->elf, &phnum) == 0) {
3715 			warnx("elf_getphnum failed: %s", elf_errmsg(-1));
3716 			return;
3717 		}
3718 		if (phnum == 0)
3719 			return;
3720 		if ((rawfile = elf_rawfile(re->elf, &filesize)) == NULL) {
3721 			warnx("elf_rawfile failed: %s", elf_errmsg(-1));
3722 			return;
3723 		}
3724 		for (i = 0; (size_t) i < phnum; i++) {
3725 			if (gelf_getphdr(re->elf, i, &phdr) != &phdr) {
3726 				warnx("gelf_getphdr failed: %s",
3727 				    elf_errmsg(-1));
3728 				continue;
3729 			}
3730 			if (phdr.p_type == PT_NOTE) {
3731 				if (phdr.p_offset >= filesize ||
3732 				    phdr.p_filesz > filesize - phdr.p_offset) {
3733 					warnx("invalid PHDR offset");
3734 					continue;
3735 				}
3736 				dump_notes_content(re, rawfile + phdr.p_offset,
3737 				    phdr.p_filesz, phdr.p_offset);
3738 			}
3739 		}
3740 
3741 	} else {
3742 		/*
3743 		 * For objects other than core files, Search for
3744 		 * SHT_NOTE sections.
3745 		 */
3746 		for (i = 0; (size_t) i < re->shnum; i++) {
3747 			s = &re->sl[i];
3748 			if (s->type == SHT_NOTE) {
3749 				(void) elf_errno();
3750 				if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3751 					elferr = elf_errno();
3752 					if (elferr != 0)
3753 						warnx("elf_getdata failed: %s",
3754 						    elf_errmsg(elferr));
3755 					continue;
3756 				}
3757 				dump_notes_content(re, d->d_buf, d->d_size,
3758 				    s->off);
3759 			}
3760 		}
3761 	}
3762 }
3763 
3764 static struct flag_desc note_feature_ctl_flags[] = {
3765 	{ NT_FREEBSD_FCTL_ASLR_DISABLE,		"ASLR_DISABLE" },
3766 	{ NT_FREEBSD_FCTL_PROTMAX_DISABLE,	"PROTMAX_DISABLE" },
3767 	{ NT_FREEBSD_FCTL_STKGAP_DISABLE,	"STKGAP_DISABLE" },
3768 	{ NT_FREEBSD_FCTL_WXNEEDED,		"WXNEEDED" },
3769 	{ NT_FREEBSD_FCTL_LA48,			"LA48" },
3770 	{ 0, NULL }
3771 };
3772 
3773 static bool
3774 dump_note_string(const char *description, const char *s, size_t len)
3775 {
3776 	size_t i;
3777 
3778 	if (len == 0 || s[--len] != '\0') {
3779 		return (false);
3780 	} else {
3781 		for (i = 0; i < len; i++)
3782 			if (!isprint(s[i]))
3783 				return (false);
3784 	}
3785 
3786 	printf("   %s: %s\n", description, s);
3787 	return (true);
3788 }
3789 
3790 struct note_desc {
3791 	uint32_t type;
3792 	const char *description;
3793 	bool (*fp)(const char *, const char *, size_t);
3794 };
3795 
3796 static struct note_desc xen_notes[] = {
3797 	{ 5, "Xen version", dump_note_string },
3798 	{ 6, "Guest OS", dump_note_string },
3799 	{ 7, "Guest version", dump_note_string },
3800 	{ 8, "Loader", dump_note_string },
3801 	{ 9, "PAE mode", dump_note_string },
3802 	{ 10, "Features", dump_note_string },
3803 	{ 11, "BSD symtab", dump_note_string },
3804 	{ 0, NULL, NULL }
3805 };
3806 
3807 static void
3808 dump_notes_data(struct readelf *re, const char *name, uint32_t type,
3809     const char *buf, size_t sz)
3810 {
3811 	struct note_desc *nd;
3812 	size_t i;
3813 	const uint32_t *ubuf;
3814 
3815 	/* Note data is at least 4-byte aligned. */
3816 	if (((uintptr_t)buf & 3) != 0) {
3817 		warnx("bad note data alignment");
3818 		goto unknown;
3819 	}
3820 	ubuf = (const uint32_t *)(const void *)buf;
3821 
3822 	if (strcmp(name, "FreeBSD") == 0) {
3823 		switch (type) {
3824 		case NT_FREEBSD_ABI_TAG:
3825 			if (sz != 4)
3826 				goto unknown;
3827 			printf("   ABI tag: %u\n", ubuf[0]);
3828 			return;
3829 		/* NT_FREEBSD_NOINIT_TAG carries no data, treat as unknown. */
3830 		case NT_FREEBSD_ARCH_TAG:
3831 			printf("   Arch tag: %s\n", buf);
3832 			return;
3833 		case NT_FREEBSD_FEATURE_CTL:
3834 			if (sz != 4)
3835 				goto unknown;
3836 			printf("   Features:");
3837 			dump_flags(note_feature_ctl_flags, ubuf[0]);
3838 			return;
3839 		}
3840 	} else if (strcmp(name, "Go") == 0) {
3841 		if (type == 4) {
3842 			printf("   Build ID: ");
3843 			for (i = 0; i < sz; i++) {
3844 				printf(isprint(buf[i]) ? "%c" : "<%02x>",
3845 				    buf[i]);
3846 			}
3847 			printf("\n");
3848 			return;
3849 		}
3850 	} else if (strcmp(name, "GNU") == 0) {
3851 		switch (type) {
3852 		case NT_GNU_PROPERTY_TYPE_0:
3853 			dump_gnu_property_type_0(re, buf, sz);
3854 			return;
3855 		case NT_GNU_BUILD_ID:
3856 			printf("   Build ID: ");
3857 			for (i = 0; i < sz; i++)
3858 				printf("%02x", (unsigned char)buf[i]);
3859 			printf("\n");
3860 			return;
3861 		}
3862 	} else if (strcmp(name, "Xen") == 0) {
3863 		for (nd = xen_notes; nd->description != NULL; nd++) {
3864 			if (nd->type == type) {
3865 				if (nd->fp(nd->description, buf, sz))
3866 					return;
3867 				else
3868 					break;
3869 			}
3870 		}
3871 	}
3872 unknown:
3873 	printf("   description data:");
3874 	for (i = 0; i < sz; i++)
3875 		printf(" %02x", (unsigned char)buf[i]);
3876 	printf("\n");
3877 }
3878 
3879 static void
3880 dump_notes_content(struct readelf *re, const char *buf, size_t sz, off_t off)
3881 {
3882 	Elf_Note *note;
3883 	const char *end, *name;
3884 	uint32_t namesz, descsz;
3885 
3886 	printf("\nNotes at offset %#010jx with length %#010jx:\n",
3887 	    (uintmax_t) off, (uintmax_t) sz);
3888 	printf("  %-13s %-15s %s\n", "Owner", "Data size", "Description");
3889 	end = buf + sz;
3890 	while (buf < end) {
3891 		if (buf + sizeof(*note) > end) {
3892 			warnx("invalid note header");
3893 			return;
3894 		}
3895 		note = (Elf_Note *)(uintptr_t) buf;
3896 		namesz = roundup2(note->n_namesz, 4);
3897 		descsz = roundup2(note->n_descsz, 4);
3898 		if (namesz < note->n_namesz || descsz < note->n_descsz ||
3899 		    buf + namesz + descsz > end) {
3900 			warnx("invalid note header");
3901 			return;
3902 		}
3903 		buf += sizeof(Elf_Note);
3904 		name = buf;
3905 		buf += namesz;
3906 		/*
3907 		 * The name field is required to be nul-terminated, and
3908 		 * n_namesz includes the terminating nul in observed
3909 		 * implementations (contrary to the ELF-64 spec). A special
3910 		 * case is needed for cores generated by some older Linux
3911 		 * versions, which write a note named "CORE" without a nul
3912 		 * terminator and n_namesz = 4.
3913 		 */
3914 		if (note->n_namesz == 0)
3915 			name = "";
3916 		else if (note->n_namesz == 4 && strncmp(name, "CORE", 4) == 0)
3917 			name = "CORE";
3918 		else if (strnlen(name, note->n_namesz) >= note->n_namesz)
3919 			name = "<invalid>";
3920 		printf("  %-13s %#010jx", name, (uintmax_t) note->n_descsz);
3921 		printf("      %s\n", note_type(name, re->ehdr.e_type,
3922 		    note->n_type));
3923 		dump_notes_data(re, name, note->n_type, buf, note->n_descsz);
3924 		buf += descsz;
3925 	}
3926 }
3927 
3928 /*
3929  * Symbol versioning sections are the same for 32bit and 64bit
3930  * ELF objects.
3931  */
3932 #define Elf_Verdef	Elf32_Verdef
3933 #define	Elf_Verdaux	Elf32_Verdaux
3934 #define	Elf_Verneed	Elf32_Verneed
3935 #define	Elf_Vernaux	Elf32_Vernaux
3936 
3937 #define	SAVE_VERSION_NAME(x, n, t)					\
3938 	do {								\
3939 		while (x >= re->ver_sz) {				\
3940 			nv = realloc(re->ver,				\
3941 			    sizeof(*re->ver) * re->ver_sz * 2);		\
3942 			if (nv == NULL) {				\
3943 				warn("realloc failed");			\
3944 				free(re->ver);				\
3945 				return;					\
3946 			}						\
3947 			re->ver = nv;					\
3948 			for (i = re->ver_sz; i < re->ver_sz * 2; i++) {	\
3949 				re->ver[i].name = NULL;			\
3950 				re->ver[i].type = 0;			\
3951 			}						\
3952 			re->ver_sz *= 2;				\
3953 		}							\
3954 		if (x > 1) {						\
3955 			re->ver[x].name = n;				\
3956 			re->ver[x].type = t;				\
3957 		}							\
3958 	} while (0)
3959 
3960 
3961 static void
3962 dump_verdef(struct readelf *re, int dump)
3963 {
3964 	struct section *s;
3965 	struct symver *nv;
3966 	Elf_Data *d;
3967 	Elf_Verdef *vd;
3968 	Elf_Verdaux *vda;
3969 	uint8_t *buf, *end, *buf2;
3970 	const char *name;
3971 	int elferr, i, j;
3972 
3973 	if ((s = re->vd_s) == NULL)
3974 		return;
3975 	if (s->link >= re->shnum)
3976 		return;
3977 
3978 	if (re->ver == NULL) {
3979 		re->ver_sz = 16;
3980 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
3981 		    NULL) {
3982 			warn("calloc failed");
3983 			return;
3984 		}
3985 		re->ver[0].name = "*local*";
3986 		re->ver[1].name = "*global*";
3987 	}
3988 
3989 	if (dump)
3990 		printf("\nVersion definition section (%s):\n", s->name);
3991 	(void) elf_errno();
3992 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
3993 		elferr = elf_errno();
3994 		if (elferr != 0)
3995 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
3996 		return;
3997 	}
3998 	if (d->d_size == 0)
3999 		return;
4000 
4001 	buf = d->d_buf;
4002 	end = buf + d->d_size;
4003 	while (buf + sizeof(Elf_Verdef) <= end) {
4004 		vd = (Elf_Verdef *) (uintptr_t) buf;
4005 		if (dump) {
4006 			printf("  0x%4.4lx", (unsigned long)
4007 			    (buf - (uint8_t *)d->d_buf));
4008 			printf(" vd_version: %u vd_flags: %d"
4009 			    " vd_ndx: %u vd_cnt: %u", vd->vd_version,
4010 			    vd->vd_flags, vd->vd_ndx, vd->vd_cnt);
4011 		}
4012 		buf2 = buf + vd->vd_aux;
4013 		j = 0;
4014 		while (buf2 + sizeof(Elf_Verdaux) <= end && j < vd->vd_cnt) {
4015 			vda = (Elf_Verdaux *) (uintptr_t) buf2;
4016 			name = get_string(re, s->link, vda->vda_name);
4017 			if (j == 0) {
4018 				if (dump)
4019 					printf(" vda_name: %s\n", name);
4020 				SAVE_VERSION_NAME((int)vd->vd_ndx, name, 1);
4021 			} else if (dump)
4022 				printf("  0x%4.4lx parent: %s\n",
4023 				    (unsigned long) (buf2 -
4024 				    (uint8_t *)d->d_buf), name);
4025 			if (vda->vda_next == 0)
4026 				break;
4027 			buf2 += vda->vda_next;
4028 			j++;
4029 		}
4030 		if (vd->vd_next == 0)
4031 			break;
4032 		buf += vd->vd_next;
4033 	}
4034 }
4035 
4036 static void
4037 dump_verneed(struct readelf *re, int dump)
4038 {
4039 	struct section *s;
4040 	struct symver *nv;
4041 	Elf_Data *d;
4042 	Elf_Verneed *vn;
4043 	Elf_Vernaux *vna;
4044 	uint8_t *buf, *end, *buf2;
4045 	const char *name;
4046 	int elferr, i, j;
4047 
4048 	if ((s = re->vn_s) == NULL)
4049 		return;
4050 	if (s->link >= re->shnum)
4051 		return;
4052 
4053 	if (re->ver == NULL) {
4054 		re->ver_sz = 16;
4055 		if ((re->ver = calloc(re->ver_sz, sizeof(*re->ver))) ==
4056 		    NULL) {
4057 			warn("calloc failed");
4058 			return;
4059 		}
4060 		re->ver[0].name = "*local*";
4061 		re->ver[1].name = "*global*";
4062 	}
4063 
4064 	if (dump)
4065 		printf("\nVersion needed section (%s):\n", s->name);
4066 	(void) elf_errno();
4067 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4068 		elferr = elf_errno();
4069 		if (elferr != 0)
4070 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
4071 		return;
4072 	}
4073 	if (d->d_size == 0)
4074 		return;
4075 
4076 	buf = d->d_buf;
4077 	end = buf + d->d_size;
4078 	while (buf + sizeof(Elf_Verneed) <= end) {
4079 		vn = (Elf_Verneed *) (uintptr_t) buf;
4080 		if (dump) {
4081 			printf("  0x%4.4lx", (unsigned long)
4082 			    (buf - (uint8_t *)d->d_buf));
4083 			printf(" vn_version: %u vn_file: %s vn_cnt: %u\n",
4084 			    vn->vn_version,
4085 			    get_string(re, s->link, vn->vn_file),
4086 			    vn->vn_cnt);
4087 		}
4088 		buf2 = buf + vn->vn_aux;
4089 		j = 0;
4090 		while (buf2 + sizeof(Elf_Vernaux) <= end && j < vn->vn_cnt) {
4091 			vna = (Elf32_Vernaux *) (uintptr_t) buf2;
4092 			if (dump)
4093 				printf("  0x%4.4lx", (unsigned long)
4094 				    (buf2 - (uint8_t *)d->d_buf));
4095 			name = get_string(re, s->link, vna->vna_name);
4096 			if (dump)
4097 				printf("   vna_name: %s vna_flags: %u"
4098 				    " vna_other: %u\n", name,
4099 				    vna->vna_flags, vna->vna_other);
4100 			SAVE_VERSION_NAME((int)vna->vna_other, name, 0);
4101 			if (vna->vna_next == 0)
4102 				break;
4103 			buf2 += vna->vna_next;
4104 			j++;
4105 		}
4106 		if (vn->vn_next == 0)
4107 			break;
4108 		buf += vn->vn_next;
4109 	}
4110 }
4111 
4112 static void
4113 dump_versym(struct readelf *re)
4114 {
4115 	int i;
4116 	uint16_t vs;
4117 
4118 	if (re->vs_s == NULL || re->ver == NULL || re->vs == NULL)
4119 		return;
4120 	printf("\nVersion symbol section (%s):\n", re->vs_s->name);
4121 	for (i = 0; i < re->vs_sz; i++) {
4122 		if ((i & 3) == 0) {
4123 			if (i > 0)
4124 				putchar('\n');
4125 			printf("  %03x:", i);
4126 		}
4127 		vs = re->vs[i] & VERSYM_VERSION;
4128 		if (vs >= re->ver_sz || re->ver[vs].name == NULL) {
4129 			warnx("invalid versym version index %u", re->vs[i]);
4130 			break;
4131 		}
4132 		if (re->vs[i] & VERSYM_HIDDEN)
4133 			printf(" %3xh %-12s ", vs,
4134 			    re->ver[re->vs[i] & VERSYM_VERSION].name);
4135 		else
4136 			printf(" %3x %-12s ", vs, re->ver[re->vs[i]].name);
4137 	}
4138 	putchar('\n');
4139 }
4140 
4141 static void
4142 dump_ver(struct readelf *re)
4143 {
4144 
4145 	if (re->vs_s && re->ver && re->vs)
4146 		dump_versym(re);
4147 	if (re->vd_s)
4148 		dump_verdef(re, 1);
4149 	if (re->vn_s)
4150 		dump_verneed(re, 1);
4151 }
4152 
4153 static void
4154 search_ver(struct readelf *re)
4155 {
4156 	struct section *s;
4157 	Elf_Data *d;
4158 	int elferr, i;
4159 
4160 	for (i = 0; (size_t) i < re->shnum; i++) {
4161 		s = &re->sl[i];
4162 		if (s->type == SHT_SUNW_versym)
4163 			re->vs_s = s;
4164 		if (s->type == SHT_SUNW_verneed)
4165 			re->vn_s = s;
4166 		if (s->type == SHT_SUNW_verdef)
4167 			re->vd_s = s;
4168 	}
4169 	if (re->vd_s)
4170 		dump_verdef(re, 0);
4171 	if (re->vn_s)
4172 		dump_verneed(re, 0);
4173 	if (re->vs_s && re->ver != NULL) {
4174 		(void) elf_errno();
4175 		if ((d = elf_getdata(re->vs_s->scn, NULL)) == NULL) {
4176 			elferr = elf_errno();
4177 			if (elferr != 0)
4178 				warnx("elf_getdata failed: %s",
4179 				    elf_errmsg(elferr));
4180 			return;
4181 		}
4182 		if (d->d_size == 0)
4183 			return;
4184 		re->vs = d->d_buf;
4185 		re->vs_sz = d->d_size / sizeof(Elf32_Half);
4186 	}
4187 }
4188 
4189 #undef	Elf_Verdef
4190 #undef	Elf_Verdaux
4191 #undef	Elf_Verneed
4192 #undef	Elf_Vernaux
4193 #undef	SAVE_VERSION_NAME
4194 
4195 /*
4196  * Elf32_Lib and Elf64_Lib are identical.
4197  */
4198 #define	Elf_Lib		Elf32_Lib
4199 
4200 static void
4201 dump_liblist(struct readelf *re)
4202 {
4203 	struct section *s;
4204 	struct tm *t;
4205 	time_t ti;
4206 	char tbuf[20];
4207 	Elf_Data *d;
4208 	Elf_Lib *lib;
4209 	int i, j, k, elferr, first, len;
4210 
4211 	for (i = 0; (size_t) i < re->shnum; i++) {
4212 		s = &re->sl[i];
4213 		if (s->type != SHT_GNU_LIBLIST)
4214 			continue;
4215 		if (s->link >= re->shnum)
4216 			continue;
4217 		(void) elf_errno();
4218 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4219 			elferr = elf_errno();
4220 			if (elferr != 0)
4221 				warnx("elf_getdata failed: %s",
4222 				    elf_errmsg(elferr));
4223 			continue;
4224 		}
4225 		if (d->d_size <= 0)
4226 			continue;
4227 		lib = d->d_buf;
4228 		if (!get_ent_count(s, &len))
4229 			continue;
4230 		printf("\nLibrary list section '%s' ", s->name);
4231 		printf("contains %d entries:\n", len);
4232 		printf("%12s%24s%18s%10s%6s\n", "Library", "Time Stamp",
4233 		    "Checksum", "Version", "Flags");
4234 		for (j = 0; (uint64_t) j < s->sz / s->entsize; j++) {
4235 			printf("%3d: ", j);
4236 			printf("%-20.20s ",
4237 			    get_string(re, s->link, lib->l_name));
4238 			ti = lib->l_time_stamp;
4239 			t = gmtime(&ti);
4240 			snprintf(tbuf, sizeof(tbuf), "%04d-%02d-%02dT%02d:%02d"
4241 			    ":%2d", t->tm_year + 1900, t->tm_mon + 1,
4242 			    t->tm_mday, t->tm_hour, t->tm_min, t->tm_sec);
4243 			printf("%-19.19s ", tbuf);
4244 			printf("0x%08x ", lib->l_checksum);
4245 			printf("%-7d %#x", lib->l_version, lib->l_flags);
4246 			if (lib->l_flags != 0) {
4247 				first = 1;
4248 				putchar('(');
4249 				for (k = 0; l_flag[k].name != NULL; k++) {
4250 					if ((l_flag[k].value & lib->l_flags) ==
4251 					    0)
4252 						continue;
4253 					if (!first)
4254 						putchar(',');
4255 					else
4256 						first = 0;
4257 					printf("%s", l_flag[k].name);
4258 				}
4259 				putchar(')');
4260 			}
4261 			putchar('\n');
4262 			lib++;
4263 		}
4264 	}
4265 }
4266 
4267 #undef Elf_Lib
4268 
4269 static void
4270 dump_section_groups(struct readelf *re)
4271 {
4272 	struct section *s;
4273 	const char *symname;
4274 	Elf_Data *d;
4275 	uint32_t *w;
4276 	int i, j, elferr;
4277 	size_t n;
4278 
4279 	for (i = 0; (size_t) i < re->shnum; i++) {
4280 		s = &re->sl[i];
4281 		if (s->type != SHT_GROUP)
4282 			continue;
4283 		if (s->link >= re->shnum)
4284 			continue;
4285 		(void) elf_errno();
4286 		if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4287 			elferr = elf_errno();
4288 			if (elferr != 0)
4289 				warnx("elf_getdata failed: %s",
4290 				    elf_errmsg(elferr));
4291 			continue;
4292 		}
4293 		if (d->d_size <= 0)
4294 			continue;
4295 
4296 		w = d->d_buf;
4297 
4298 		/* We only support COMDAT section. */
4299 #ifndef GRP_COMDAT
4300 #define	GRP_COMDAT 0x1
4301 #endif
4302 		if ((*w++ & GRP_COMDAT) == 0)
4303 			return;
4304 
4305 		if (s->entsize == 0)
4306 			s->entsize = 4;
4307 
4308 		symname = get_symbol_name(re, s->link, s->info);
4309 		n = s->sz / s->entsize;
4310 		if (n-- < 1)
4311 			return;
4312 
4313 		printf("\nCOMDAT group section [%5d] `%s' [%s] contains %ju"
4314 		    " sections:\n", i, s->name, symname, (uintmax_t)n);
4315 		printf("   %-10.10s %s\n", "[Index]", "Name");
4316 		for (j = 0; (size_t) j < n; j++, w++) {
4317 			if (*w >= re->shnum) {
4318 				warnx("invalid section index: %u", *w);
4319 				continue;
4320 			}
4321 			printf("   [%5u]   %s\n", *w, re->sl[*w].name);
4322 		}
4323 	}
4324 }
4325 
4326 static uint8_t *
4327 dump_unknown_tag(uint64_t tag, uint8_t *p, uint8_t *pe)
4328 {
4329 	uint64_t val;
4330 
4331 	/*
4332 	 * According to ARM EABI: For tags > 32, even numbered tags have
4333 	 * a ULEB128 param and odd numbered ones have NUL-terminated
4334 	 * string param. This rule probably also applies for tags <= 32
4335 	 * if the object arch is not ARM.
4336 	 */
4337 
4338 	printf("  Tag_unknown_%ju: ", (uintmax_t) tag);
4339 
4340 	if (tag & 1) {
4341 		printf("%s\n", (char *) p);
4342 		p += strlen((char *) p) + 1;
4343 	} else {
4344 		val = _decode_uleb128(&p, pe);
4345 		printf("%ju\n", (uintmax_t) val);
4346 	}
4347 
4348 	return (p);
4349 }
4350 
4351 static uint8_t *
4352 dump_compatibility_tag(uint8_t *p, uint8_t *pe)
4353 {
4354 	uint64_t val;
4355 
4356 	val = _decode_uleb128(&p, pe);
4357 	printf("flag = %ju, vendor = %s\n", (uintmax_t) val, p);
4358 	p += strlen((char *) p) + 1;
4359 
4360 	return (p);
4361 }
4362 
4363 static void
4364 dump_arm_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4365 {
4366 	uint64_t tag, val;
4367 	size_t i;
4368 	int found, desc;
4369 
4370 	(void) re;
4371 
4372 	while (p < pe) {
4373 		tag = _decode_uleb128(&p, pe);
4374 		found = desc = 0;
4375 		for (i = 0; i < sizeof(aeabi_tags) / sizeof(aeabi_tags[0]);
4376 		     i++) {
4377 			if (tag == aeabi_tags[i].tag) {
4378 				found = 1;
4379 				printf("  %s: ", aeabi_tags[i].s_tag);
4380 				if (aeabi_tags[i].get_desc) {
4381 					desc = 1;
4382 					val = _decode_uleb128(&p, pe);
4383 					printf("%s\n",
4384 					    aeabi_tags[i].get_desc(val));
4385 				}
4386 				break;
4387 			}
4388 			if (tag < aeabi_tags[i].tag)
4389 				break;
4390 		}
4391 		if (!found) {
4392 			p = dump_unknown_tag(tag, p, pe);
4393 			continue;
4394 		}
4395 		if (desc)
4396 			continue;
4397 
4398 		switch (tag) {
4399 		case 4:		/* Tag_CPU_raw_name */
4400 		case 5:		/* Tag_CPU_name */
4401 		case 67:	/* Tag_conformance */
4402 			printf("%s\n", (char *) p);
4403 			p += strlen((char *) p) + 1;
4404 			break;
4405 		case 32:	/* Tag_compatibility */
4406 			p = dump_compatibility_tag(p, pe);
4407 			break;
4408 		case 64:	/* Tag_nodefaults */
4409 			/* ignored, written as 0. */
4410 			(void) _decode_uleb128(&p, pe);
4411 			printf("True\n");
4412 			break;
4413 		case 65:	/* Tag_also_compatible_with */
4414 			val = _decode_uleb128(&p, pe);
4415 			/* Must be Tag_CPU_arch */
4416 			if (val != 6) {
4417 				printf("unknown\n");
4418 				break;
4419 			}
4420 			val = _decode_uleb128(&p, pe);
4421 			printf("%s\n", aeabi_cpu_arch(val));
4422 			/* Skip NUL terminator. */
4423 			p++;
4424 			break;
4425 		default:
4426 			putchar('\n');
4427 			break;
4428 		}
4429 	}
4430 }
4431 
4432 #ifndef	Tag_GNU_MIPS_ABI_FP
4433 #define	Tag_GNU_MIPS_ABI_FP	4
4434 #endif
4435 
4436 static void
4437 dump_mips_attributes(struct readelf *re, uint8_t *p, uint8_t *pe)
4438 {
4439 	uint64_t tag, val;
4440 
4441 	(void) re;
4442 
4443 	while (p < pe) {
4444 		tag = _decode_uleb128(&p, pe);
4445 		switch (tag) {
4446 		case Tag_GNU_MIPS_ABI_FP:
4447 			val = _decode_uleb128(&p, pe);
4448 			printf("  Tag_GNU_MIPS_ABI_FP: %s\n", mips_abi_fp(val));
4449 			break;
4450 		case 32:	/* Tag_compatibility */
4451 			p = dump_compatibility_tag(p, pe);
4452 			break;
4453 		default:
4454 			p = dump_unknown_tag(tag, p, pe);
4455 			break;
4456 		}
4457 	}
4458 }
4459 
4460 #ifndef Tag_GNU_Power_ABI_FP
4461 #define	Tag_GNU_Power_ABI_FP	4
4462 #endif
4463 
4464 #ifndef Tag_GNU_Power_ABI_Vector
4465 #define	Tag_GNU_Power_ABI_Vector	8
4466 #endif
4467 
4468 static void
4469 dump_ppc_attributes(uint8_t *p, uint8_t *pe)
4470 {
4471 	uint64_t tag, val;
4472 
4473 	while (p < pe) {
4474 		tag = _decode_uleb128(&p, pe);
4475 		switch (tag) {
4476 		case Tag_GNU_Power_ABI_FP:
4477 			val = _decode_uleb128(&p, pe);
4478 			printf("  Tag_GNU_Power_ABI_FP: %s\n", ppc_abi_fp(val));
4479 			break;
4480 		case Tag_GNU_Power_ABI_Vector:
4481 			val = _decode_uleb128(&p, pe);
4482 			printf("  Tag_GNU_Power_ABI_Vector: %s\n",
4483 			    ppc_abi_vector(val));
4484 			break;
4485 		case 32:	/* Tag_compatibility */
4486 			p = dump_compatibility_tag(p, pe);
4487 			break;
4488 		default:
4489 			p = dump_unknown_tag(tag, p, pe);
4490 			break;
4491 		}
4492 	}
4493 }
4494 
4495 static void
4496 dump_attributes(struct readelf *re)
4497 {
4498 	struct section *s;
4499 	Elf_Data *d;
4500 	uint8_t *p, *pe, *sp;
4501 	size_t len, seclen, nlen, sublen;
4502 	uint64_t val;
4503 	int tag, i, elferr;
4504 
4505 	for (i = 0; (size_t) i < re->shnum; i++) {
4506 		s = &re->sl[i];
4507 		if (s->type != SHT_GNU_ATTRIBUTES &&
4508 		    (re->ehdr.e_machine != EM_ARM || s->type != SHT_LOPROC + 3))
4509 			continue;
4510 		(void) elf_errno();
4511 		if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4512 			elferr = elf_errno();
4513 			if (elferr != 0)
4514 				warnx("elf_rawdata failed: %s",
4515 				    elf_errmsg(elferr));
4516 			continue;
4517 		}
4518 		if (d->d_size <= 0)
4519 			continue;
4520 		p = d->d_buf;
4521 		pe = p + d->d_size;
4522 		if (*p != 'A') {
4523 			printf("Unknown Attribute Section Format: %c\n",
4524 			    (char) *p);
4525 			continue;
4526 		}
4527 		len = d->d_size - 1;
4528 		p++;
4529 		while (len > 0) {
4530 			if (len < 4) {
4531 				warnx("truncated attribute section length");
4532 				return;
4533 			}
4534 			seclen = re->dw_decode(&p, 4);
4535 			if (seclen > len) {
4536 				warnx("invalid attribute section length");
4537 				return;
4538 			}
4539 			len -= seclen;
4540 			nlen = strlen((char *) p) + 1;
4541 			if (nlen + 4 > seclen) {
4542 				warnx("invalid attribute section name");
4543 				return;
4544 			}
4545 			printf("Attribute Section: %s\n", (char *) p);
4546 			p += nlen;
4547 			seclen -= nlen + 4;
4548 			while (seclen > 0) {
4549 				sp = p;
4550 				tag = *p++;
4551 				sublen = re->dw_decode(&p, 4);
4552 				if (sublen > seclen) {
4553 					warnx("invalid attribute sub-section"
4554 					    " length");
4555 					return;
4556 				}
4557 				seclen -= sublen;
4558 				printf("%s", top_tag(tag));
4559 				if (tag == 2 || tag == 3) {
4560 					putchar(':');
4561 					for (;;) {
4562 						val = _decode_uleb128(&p, pe);
4563 						if (val == 0)
4564 							break;
4565 						printf(" %ju", (uintmax_t) val);
4566 					}
4567 				}
4568 				putchar('\n');
4569 				if (re->ehdr.e_machine == EM_ARM &&
4570 				    s->type == SHT_LOPROC + 3)
4571 					dump_arm_attributes(re, p, sp + sublen);
4572 				else if (re->ehdr.e_machine == EM_MIPS ||
4573 				    re->ehdr.e_machine == EM_MIPS_RS3_LE)
4574 					dump_mips_attributes(re, p,
4575 					    sp + sublen);
4576 				else if (re->ehdr.e_machine == EM_PPC)
4577 					dump_ppc_attributes(p, sp + sublen);
4578 				p = sp + sublen;
4579 			}
4580 		}
4581 	}
4582 }
4583 
4584 static void
4585 dump_mips_specific_info(struct readelf *re)
4586 {
4587 	struct section *s;
4588 	int i;
4589 
4590 	s = NULL;
4591 	for (i = 0; (size_t) i < re->shnum; i++) {
4592 		s = &re->sl[i];
4593 		if (s->name != NULL && (!strcmp(s->name, ".MIPS.options") ||
4594 		    (s->type == SHT_MIPS_OPTIONS))) {
4595 			dump_mips_options(re, s);
4596 		}
4597 	}
4598 
4599 	if (s->name != NULL && (!strcmp(s->name, ".MIPS.abiflags") ||
4600 	    (s->type == SHT_MIPS_ABIFLAGS)))
4601 		dump_mips_abiflags(re, s);
4602 
4603 	/*
4604 	 * Dump .reginfo if present (although it will be ignored by an OS if a
4605 	 * .MIPS.options section is present, according to SGI mips64 spec).
4606 	 */
4607 	for (i = 0; (size_t) i < re->shnum; i++) {
4608 		s = &re->sl[i];
4609 		if (s->name != NULL && (!strcmp(s->name, ".reginfo") ||
4610 		    (s->type == SHT_MIPS_REGINFO)))
4611 			dump_mips_reginfo(re, s);
4612 	}
4613 }
4614 
4615 static void
4616 dump_mips_abiflags(struct readelf *re, struct section *s)
4617 {
4618 	Elf_Data *d;
4619 	uint8_t *p;
4620 	int elferr;
4621 	uint32_t isa_ext, ases, flags1, flags2;
4622 	uint16_t version;
4623 	uint8_t isa_level, isa_rev, gpr_size, cpr1_size, cpr2_size, fp_abi;
4624 
4625 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4626 		elferr = elf_errno();
4627 		if (elferr != 0)
4628 			warnx("elf_rawdata failed: %s",
4629 			    elf_errmsg(elferr));
4630 		return;
4631 	}
4632 	if (d->d_size != 24) {
4633 		warnx("invalid MIPS abiflags section size");
4634 		return;
4635 	}
4636 
4637 	p = d->d_buf;
4638 	version = re->dw_decode(&p, 2);
4639 	printf("MIPS ABI Flags Version: %u", version);
4640 	if (version != 0) {
4641 		printf(" (unknown)\n\n");
4642 		return;
4643 	}
4644 	printf("\n\n");
4645 
4646 	isa_level = re->dw_decode(&p, 1);
4647 	isa_rev = re->dw_decode(&p, 1);
4648 	gpr_size = re->dw_decode(&p, 1);
4649 	cpr1_size = re->dw_decode(&p, 1);
4650 	cpr2_size = re->dw_decode(&p, 1);
4651 	fp_abi = re->dw_decode(&p, 1);
4652 	isa_ext = re->dw_decode(&p, 4);
4653 	ases = re->dw_decode(&p, 4);
4654 	flags1 = re->dw_decode(&p, 4);
4655 	flags2 = re->dw_decode(&p, 4);
4656 
4657 	printf("ISA: ");
4658 	if (isa_rev <= 1)
4659 		printf("MIPS%u\n", isa_level);
4660 	else
4661 		printf("MIPS%ur%u\n", isa_level, isa_rev);
4662 	printf("GPR size: %d\n", get_mips_register_size(gpr_size));
4663 	printf("CPR1 size: %d\n", get_mips_register_size(cpr1_size));
4664 	printf("CPR2 size: %d\n", get_mips_register_size(cpr2_size));
4665 	printf("FP ABI: ");
4666 	switch (fp_abi) {
4667 	case 3:
4668 		printf("Soft float");
4669 		break;
4670 	default:
4671 		printf("%u", fp_abi);
4672 		break;
4673 	}
4674 	printf("\nISA Extension: %u\n", isa_ext);
4675 	printf("ASEs: %u\n", ases);
4676 	printf("FLAGS 1: %08x\n", flags1);
4677 	printf("FLAGS 2: %08x\n", flags2);
4678 }
4679 
4680 static int
4681 get_mips_register_size(uint8_t flag)
4682 {
4683 	switch (flag) {
4684 	case 0: return 0;
4685 	case 1: return 32;
4686 	case 2: return 64;
4687 	case 3: return 128;
4688 	default: return -1;
4689 	}
4690 }
4691 static void
4692 dump_mips_reginfo(struct readelf *re, struct section *s)
4693 {
4694 	Elf_Data *d;
4695 	int elferr, len;
4696 
4697 	(void) elf_errno();
4698 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4699 		elferr = elf_errno();
4700 		if (elferr != 0)
4701 			warnx("elf_rawdata failed: %s",
4702 			    elf_errmsg(elferr));
4703 		return;
4704 	}
4705 	if (d->d_size <= 0)
4706 		return;
4707 	if (!get_ent_count(s, &len))
4708 		return;
4709 
4710 	printf("\nSection '%s' contains %d entries:\n", s->name, len);
4711 	dump_mips_odk_reginfo(re, d->d_buf, d->d_size);
4712 }
4713 
4714 static void
4715 dump_mips_options(struct readelf *re, struct section *s)
4716 {
4717 	Elf_Data *d;
4718 	uint32_t info;
4719 	uint16_t sndx;
4720 	uint8_t *p, *pe;
4721 	uint8_t kind, size;
4722 	int elferr;
4723 
4724 	(void) elf_errno();
4725 	if ((d = elf_rawdata(s->scn, NULL)) == NULL) {
4726 		elferr = elf_errno();
4727 		if (elferr != 0)
4728 			warnx("elf_rawdata failed: %s",
4729 			    elf_errmsg(elferr));
4730 		return;
4731 	}
4732 	if (d->d_size == 0)
4733 		return;
4734 
4735 	printf("\nSection %s contains:\n", s->name);
4736 	p = d->d_buf;
4737 	pe = p + d->d_size;
4738 	while (p < pe) {
4739 		if (pe - p < 8) {
4740 			warnx("Truncated MIPS option header");
4741 			return;
4742 		}
4743 		kind = re->dw_decode(&p, 1);
4744 		size = re->dw_decode(&p, 1);
4745 		sndx = re->dw_decode(&p, 2);
4746 		info = re->dw_decode(&p, 4);
4747 		if (size < 8 || size - 8 > pe - p) {
4748 			warnx("Malformed MIPS option header");
4749 			return;
4750 		}
4751 		size -= 8;
4752 		switch (kind) {
4753 		case ODK_REGINFO:
4754 			dump_mips_odk_reginfo(re, p, size);
4755 			break;
4756 		case ODK_EXCEPTIONS:
4757 			printf(" EXCEPTIONS FPU_MIN: %#x\n",
4758 			    info & OEX_FPU_MIN);
4759 			printf("%11.11s FPU_MAX: %#x\n", "",
4760 			    info & OEX_FPU_MAX);
4761 			dump_mips_option_flags("", mips_exceptions_option,
4762 			    info);
4763 			break;
4764 		case ODK_PAD:
4765 			printf(" %-10.10s section: %ju\n", "OPAD",
4766 			    (uintmax_t) sndx);
4767 			dump_mips_option_flags("", mips_pad_option, info);
4768 			break;
4769 		case ODK_HWPATCH:
4770 			dump_mips_option_flags("HWPATCH", mips_hwpatch_option,
4771 			    info);
4772 			break;
4773 		case ODK_HWAND:
4774 			dump_mips_option_flags("HWAND", mips_hwa_option, info);
4775 			break;
4776 		case ODK_HWOR:
4777 			dump_mips_option_flags("HWOR", mips_hwo_option, info);
4778 			break;
4779 		case ODK_FILL:
4780 			printf(" %-10.10s %#jx\n", "FILL", (uintmax_t) info);
4781 			break;
4782 		case ODK_TAGS:
4783 			printf(" %-10.10s\n", "TAGS");
4784 			break;
4785 		case ODK_GP_GROUP:
4786 			printf(" %-10.10s GP group number: %#x\n", "GP_GROUP",
4787 			    info & 0xFFFF);
4788 			if (info & 0x10000)
4789 				printf(" %-10.10s GP group is "
4790 				    "self-contained\n", "");
4791 			break;
4792 		case ODK_IDENT:
4793 			printf(" %-10.10s default GP group number: %#x\n",
4794 			    "IDENT", info & 0xFFFF);
4795 			if (info & 0x10000)
4796 				printf(" %-10.10s default GP group is "
4797 				    "self-contained\n", "");
4798 			break;
4799 		case ODK_PAGESIZE:
4800 			printf(" %-10.10s\n", "PAGESIZE");
4801 			break;
4802 		default:
4803 			break;
4804 		}
4805 		p += size;
4806 	}
4807 }
4808 
4809 static void
4810 dump_mips_option_flags(const char *name, struct mips_option *opt, uint64_t info)
4811 {
4812 	int first;
4813 
4814 	first = 1;
4815 	for (; opt->desc != NULL; opt++) {
4816 		if (info & opt->flag) {
4817 			printf(" %-10.10s %s\n", first ? name : "",
4818 			    opt->desc);
4819 			first = 0;
4820 		}
4821 	}
4822 }
4823 
4824 static void
4825 dump_mips_odk_reginfo(struct readelf *re, uint8_t *p, size_t sz)
4826 {
4827 	uint32_t ri_gprmask;
4828 	uint32_t ri_cprmask[4];
4829 	uint64_t ri_gp_value;
4830 	uint8_t *pe;
4831 	int i;
4832 
4833 	pe = p + sz;
4834 	while (p < pe) {
4835 		ri_gprmask = re->dw_decode(&p, 4);
4836 		/* Skip ri_pad padding field for mips64. */
4837 		if (re->ec == ELFCLASS64)
4838 			re->dw_decode(&p, 4);
4839 		for (i = 0; i < 4; i++)
4840 			ri_cprmask[i] = re->dw_decode(&p, 4);
4841 		if (re->ec == ELFCLASS32)
4842 			ri_gp_value = re->dw_decode(&p, 4);
4843 		else
4844 			ri_gp_value = re->dw_decode(&p, 8);
4845 		printf(" %s    ", option_kind(ODK_REGINFO));
4846 		printf("ri_gprmask:    0x%08jx\n", (uintmax_t) ri_gprmask);
4847 		for (i = 0; i < 4; i++)
4848 			printf("%11.11s ri_cprmask[%d]: 0x%08jx\n", "", i,
4849 			    (uintmax_t) ri_cprmask[i]);
4850 		printf("%12.12s", "");
4851 		printf("ri_gp_value:   %#jx\n", (uintmax_t) ri_gp_value);
4852 	}
4853 }
4854 
4855 static void
4856 dump_arch_specific_info(struct readelf *re)
4857 {
4858 
4859 	dump_liblist(re);
4860 	dump_attributes(re);
4861 
4862 	switch (re->ehdr.e_machine) {
4863 	case EM_MIPS:
4864 	case EM_MIPS_RS3_LE:
4865 		dump_mips_specific_info(re);
4866 	default:
4867 		break;
4868 	}
4869 }
4870 
4871 static const char *
4872 dwarf_regname(struct readelf *re, unsigned int num)
4873 {
4874 	static char rx[32];
4875 	const char *rn;
4876 
4877 	if ((rn = dwarf_reg(re->ehdr.e_machine, num)) != NULL)
4878 		return (rn);
4879 
4880 	snprintf(rx, sizeof(rx), "r%u", num);
4881 
4882 	return (rx);
4883 }
4884 
4885 static void
4886 dump_dwarf_line(struct readelf *re)
4887 {
4888 	struct section *s;
4889 	Dwarf_Die die;
4890 	Dwarf_Error de;
4891 	Dwarf_Half tag, version, pointer_size;
4892 	Dwarf_Unsigned offset, endoff, length, hdrlen, dirndx, mtime, fsize;
4893 	Dwarf_Small minlen, defstmt, lrange, opbase, oplen;
4894 	Elf_Data *d;
4895 	char *pn;
4896 	uint64_t address, file, line, column, isa, opsize, udelta;
4897 	int64_t sdelta;
4898 	uint8_t *p, *pe;
4899 	int8_t lbase;
4900 	int i, is_stmt, dwarf_size, elferr, ret;
4901 
4902 	printf("\nDump of debug contents of section .debug_line:\n");
4903 
4904 	s = NULL;
4905 	for (i = 0; (size_t) i < re->shnum; i++) {
4906 		s = &re->sl[i];
4907 		if (s->name != NULL && !strcmp(s->name, ".debug_line"))
4908 			break;
4909 	}
4910 	if ((size_t) i >= re->shnum)
4911 		return;
4912 
4913 	(void) elf_errno();
4914 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
4915 		elferr = elf_errno();
4916 		if (elferr != 0)
4917 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
4918 		return;
4919 	}
4920 	if (d->d_size <= 0)
4921 		return;
4922 
4923 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
4924 	    NULL, &de)) ==  DW_DLV_OK) {
4925 		die = NULL;
4926 		while (dwarf_siblingof(re->dbg, die, &die, &de) == DW_DLV_OK) {
4927 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
4928 				warnx("dwarf_tag failed: %s",
4929 				    dwarf_errmsg(de));
4930 				return;
4931 			}
4932 			/* XXX: What about DW_TAG_partial_unit? */
4933 			if (tag == DW_TAG_compile_unit)
4934 				break;
4935 		}
4936 		if (die == NULL) {
4937 			warnx("could not find DW_TAG_compile_unit die");
4938 			return;
4939 		}
4940 		if (dwarf_attrval_unsigned(die, DW_AT_stmt_list, &offset,
4941 		    &de) != DW_DLV_OK) {
4942 			dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
4943 			continue;
4944 		}
4945 
4946 		length = re->dw_read(d, &offset, 4);
4947 		if (length == 0xffffffff) {
4948 			dwarf_size = 8;
4949 			length = re->dw_read(d, &offset, 8);
4950 		} else
4951 			dwarf_size = 4;
4952 
4953 		if (length > d->d_size - offset) {
4954 			warnx("invalid .dwarf_line section");
4955 			dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
4956 			continue;
4957 		}
4958 
4959 		endoff = offset + length;
4960 		pe = (uint8_t *) d->d_buf + endoff;
4961 		version = re->dw_read(d, &offset, 2);
4962 		hdrlen = re->dw_read(d, &offset, dwarf_size);
4963 		minlen = re->dw_read(d, &offset, 1);
4964 		defstmt = re->dw_read(d, &offset, 1);
4965 		lbase = re->dw_read(d, &offset, 1);
4966 		lrange = re->dw_read(d, &offset, 1);
4967 		opbase = re->dw_read(d, &offset, 1);
4968 
4969 		printf("\n");
4970 		printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
4971 		printf("  DWARF version:\t\t%u\n", version);
4972 		printf("  Prologue Length:\t\t%ju\n", (uintmax_t) hdrlen);
4973 		printf("  Minimum Instruction Length:\t%u\n", minlen);
4974 		printf("  Initial value of 'is_stmt':\t%u\n", defstmt);
4975 		printf("  Line Base:\t\t\t%d\n", lbase);
4976 		printf("  Line Range:\t\t\t%u\n", lrange);
4977 		printf("  Opcode Base:\t\t\t%u\n", opbase);
4978 		(void) dwarf_get_address_size(re->dbg, &pointer_size, &de);
4979 		printf("  (Pointer size:\t\t%u)\n", pointer_size);
4980 
4981 		printf("\n");
4982 		printf(" Opcodes:\n");
4983 		for (i = 1; i < opbase; i++) {
4984 			oplen = re->dw_read(d, &offset, 1);
4985 			printf("  Opcode %d has %u args\n", i, oplen);
4986 		}
4987 
4988 		printf("\n");
4989 		printf(" The Directory Table:\n");
4990 		p = (uint8_t *) d->d_buf + offset;
4991 		while (*p != '\0') {
4992 			printf("  %s\n", (char *) p);
4993 			p += strlen((char *) p) + 1;
4994 		}
4995 
4996 		p++;
4997 		printf("\n");
4998 		printf(" The File Name Table:\n");
4999 		printf("  Entry\tDir\tTime\tSize\tName\n");
5000 		i = 0;
5001 		while (*p != '\0') {
5002 			i++;
5003 			pn = (char *) p;
5004 			p += strlen(pn) + 1;
5005 			dirndx = _decode_uleb128(&p, pe);
5006 			mtime = _decode_uleb128(&p, pe);
5007 			fsize = _decode_uleb128(&p, pe);
5008 			printf("  %d\t%ju\t%ju\t%ju\t%s\n", i,
5009 			    (uintmax_t) dirndx, (uintmax_t) mtime,
5010 			    (uintmax_t) fsize, pn);
5011 		}
5012 
5013 #define	RESET_REGISTERS						\
5014 	do {							\
5015 		address	       = 0;				\
5016 		file	       = 1;				\
5017 		line	       = 1;				\
5018 		column	       = 0;				\
5019 		is_stmt	       = defstmt;			\
5020 	} while(0)
5021 
5022 #define	LINE(x) (lbase + (((x) - opbase) % lrange))
5023 #define	ADDRESS(x) ((((x) - opbase) / lrange) * minlen)
5024 
5025 		p++;
5026 		printf("\n");
5027 		printf(" Line Number Statements:\n");
5028 
5029 		RESET_REGISTERS;
5030 
5031 		while (p < pe) {
5032 
5033 			if (*p == 0) {
5034 				/*
5035 				 * Extended Opcodes.
5036 				 */
5037 				p++;
5038 				opsize = _decode_uleb128(&p, pe);
5039 				printf("  Extended opcode %u: ", *p);
5040 				switch (*p) {
5041 				case DW_LNE_end_sequence:
5042 					p++;
5043 					RESET_REGISTERS;
5044 					printf("End of Sequence\n");
5045 					break;
5046 				case DW_LNE_set_address:
5047 					p++;
5048 					address = re->dw_decode(&p,
5049 					    pointer_size);
5050 					printf("set Address to %#jx\n",
5051 					    (uintmax_t) address);
5052 					break;
5053 				case DW_LNE_define_file:
5054 					p++;
5055 					pn = (char *) p;
5056 					p += strlen(pn) + 1;
5057 					dirndx = _decode_uleb128(&p, pe);
5058 					mtime = _decode_uleb128(&p, pe);
5059 					fsize = _decode_uleb128(&p, pe);
5060 					printf("define new file: %s\n", pn);
5061 					break;
5062 				default:
5063 					/* Unrecognized extened opcodes. */
5064 					p += opsize;
5065 					printf("unknown opcode\n");
5066 				}
5067 			} else if (*p > 0 && *p < opbase) {
5068 				/*
5069 				 * Standard Opcodes.
5070 				 */
5071 				switch(*p++) {
5072 				case DW_LNS_copy:
5073 					printf("  Copy\n");
5074 					break;
5075 				case DW_LNS_advance_pc:
5076 					udelta = _decode_uleb128(&p, pe) *
5077 					    minlen;
5078 					address += udelta;
5079 					printf("  Advance PC by %ju to %#jx\n",
5080 					    (uintmax_t) udelta,
5081 					    (uintmax_t) address);
5082 					break;
5083 				case DW_LNS_advance_line:
5084 					sdelta = _decode_sleb128(&p, pe);
5085 					line += sdelta;
5086 					printf("  Advance Line by %jd to %ju\n",
5087 					    (intmax_t) sdelta,
5088 					    (uintmax_t) line);
5089 					break;
5090 				case DW_LNS_set_file:
5091 					file = _decode_uleb128(&p, pe);
5092 					printf("  Set File to %ju\n",
5093 					    (uintmax_t) file);
5094 					break;
5095 				case DW_LNS_set_column:
5096 					column = _decode_uleb128(&p, pe);
5097 					printf("  Set Column to %ju\n",
5098 					    (uintmax_t) column);
5099 					break;
5100 				case DW_LNS_negate_stmt:
5101 					is_stmt = !is_stmt;
5102 					printf("  Set is_stmt to %d\n", is_stmt);
5103 					break;
5104 				case DW_LNS_set_basic_block:
5105 					printf("  Set basic block flag\n");
5106 					break;
5107 				case DW_LNS_const_add_pc:
5108 					address += ADDRESS(255);
5109 					printf("  Advance PC by constant %ju"
5110 					    " to %#jx\n",
5111 					    (uintmax_t) ADDRESS(255),
5112 					    (uintmax_t) address);
5113 					break;
5114 				case DW_LNS_fixed_advance_pc:
5115 					udelta = re->dw_decode(&p, 2);
5116 					address += udelta;
5117 					printf("  Advance PC by fixed value "
5118 					    "%ju to %#jx\n",
5119 					    (uintmax_t) udelta,
5120 					    (uintmax_t) address);
5121 					break;
5122 				case DW_LNS_set_prologue_end:
5123 					printf("  Set prologue end flag\n");
5124 					break;
5125 				case DW_LNS_set_epilogue_begin:
5126 					printf("  Set epilogue begin flag\n");
5127 					break;
5128 				case DW_LNS_set_isa:
5129 					isa = _decode_uleb128(&p, pe);
5130 					printf("  Set isa to %ju\n",
5131 					    (uintmax_t) isa);
5132 					break;
5133 				default:
5134 					/* Unrecognized extended opcodes. */
5135 					printf("  Unknown extended opcode %u\n",
5136 					    *(p - 1));
5137 					break;
5138 				}
5139 
5140 			} else {
5141 				/*
5142 				 * Special Opcodes.
5143 				 */
5144 				line += LINE(*p);
5145 				address += ADDRESS(*p);
5146 				printf("  Special opcode %u: advance Address "
5147 				    "by %ju to %#jx and Line by %jd to %ju\n",
5148 				    *p - opbase, (uintmax_t) ADDRESS(*p),
5149 				    (uintmax_t) address, (intmax_t) LINE(*p),
5150 				    (uintmax_t) line);
5151 				p++;
5152 			}
5153 		}
5154 		dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5155 	}
5156 	if (ret == DW_DLV_ERROR)
5157 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5158 
5159 #undef	RESET_REGISTERS
5160 #undef	LINE
5161 #undef	ADDRESS
5162 }
5163 
5164 static void
5165 dump_dwarf_line_decoded(struct readelf *re)
5166 {
5167 	Dwarf_Die die;
5168 	Dwarf_Line *linebuf, ln;
5169 	Dwarf_Addr lineaddr;
5170 	Dwarf_Signed linecount, srccount;
5171 	Dwarf_Unsigned lineno, fn;
5172 	Dwarf_Error de;
5173 	const char *dir, *file;
5174 	char **srcfiles;
5175 	int i, ret;
5176 
5177 	printf("Decoded dump of debug contents of section .debug_line:\n\n");
5178 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5179 	    NULL, &de)) == DW_DLV_OK) {
5180 		if (dwarf_siblingof(re->dbg, NULL, &die, &de) != DW_DLV_OK)
5181 			continue;
5182 		if (dwarf_attrval_string(die, DW_AT_name, &file, &de) !=
5183 		    DW_DLV_OK)
5184 			file = NULL;
5185 		if (dwarf_attrval_string(die, DW_AT_comp_dir, &dir, &de) !=
5186 		    DW_DLV_OK)
5187 			dir = NULL;
5188 		printf("CU: ");
5189 		if (dir && file && file[0] != '/')
5190 			printf("%s/", dir);
5191 		if (file)
5192 			printf("%s", file);
5193 		putchar('\n');
5194 		printf("%-37s %11s   %s\n", "Filename", "Line Number",
5195 		    "Starting Address");
5196 		if (dwarf_srclines(die, &linebuf, &linecount, &de) != DW_DLV_OK)
5197 			goto done;
5198 		if (dwarf_srcfiles(die, &srcfiles, &srccount, &de) != DW_DLV_OK)
5199 			goto done;
5200 		for (i = 0; i < linecount; i++) {
5201 			ln = linebuf[i];
5202 			if (dwarf_line_srcfileno(ln, &fn, &de) != DW_DLV_OK)
5203 				continue;
5204 			if (dwarf_lineno(ln, &lineno, &de) != DW_DLV_OK)
5205 				continue;
5206 			if (dwarf_lineaddr(ln, &lineaddr, &de) != DW_DLV_OK)
5207 				continue;
5208 			printf("%-37s %11ju %#18jx\n",
5209 			    basename(srcfiles[fn - 1]), (uintmax_t) lineno,
5210 			    (uintmax_t) lineaddr);
5211 		}
5212 		putchar('\n');
5213 done:
5214 		dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5215 	}
5216 }
5217 
5218 static void
5219 dump_dwarf_die(struct readelf *re, Dwarf_Die die, int level)
5220 {
5221 	Dwarf_Attribute *attr_list;
5222 	Dwarf_Die ret_die;
5223 	Dwarf_Off dieoff, cuoff, culen, attroff;
5224 	Dwarf_Unsigned ate, lang, v_udata, v_sig;
5225 	Dwarf_Signed attr_count, v_sdata;
5226 	Dwarf_Off v_off;
5227 	Dwarf_Addr v_addr;
5228 	Dwarf_Half tag, attr, form;
5229 	Dwarf_Block *v_block;
5230 	Dwarf_Bool v_bool, is_info;
5231 	Dwarf_Sig8 v_sig8;
5232 	Dwarf_Error de;
5233 	Dwarf_Ptr v_expr;
5234 	const char *tag_str, *attr_str, *ate_str, *lang_str;
5235 	char unk_tag[32], unk_attr[32];
5236 	char *v_str;
5237 	uint8_t *b, *p;
5238 	int i, j, abc, ret;
5239 
5240 	if (dwarf_dieoffset(die, &dieoff, &de) != DW_DLV_OK) {
5241 		warnx("dwarf_dieoffset failed: %s", dwarf_errmsg(de));
5242 		goto cont_search;
5243 	}
5244 
5245 	printf(" <%d><%jx>: ", level, (uintmax_t) dieoff);
5246 
5247 	if (dwarf_die_CU_offset_range(die, &cuoff, &culen, &de) != DW_DLV_OK) {
5248 		warnx("dwarf_die_CU_offset_range failed: %s",
5249 		      dwarf_errmsg(de));
5250 		cuoff = 0;
5251 	}
5252 
5253 	abc = dwarf_die_abbrev_code(die);
5254 	if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5255 		warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5256 		goto cont_search;
5257 	}
5258 	if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5259 		snprintf(unk_tag, sizeof(unk_tag), "[Unknown Tag: %#x]", tag);
5260 		tag_str = unk_tag;
5261 	}
5262 
5263 	printf("Abbrev Number: %d (%s)\n", abc, tag_str);
5264 
5265 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5266 	    DW_DLV_OK) {
5267 		if (ret == DW_DLV_ERROR)
5268 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5269 		goto cont_search;
5270 	}
5271 
5272 	for (i = 0; i < attr_count; i++) {
5273 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
5274 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
5275 			continue;
5276 		}
5277 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5278 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5279 			continue;
5280 		}
5281 		if (dwarf_get_AT_name(attr, &attr_str) != DW_DLV_OK) {
5282 			snprintf(unk_attr, sizeof(unk_attr),
5283 			    "[Unknown AT: %#x]", attr);
5284 			attr_str = unk_attr;
5285 		}
5286 		if (dwarf_attroffset(attr_list[i], &attroff, &de) !=
5287 		    DW_DLV_OK) {
5288 			warnx("dwarf_attroffset failed: %s", dwarf_errmsg(de));
5289 			attroff = 0;
5290 		}
5291 		printf("    <%jx>   %-18s: ", (uintmax_t) attroff, attr_str);
5292 		switch (form) {
5293 		case DW_FORM_ref_addr:
5294 		case DW_FORM_sec_offset:
5295 			if (dwarf_global_formref(attr_list[i], &v_off, &de) !=
5296 			    DW_DLV_OK) {
5297 				warnx("dwarf_global_formref failed: %s",
5298 				    dwarf_errmsg(de));
5299 				continue;
5300 			}
5301 			if (form == DW_FORM_ref_addr)
5302 				printf("<0x%jx>", (uintmax_t) v_off);
5303 			else
5304 				printf("0x%jx", (uintmax_t) v_off);
5305 			break;
5306 
5307 		case DW_FORM_ref1:
5308 		case DW_FORM_ref2:
5309 		case DW_FORM_ref4:
5310 		case DW_FORM_ref8:
5311 		case DW_FORM_ref_udata:
5312 			if (dwarf_formref(attr_list[i], &v_off, &de) !=
5313 			    DW_DLV_OK) {
5314 				warnx("dwarf_formref failed: %s",
5315 				    dwarf_errmsg(de));
5316 				continue;
5317 			}
5318 			v_off += cuoff;
5319 			printf("<0x%jx>", (uintmax_t) v_off);
5320 			break;
5321 
5322 		case DW_FORM_addr:
5323 			if (dwarf_formaddr(attr_list[i], &v_addr, &de) !=
5324 			    DW_DLV_OK) {
5325 				warnx("dwarf_formaddr failed: %s",
5326 				    dwarf_errmsg(de));
5327 				continue;
5328 			}
5329 			printf("%#jx", (uintmax_t) v_addr);
5330 			break;
5331 
5332 		case DW_FORM_data1:
5333 		case DW_FORM_data2:
5334 		case DW_FORM_data4:
5335 		case DW_FORM_data8:
5336 		case DW_FORM_udata:
5337 			if (dwarf_formudata(attr_list[i], &v_udata, &de) !=
5338 			    DW_DLV_OK) {
5339 				warnx("dwarf_formudata failed: %s",
5340 				    dwarf_errmsg(de));
5341 				continue;
5342 			}
5343 			if (attr == DW_AT_high_pc)
5344 				printf("0x%jx", (uintmax_t) v_udata);
5345 			else
5346 				printf("%ju", (uintmax_t) v_udata);
5347 			break;
5348 
5349 		case DW_FORM_sdata:
5350 			if (dwarf_formsdata(attr_list[i], &v_sdata, &de) !=
5351 			    DW_DLV_OK) {
5352 				warnx("dwarf_formudata failed: %s",
5353 				    dwarf_errmsg(de));
5354 				continue;
5355 			}
5356 			printf("%jd", (intmax_t) v_sdata);
5357 			break;
5358 
5359 		case DW_FORM_flag:
5360 			if (dwarf_formflag(attr_list[i], &v_bool, &de) !=
5361 			    DW_DLV_OK) {
5362 				warnx("dwarf_formflag failed: %s",
5363 				    dwarf_errmsg(de));
5364 				continue;
5365 			}
5366 			printf("%jd", (intmax_t) v_bool);
5367 			break;
5368 
5369 		case DW_FORM_flag_present:
5370 			putchar('1');
5371 			break;
5372 
5373 		case DW_FORM_string:
5374 		case DW_FORM_strp:
5375 			if (dwarf_formstring(attr_list[i], &v_str, &de) !=
5376 			    DW_DLV_OK) {
5377 				warnx("dwarf_formstring failed: %s",
5378 				    dwarf_errmsg(de));
5379 				continue;
5380 			}
5381 			if (form == DW_FORM_string)
5382 				printf("%s", v_str);
5383 			else
5384 				printf("(indirect string) %s", v_str);
5385 			break;
5386 
5387 		case DW_FORM_block:
5388 		case DW_FORM_block1:
5389 		case DW_FORM_block2:
5390 		case DW_FORM_block4:
5391 			if (dwarf_formblock(attr_list[i], &v_block, &de) !=
5392 			    DW_DLV_OK) {
5393 				warnx("dwarf_formblock failed: %s",
5394 				    dwarf_errmsg(de));
5395 				continue;
5396 			}
5397 			printf("%ju byte block:", (uintmax_t) v_block->bl_len);
5398 			b = v_block->bl_data;
5399 			for (j = 0; (Dwarf_Unsigned) j < v_block->bl_len; j++)
5400 				printf(" %x", b[j]);
5401 			printf("\t(");
5402 			dump_dwarf_block(re, v_block->bl_data, v_block->bl_len);
5403 			putchar(')');
5404 			break;
5405 
5406 		case DW_FORM_exprloc:
5407 			if (dwarf_formexprloc(attr_list[i], &v_udata, &v_expr,
5408 			    &de) != DW_DLV_OK) {
5409 				warnx("dwarf_formexprloc failed: %s",
5410 				    dwarf_errmsg(de));
5411 				continue;
5412 			}
5413 			printf("%ju byte block:", (uintmax_t) v_udata);
5414 			b = v_expr;
5415 			for (j = 0; (Dwarf_Unsigned) j < v_udata; j++)
5416 				printf(" %x", b[j]);
5417 			printf("\t(");
5418 			dump_dwarf_block(re, v_expr, v_udata);
5419 			putchar(')');
5420 			break;
5421 
5422 		case DW_FORM_ref_sig8:
5423 			if (dwarf_formsig8(attr_list[i], &v_sig8, &de) !=
5424 			    DW_DLV_OK) {
5425 				warnx("dwarf_formsig8 failed: %s",
5426 				    dwarf_errmsg(de));
5427 				continue;
5428 			}
5429 			p = (uint8_t *)(uintptr_t) &v_sig8.signature[0];
5430 			v_sig = re->dw_decode(&p, 8);
5431 			printf("signature: 0x%jx", (uintmax_t) v_sig);
5432 		}
5433 		switch (attr) {
5434 		case DW_AT_encoding:
5435 			if (dwarf_attrval_unsigned(die, attr, &ate, &de) !=
5436 			    DW_DLV_OK)
5437 				break;
5438 			if (dwarf_get_ATE_name(ate, &ate_str) != DW_DLV_OK)
5439 				ate_str = "DW_ATE_UNKNOWN";
5440 			printf("\t(%s)", &ate_str[strlen("DW_ATE_")]);
5441 			break;
5442 
5443 		case DW_AT_language:
5444 			if (dwarf_attrval_unsigned(die, attr, &lang, &de) !=
5445 			    DW_DLV_OK)
5446 				break;
5447 			if (dwarf_get_LANG_name(lang, &lang_str) != DW_DLV_OK)
5448 				break;
5449 			printf("\t(%s)", &lang_str[strlen("DW_LANG_")]);
5450 			break;
5451 
5452 		case DW_AT_location:
5453 		case DW_AT_string_length:
5454 		case DW_AT_return_addr:
5455 		case DW_AT_data_member_location:
5456 		case DW_AT_frame_base:
5457 		case DW_AT_segment:
5458 		case DW_AT_static_link:
5459 		case DW_AT_use_location:
5460 		case DW_AT_vtable_elem_location:
5461 			switch (form) {
5462 			case DW_FORM_data4:
5463 			case DW_FORM_data8:
5464 			case DW_FORM_sec_offset:
5465 				printf("\t(location list)");
5466 				break;
5467 			default:
5468 				break;
5469 			}
5470 
5471 		default:
5472 			break;
5473 		}
5474 		putchar('\n');
5475 	}
5476 
5477 
5478 cont_search:
5479 	/* Search children. */
5480 	ret = dwarf_child(die, &ret_die, &de);
5481 	if (ret == DW_DLV_ERROR)
5482 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5483 	else if (ret == DW_DLV_OK)
5484 		dump_dwarf_die(re, ret_die, level + 1);
5485 
5486 	/* Search sibling. */
5487 	is_info = dwarf_get_die_infotypes_flag(die);
5488 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
5489 	if (ret == DW_DLV_ERROR)
5490 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5491 	else if (ret == DW_DLV_OK)
5492 		dump_dwarf_die(re, ret_die, level);
5493 
5494 	dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5495 }
5496 
5497 static void
5498 set_cu_context(struct readelf *re, Dwarf_Half psize, Dwarf_Half osize,
5499     Dwarf_Half ver)
5500 {
5501 
5502 	re->cu_psize = psize;
5503 	re->cu_osize = osize;
5504 	re->cu_ver = ver;
5505 }
5506 
5507 static void
5508 dump_dwarf_info(struct readelf *re, Dwarf_Bool is_info)
5509 {
5510 	struct section *s;
5511 	Dwarf_Die die;
5512 	Dwarf_Error de;
5513 	Dwarf_Half tag, version, pointer_size, off_size;
5514 	Dwarf_Off cu_offset, cu_length;
5515 	Dwarf_Off aboff;
5516 	Dwarf_Unsigned typeoff;
5517 	Dwarf_Sig8 sig8;
5518 	Dwarf_Unsigned sig;
5519 	uint8_t *p;
5520 	const char *sn;
5521 	int i, ret;
5522 
5523 	sn = is_info ? ".debug_info" : ".debug_types";
5524 
5525 	s = NULL;
5526 	for (i = 0; (size_t) i < re->shnum; i++) {
5527 		s = &re->sl[i];
5528 		if (s->name != NULL && !strcmp(s->name, sn))
5529 			break;
5530 	}
5531 	if ((size_t) i >= re->shnum)
5532 		return;
5533 
5534 	do {
5535 		printf("\nDump of debug contents of section %s:\n", sn);
5536 
5537 		while ((ret = dwarf_next_cu_header_c(re->dbg, is_info, NULL,
5538 		    &version, &aboff, &pointer_size, &off_size, NULL, &sig8,
5539 		    &typeoff, NULL, &de)) == DW_DLV_OK) {
5540 			set_cu_context(re, pointer_size, off_size, version);
5541 			die = NULL;
5542 			while (dwarf_siblingof_b(re->dbg, die, &die, is_info,
5543 			    &de) == DW_DLV_OK) {
5544 				if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5545 					warnx("dwarf_tag failed: %s",
5546 					    dwarf_errmsg(de));
5547 					continue;
5548 				}
5549 				/* XXX: What about DW_TAG_partial_unit? */
5550 				if ((is_info && tag == DW_TAG_compile_unit) ||
5551 				    (!is_info && tag == DW_TAG_type_unit))
5552 					break;
5553 			}
5554 			if (die == NULL && is_info) {
5555 				warnx("could not find DW_TAG_compile_unit "
5556 				    "die");
5557 				continue;
5558 			} else if (die == NULL && !is_info) {
5559 				warnx("could not find DW_TAG_type_unit die");
5560 				continue;
5561 			}
5562 
5563 			if (dwarf_die_CU_offset_range(die, &cu_offset,
5564 			    &cu_length, &de) != DW_DLV_OK) {
5565 				warnx("dwarf_die_CU_offset failed: %s",
5566 				    dwarf_errmsg(de));
5567 				continue;
5568 			}
5569 
5570 			cu_length -= off_size == 4 ? 4 : 12;
5571 
5572 			sig = 0;
5573 			if (!is_info) {
5574 				p = (uint8_t *)(uintptr_t) &sig8.signature[0];
5575 				sig = re->dw_decode(&p, 8);
5576 			}
5577 
5578 			printf("\n  Type Unit @ offset 0x%jx:\n",
5579 			    (uintmax_t) cu_offset);
5580 			printf("    Length:\t\t%#jx (%d-bit)\n",
5581 			    (uintmax_t) cu_length, off_size == 4 ? 32 : 64);
5582 			printf("    Version:\t\t%u\n", version);
5583 			printf("    Abbrev Offset:\t0x%jx\n",
5584 			    (uintmax_t) aboff);
5585 			printf("    Pointer Size:\t%u\n", pointer_size);
5586 			if (!is_info) {
5587 				printf("    Signature:\t\t0x%016jx\n",
5588 				    (uintmax_t) sig);
5589 				printf("    Type Offset:\t0x%jx\n",
5590 				    (uintmax_t) typeoff);
5591 			}
5592 
5593 			dump_dwarf_die(re, die, 0);
5594 		}
5595 		if (ret == DW_DLV_ERROR)
5596 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5597 		if (is_info)
5598 			break;
5599 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
5600 }
5601 
5602 static void
5603 dump_dwarf_abbrev(struct readelf *re)
5604 {
5605 	Dwarf_Abbrev ab;
5606 	Dwarf_Off aboff, atoff;
5607 	Dwarf_Unsigned length, attr_count;
5608 	Dwarf_Signed flag, form;
5609 	Dwarf_Half tag, attr;
5610 	Dwarf_Error de;
5611 	const char *tag_str, *attr_str, *form_str;
5612 	char unk_tag[32], unk_attr[32], unk_form[32];
5613 	int i, j, ret;
5614 
5615 	printf("\nContents of section .debug_abbrev:\n\n");
5616 
5617 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, &aboff,
5618 	    NULL, NULL, &de)) ==  DW_DLV_OK) {
5619 		printf("  Number TAG\n");
5620 		i = 0;
5621 		while ((ret = dwarf_get_abbrev(re->dbg, aboff, &ab, &length,
5622 		    &attr_count, &de)) == DW_DLV_OK) {
5623 			if (length == 1) {
5624 				dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5625 				break;
5626 			}
5627 			aboff += length;
5628 			printf("%4d", ++i);
5629 			if (dwarf_get_abbrev_tag(ab, &tag, &de) != DW_DLV_OK) {
5630 				warnx("dwarf_get_abbrev_tag failed: %s",
5631 				    dwarf_errmsg(de));
5632 				goto next_abbrev;
5633 			}
5634 			if (dwarf_get_TAG_name(tag, &tag_str) != DW_DLV_OK) {
5635 				snprintf(unk_tag, sizeof(unk_tag),
5636 				    "[Unknown Tag: %#x]", tag);
5637 				tag_str = unk_tag;
5638 			}
5639 			if (dwarf_get_abbrev_children_flag(ab, &flag, &de) !=
5640 			    DW_DLV_OK) {
5641 				warnx("dwarf_get_abbrev_children_flag failed:"
5642 				    " %s", dwarf_errmsg(de));
5643 				goto next_abbrev;
5644 			}
5645 			printf("      %s    %s\n", tag_str,
5646 			    flag ? "[has children]" : "[no children]");
5647 			for (j = 0; (Dwarf_Unsigned) j < attr_count; j++) {
5648 				if (dwarf_get_abbrev_entry(ab, (Dwarf_Signed) j,
5649 				    &attr, &form, &atoff, &de) != DW_DLV_OK) {
5650 					warnx("dwarf_get_abbrev_entry failed:"
5651 					    " %s", dwarf_errmsg(de));
5652 					continue;
5653 				}
5654 				if (dwarf_get_AT_name(attr, &attr_str) !=
5655 				    DW_DLV_OK) {
5656 					snprintf(unk_attr, sizeof(unk_attr),
5657 					    "[Unknown AT: %#x]", attr);
5658 					attr_str = unk_attr;
5659 				}
5660 				if (dwarf_get_FORM_name(form, &form_str) !=
5661 				    DW_DLV_OK) {
5662 					snprintf(unk_form, sizeof(unk_form),
5663 					    "[Unknown Form: %#x]",
5664 					    (Dwarf_Half) form);
5665 					form_str = unk_form;
5666 				}
5667 				printf("    %-18s %s\n", attr_str, form_str);
5668 			}
5669 		next_abbrev:
5670 			dwarf_dealloc(re->dbg, ab, DW_DLA_ABBREV);
5671 		}
5672 		if (ret != DW_DLV_OK)
5673 			warnx("dwarf_get_abbrev: %s", dwarf_errmsg(de));
5674 	}
5675 	if (ret == DW_DLV_ERROR)
5676 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
5677 }
5678 
5679 static void
5680 dump_dwarf_pubnames(struct readelf *re)
5681 {
5682 	struct section *s;
5683 	Dwarf_Off die_off;
5684 	Dwarf_Unsigned offset, length, nt_cu_offset, nt_cu_length;
5685 	Dwarf_Signed cnt;
5686 	Dwarf_Global *globs;
5687 	Dwarf_Half nt_version;
5688 	Dwarf_Error de;
5689 	Elf_Data *d;
5690 	char *glob_name;
5691 	int i, dwarf_size, elferr;
5692 
5693 	printf("\nContents of the .debug_pubnames section:\n");
5694 
5695 	s = NULL;
5696 	for (i = 0; (size_t) i < re->shnum; i++) {
5697 		s = &re->sl[i];
5698 		if (s->name != NULL && !strcmp(s->name, ".debug_pubnames"))
5699 			break;
5700 	}
5701 	if ((size_t) i >= re->shnum)
5702 		return;
5703 
5704 	(void) elf_errno();
5705 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5706 		elferr = elf_errno();
5707 		if (elferr != 0)
5708 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5709 		return;
5710 	}
5711 	if (d->d_size <= 0)
5712 		return;
5713 
5714 	/* Read in .debug_pubnames section table header. */
5715 	offset = 0;
5716 	length = re->dw_read(d, &offset, 4);
5717 	if (length == 0xffffffff) {
5718 		dwarf_size = 8;
5719 		length = re->dw_read(d, &offset, 8);
5720 	} else
5721 		dwarf_size = 4;
5722 
5723 	if (length > d->d_size - offset) {
5724 		warnx("invalid .dwarf_pubnames section");
5725 		return;
5726 	}
5727 
5728 	nt_version = re->dw_read(d, &offset, 2);
5729 	nt_cu_offset = re->dw_read(d, &offset, dwarf_size);
5730 	nt_cu_length = re->dw_read(d, &offset, dwarf_size);
5731 	printf("  Length:\t\t\t\t%ju\n", (uintmax_t) length);
5732 	printf("  Version:\t\t\t\t%u\n", nt_version);
5733 	printf("  Offset into .debug_info section:\t%ju\n",
5734 	    (uintmax_t) nt_cu_offset);
5735 	printf("  Size of area in .debug_info section:\t%ju\n",
5736 	    (uintmax_t) nt_cu_length);
5737 
5738 	if (dwarf_get_globals(re->dbg, &globs, &cnt, &de) != DW_DLV_OK) {
5739 		warnx("dwarf_get_globals failed: %s", dwarf_errmsg(de));
5740 		return;
5741 	}
5742 
5743 	printf("\n    Offset      Name\n");
5744 	for (i = 0; i < cnt; i++) {
5745 		if (dwarf_globname(globs[i], &glob_name, &de) != DW_DLV_OK) {
5746 			warnx("dwarf_globname failed: %s", dwarf_errmsg(de));
5747 			continue;
5748 		}
5749 		if (dwarf_global_die_offset(globs[i], &die_off, &de) !=
5750 		    DW_DLV_OK) {
5751 			warnx("dwarf_global_die_offset failed: %s",
5752 			    dwarf_errmsg(de));
5753 			continue;
5754 		}
5755 		printf("    %-11ju %s\n", (uintmax_t) die_off, glob_name);
5756 	}
5757 }
5758 
5759 static void
5760 dump_dwarf_aranges(struct readelf *re)
5761 {
5762 	struct section *s;
5763 	Dwarf_Arange *aranges;
5764 	Dwarf_Addr start;
5765 	Dwarf_Unsigned offset, length, as_cu_offset;
5766 	Dwarf_Off die_off;
5767 	Dwarf_Signed cnt;
5768 	Dwarf_Half as_version, as_addrsz, as_segsz;
5769 	Dwarf_Error de;
5770 	Elf_Data *d;
5771 	int i, dwarf_size, elferr;
5772 
5773 	printf("\nContents of section .debug_aranges:\n");
5774 
5775 	s = NULL;
5776 	for (i = 0; (size_t) i < re->shnum; i++) {
5777 		s = &re->sl[i];
5778 		if (s->name != NULL && !strcmp(s->name, ".debug_aranges"))
5779 			break;
5780 	}
5781 	if ((size_t) i >= re->shnum)
5782 		return;
5783 
5784 	(void) elf_errno();
5785 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
5786 		elferr = elf_errno();
5787 		if (elferr != 0)
5788 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
5789 		return;
5790 	}
5791 	if (d->d_size <= 0)
5792 		return;
5793 
5794 	/* Read in the .debug_aranges section table header. */
5795 	offset = 0;
5796 	length = re->dw_read(d, &offset, 4);
5797 	if (length == 0xffffffff) {
5798 		dwarf_size = 8;
5799 		length = re->dw_read(d, &offset, 8);
5800 	} else
5801 		dwarf_size = 4;
5802 
5803 	if (length > d->d_size - offset) {
5804 		warnx("invalid .dwarf_aranges section");
5805 		return;
5806 	}
5807 
5808 	as_version = re->dw_read(d, &offset, 2);
5809 	as_cu_offset = re->dw_read(d, &offset, dwarf_size);
5810 	as_addrsz = re->dw_read(d, &offset, 1);
5811 	as_segsz = re->dw_read(d, &offset, 1);
5812 
5813 	printf("  Length:\t\t\t%ju\n", (uintmax_t) length);
5814 	printf("  Version:\t\t\t%u\n", as_version);
5815 	printf("  Offset into .debug_info:\t%ju\n", (uintmax_t) as_cu_offset);
5816 	printf("  Pointer Size:\t\t\t%u\n", as_addrsz);
5817 	printf("  Segment Size:\t\t\t%u\n", as_segsz);
5818 
5819 	if (dwarf_get_aranges(re->dbg, &aranges, &cnt, &de) != DW_DLV_OK) {
5820 		warnx("dwarf_get_aranges failed: %s", dwarf_errmsg(de));
5821 		return;
5822 	}
5823 
5824 	printf("\n    Address  Length\n");
5825 	for (i = 0; i < cnt; i++) {
5826 		if (dwarf_get_arange_info(aranges[i], &start, &length,
5827 		    &die_off, &de) != DW_DLV_OK) {
5828 			warnx("dwarf_get_arange_info failed: %s",
5829 			    dwarf_errmsg(de));
5830 			continue;
5831 		}
5832 		printf("    %08jx %ju\n", (uintmax_t) start,
5833 		    (uintmax_t) length);
5834 	}
5835 }
5836 
5837 static void
5838 dump_dwarf_ranges_foreach(struct readelf *re, Dwarf_Die die, Dwarf_Addr base)
5839 {
5840 	Dwarf_Attribute *attr_list;
5841 	Dwarf_Ranges *ranges;
5842 	Dwarf_Die ret_die;
5843 	Dwarf_Error de;
5844 	Dwarf_Addr base0;
5845 	Dwarf_Half attr;
5846 	Dwarf_Signed attr_count, cnt;
5847 	Dwarf_Unsigned bytecnt;
5848 	Dwarf_Off off;
5849 	int i, j, ret;
5850 
5851 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
5852 	    DW_DLV_OK) {
5853 		if (ret == DW_DLV_ERROR)
5854 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
5855 		goto cont_search;
5856 	}
5857 
5858 	for (i = 0; i < attr_count; i++) {
5859 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
5860 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
5861 			continue;
5862 		}
5863 		if (attr != DW_AT_ranges)
5864 			continue;
5865 		if (dwarf_global_formref(attr_list[i], &off, &de) != DW_DLV_OK) {
5866 			warnx("dwarf_global_formref failed: %s",
5867 			    dwarf_errmsg(de));
5868 			continue;
5869 		}
5870 		if (dwarf_get_ranges(re->dbg, off, &ranges, &cnt,
5871 		    &bytecnt, &de) != DW_DLV_OK)
5872 			continue;
5873 		base0 = base;
5874 		for (j = 0; j < cnt; j++) {
5875 			printf("    %08jx ", (uintmax_t) off);
5876 			if (ranges[j].dwr_type == DW_RANGES_END) {
5877 				printf("%s\n", "<End of list>");
5878 				continue;
5879 			} else if (ranges[j].dwr_type ==
5880 			    DW_RANGES_ADDRESS_SELECTION) {
5881 				base0 = ranges[j].dwr_addr2;
5882 				continue;
5883 			}
5884 			if (re->ec == ELFCLASS32)
5885 				printf("%08jx %08jx\n",
5886 				    (uintmax_t) (ranges[j].dwr_addr1 + base0),
5887 				    (uintmax_t) (ranges[j].dwr_addr2 + base0));
5888 			else
5889 				printf("%016jx %016jx\n",
5890 				    (uintmax_t) (ranges[j].dwr_addr1 + base0),
5891 				    (uintmax_t) (ranges[j].dwr_addr2 + base0));
5892 		}
5893 	}
5894 
5895 cont_search:
5896 	/* Search children. */
5897 	ret = dwarf_child(die, &ret_die, &de);
5898 	if (ret == DW_DLV_ERROR)
5899 		warnx("dwarf_child: %s", dwarf_errmsg(de));
5900 	else if (ret == DW_DLV_OK)
5901 		dump_dwarf_ranges_foreach(re, ret_die, base);
5902 
5903 	/* Search sibling. */
5904 	ret = dwarf_siblingof(re->dbg, die, &ret_die, &de);
5905 	if (ret == DW_DLV_ERROR)
5906 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
5907 	else if (ret == DW_DLV_OK)
5908 		dump_dwarf_ranges_foreach(re, ret_die, base);
5909 
5910 	dwarf_dealloc(re->dbg, die, DW_DLA_DIE);
5911 }
5912 
5913 static void
5914 dump_dwarf_ranges(struct readelf *re)
5915 {
5916 	Dwarf_Ranges *ranges;
5917 	Dwarf_Die die;
5918 	Dwarf_Signed cnt;
5919 	Dwarf_Unsigned bytecnt;
5920 	Dwarf_Half tag;
5921 	Dwarf_Error de;
5922 	Dwarf_Unsigned lowpc;
5923 	int ret;
5924 
5925 	if (dwarf_get_ranges(re->dbg, 0, &ranges, &cnt, &bytecnt, &de) !=
5926 	    DW_DLV_OK)
5927 		return;
5928 
5929 	printf("Contents of the .debug_ranges section:\n\n");
5930 	if (re->ec == ELFCLASS32)
5931 		printf("    %-8s %-8s %s\n", "Offset", "Begin", "End");
5932 	else
5933 		printf("    %-8s %-16s %s\n", "Offset", "Begin", "End");
5934 
5935 	while ((ret = dwarf_next_cu_header(re->dbg, NULL, NULL, NULL, NULL,
5936 	    NULL, &de)) == DW_DLV_OK) {
5937 		die = NULL;
5938 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
5939 			continue;
5940 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
5941 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
5942 			continue;
5943 		}
5944 		/* XXX: What about DW_TAG_partial_unit? */
5945 		lowpc = 0;
5946 		if (tag == DW_TAG_compile_unit) {
5947 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc, &lowpc,
5948 			    &de) != DW_DLV_OK)
5949 				lowpc = 0;
5950 		}
5951 
5952 		dump_dwarf_ranges_foreach(re, die, (Dwarf_Addr) lowpc);
5953 	}
5954 	putchar('\n');
5955 }
5956 
5957 static void
5958 dump_dwarf_macinfo(struct readelf *re)
5959 {
5960 	Dwarf_Unsigned offset;
5961 	Dwarf_Signed cnt;
5962 	Dwarf_Macro_Details *md;
5963 	Dwarf_Error de;
5964 	const char *mi_str;
5965 	char unk_mi[32];
5966 	int i;
5967 
5968 #define	_MAX_MACINFO_ENTRY	65535
5969 
5970 	printf("\nContents of section .debug_macinfo:\n\n");
5971 
5972 	offset = 0;
5973 	while (dwarf_get_macro_details(re->dbg, offset, _MAX_MACINFO_ENTRY,
5974 	    &cnt, &md, &de) == DW_DLV_OK) {
5975 		for (i = 0; i < cnt; i++) {
5976 			offset = md[i].dmd_offset + 1;
5977 			if (md[i].dmd_type == 0)
5978 				break;
5979 			if (dwarf_get_MACINFO_name(md[i].dmd_type, &mi_str) !=
5980 			    DW_DLV_OK) {
5981 				snprintf(unk_mi, sizeof(unk_mi),
5982 				    "[Unknown MACINFO: %#x]", md[i].dmd_type);
5983 				mi_str = unk_mi;
5984 			}
5985 			printf(" %s", mi_str);
5986 			switch (md[i].dmd_type) {
5987 			case DW_MACINFO_define:
5988 			case DW_MACINFO_undef:
5989 				printf(" - lineno : %jd macro : %s\n",
5990 				    (intmax_t) md[i].dmd_lineno,
5991 				    md[i].dmd_macro);
5992 				break;
5993 			case DW_MACINFO_start_file:
5994 				printf(" - lineno : %jd filenum : %jd\n",
5995 				    (intmax_t) md[i].dmd_lineno,
5996 				    (intmax_t) md[i].dmd_fileindex);
5997 				break;
5998 			default:
5999 				putchar('\n');
6000 				break;
6001 			}
6002 		}
6003 	}
6004 
6005 #undef	_MAX_MACINFO_ENTRY
6006 }
6007 
6008 static void
6009 dump_dwarf_frame_inst(struct readelf *re, Dwarf_Cie cie, uint8_t *insts,
6010     Dwarf_Unsigned len, Dwarf_Unsigned caf, Dwarf_Signed daf, Dwarf_Addr pc,
6011     Dwarf_Debug dbg)
6012 {
6013 	Dwarf_Frame_Op *oplist;
6014 	Dwarf_Signed opcnt, delta;
6015 	Dwarf_Small op;
6016 	Dwarf_Error de;
6017 	const char *op_str;
6018 	char unk_op[32];
6019 	int i;
6020 
6021 	if (dwarf_expand_frame_instructions(cie, insts, len, &oplist,
6022 	    &opcnt, &de) != DW_DLV_OK) {
6023 		warnx("dwarf_expand_frame_instructions failed: %s",
6024 		    dwarf_errmsg(de));
6025 		return;
6026 	}
6027 
6028 	for (i = 0; i < opcnt; i++) {
6029 		if (oplist[i].fp_base_op != 0)
6030 			op = oplist[i].fp_base_op << 6;
6031 		else
6032 			op = oplist[i].fp_extended_op;
6033 		if (dwarf_get_CFA_name(op, &op_str) != DW_DLV_OK) {
6034 			snprintf(unk_op, sizeof(unk_op), "[Unknown CFA: %#x]",
6035 			    op);
6036 			op_str = unk_op;
6037 		}
6038 		printf("  %s", op_str);
6039 		switch (op) {
6040 		case DW_CFA_advance_loc:
6041 			delta = oplist[i].fp_offset * caf;
6042 			pc += delta;
6043 			printf(": %ju to %08jx", (uintmax_t) delta,
6044 			    (uintmax_t) pc);
6045 			break;
6046 		case DW_CFA_offset:
6047 		case DW_CFA_offset_extended:
6048 		case DW_CFA_offset_extended_sf:
6049 			delta = oplist[i].fp_offset * daf;
6050 			printf(": r%u (%s) at cfa%+jd", oplist[i].fp_register,
6051 			    dwarf_regname(re, oplist[i].fp_register),
6052 			    (intmax_t) delta);
6053 			break;
6054 		case DW_CFA_restore:
6055 			printf(": r%u (%s)", oplist[i].fp_register,
6056 			    dwarf_regname(re, oplist[i].fp_register));
6057 			break;
6058 		case DW_CFA_set_loc:
6059 			pc = oplist[i].fp_offset;
6060 			printf(": to %08jx", (uintmax_t) pc);
6061 			break;
6062 		case DW_CFA_advance_loc1:
6063 		case DW_CFA_advance_loc2:
6064 		case DW_CFA_advance_loc4:
6065 			pc += oplist[i].fp_offset;
6066 			printf(": %jd to %08jx", (intmax_t) oplist[i].fp_offset,
6067 			    (uintmax_t) pc);
6068 			break;
6069 		case DW_CFA_def_cfa:
6070 			printf(": r%u (%s) ofs %ju", oplist[i].fp_register,
6071 			    dwarf_regname(re, oplist[i].fp_register),
6072 			    (uintmax_t) oplist[i].fp_offset);
6073 			break;
6074 		case DW_CFA_def_cfa_sf:
6075 			printf(": r%u (%s) ofs %jd", oplist[i].fp_register,
6076 			    dwarf_regname(re, oplist[i].fp_register),
6077 			    (intmax_t) (oplist[i].fp_offset * daf));
6078 			break;
6079 		case DW_CFA_def_cfa_register:
6080 			printf(": r%u (%s)", oplist[i].fp_register,
6081 			    dwarf_regname(re, oplist[i].fp_register));
6082 			break;
6083 		case DW_CFA_def_cfa_offset:
6084 			printf(": %ju", (uintmax_t) oplist[i].fp_offset);
6085 			break;
6086 		case DW_CFA_def_cfa_offset_sf:
6087 			printf(": %jd", (intmax_t) (oplist[i].fp_offset * daf));
6088 			break;
6089 		default:
6090 			break;
6091 		}
6092 		putchar('\n');
6093 	}
6094 
6095 	dwarf_dealloc(dbg, oplist, DW_DLA_FRAME_BLOCK);
6096 }
6097 
6098 static char *
6099 get_regoff_str(struct readelf *re, Dwarf_Half reg, Dwarf_Addr off)
6100 {
6101 	static char rs[16];
6102 
6103 	if (reg == DW_FRAME_UNDEFINED_VAL || reg == DW_FRAME_REG_INITIAL_VALUE)
6104 		snprintf(rs, sizeof(rs), "%c", 'u');
6105 	else if (reg == DW_FRAME_CFA_COL)
6106 		snprintf(rs, sizeof(rs), "c%+jd", (intmax_t) off);
6107 	else
6108 		snprintf(rs, sizeof(rs), "%s%+jd", dwarf_regname(re, reg),
6109 		    (intmax_t) off);
6110 
6111 	return (rs);
6112 }
6113 
6114 static int
6115 dump_dwarf_frame_regtable(struct readelf *re, Dwarf_Fde fde, Dwarf_Addr pc,
6116     Dwarf_Unsigned func_len, Dwarf_Half cie_ra)
6117 {
6118 	Dwarf_Regtable rt;
6119 	Dwarf_Addr row_pc, end_pc, pre_pc, cur_pc;
6120 	Dwarf_Error de;
6121 	char *vec;
6122 	int i;
6123 
6124 #define BIT_SET(v, n) (v[(n)>>3] |= 1U << ((n) & 7))
6125 #define BIT_CLR(v, n) (v[(n)>>3] &= ~(1U << ((n) & 7)))
6126 #define BIT_ISSET(v, n) (v[(n)>>3] & (1U << ((n) & 7)))
6127 #define	RT(x) rt.rules[(x)]
6128 
6129 	vec = calloc((DW_REG_TABLE_SIZE + 7) / 8, 1);
6130 	if (vec == NULL)
6131 		err(EXIT_FAILURE, "calloc failed");
6132 
6133 	pre_pc = ~((Dwarf_Addr) 0);
6134 	cur_pc = pc;
6135 	end_pc = pc + func_len;
6136 	for (; cur_pc < end_pc; cur_pc++) {
6137 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
6138 		    &de) != DW_DLV_OK) {
6139 			free(vec);
6140 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
6141 			    dwarf_errmsg(de));
6142 			return (-1);
6143 		}
6144 		if (row_pc == pre_pc)
6145 			continue;
6146 		pre_pc = row_pc;
6147 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6148 			if (rt.rules[i].dw_regnum != DW_FRAME_REG_INITIAL_VALUE)
6149 				BIT_SET(vec, i);
6150 		}
6151 	}
6152 
6153 	printf("   LOC   CFA      ");
6154 	for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6155 		if (BIT_ISSET(vec, i)) {
6156 			if ((Dwarf_Half) i == cie_ra)
6157 				printf("ra   ");
6158 			else
6159 				printf("%-5s",
6160 				    dwarf_regname(re, (unsigned int) i));
6161 		}
6162 	}
6163 	putchar('\n');
6164 
6165 	pre_pc = ~((Dwarf_Addr) 0);
6166 	cur_pc = pc;
6167 	end_pc = pc + func_len;
6168 	for (; cur_pc < end_pc; cur_pc++) {
6169 		if (dwarf_get_fde_info_for_all_regs(fde, cur_pc, &rt, &row_pc,
6170 		    &de) != DW_DLV_OK) {
6171 			free(vec);
6172 			warnx("dwarf_get_fde_info_for_all_regs failed: %s\n",
6173 			    dwarf_errmsg(de));
6174 			return (-1);
6175 		}
6176 		if (row_pc == pre_pc)
6177 			continue;
6178 		pre_pc = row_pc;
6179 		printf("%08jx ", (uintmax_t) row_pc);
6180 		printf("%-8s ", get_regoff_str(re, RT(0).dw_regnum,
6181 		    RT(0).dw_offset));
6182 		for (i = 1; i < DW_REG_TABLE_SIZE; i++) {
6183 			if (BIT_ISSET(vec, i)) {
6184 				printf("%-5s", get_regoff_str(re,
6185 				    RT(i).dw_regnum, RT(i).dw_offset));
6186 			}
6187 		}
6188 		putchar('\n');
6189 	}
6190 
6191 	free(vec);
6192 
6193 	return (0);
6194 
6195 #undef	BIT_SET
6196 #undef	BIT_CLR
6197 #undef	BIT_ISSET
6198 #undef	RT
6199 }
6200 
6201 static void
6202 dump_dwarf_frame_section(struct readelf *re, struct section *s, int alt)
6203 {
6204 	Dwarf_Cie *cie_list, cie, pre_cie;
6205 	Dwarf_Fde *fde_list, fde;
6206 	Dwarf_Off cie_offset, fde_offset;
6207 	Dwarf_Unsigned cie_length, fde_instlen;
6208 	Dwarf_Unsigned cie_caf, cie_daf, cie_instlen, func_len, fde_length;
6209 	Dwarf_Signed cie_count, fde_count, cie_index;
6210 	Dwarf_Addr low_pc;
6211 	Dwarf_Half cie_ra;
6212 	Dwarf_Small cie_version;
6213 	Dwarf_Ptr fde_addr, fde_inst, cie_inst;
6214 	char *cie_aug, c;
6215 	int i, ret, eh_frame;
6216 	Dwarf_Error de;
6217 
6218 	printf("\nThe section %s contains:\n\n", s->name);
6219 
6220 	if (!strcmp(s->name, ".debug_frame")) {
6221 		eh_frame = 0;
6222 		if (dwarf_get_fde_list(re->dbg, &cie_list, &cie_count,
6223 		    &fde_list, &fde_count, &de) != DW_DLV_OK) {
6224 			warnx("dwarf_get_fde_list failed: %s",
6225 			    dwarf_errmsg(de));
6226 			return;
6227 		}
6228 	} else if (!strcmp(s->name, ".eh_frame")) {
6229 		eh_frame = 1;
6230 		ret = dwarf_get_fde_list_eh(re->dbg, &cie_list, &cie_count,
6231 		    &fde_list, &fde_count, &de);
6232 		if (ret != DW_DLV_OK) {
6233 			if (ret == DW_DLV_ERROR) {
6234 				warnx("dwarf_get_fde_list_eh failed: %s",
6235 				    dwarf_errmsg(de));
6236 			}
6237 			return;
6238 		}
6239 	} else
6240 		return;
6241 
6242 	pre_cie = NULL;
6243 	for (i = 0; i < fde_count; i++) {
6244 		if (dwarf_get_fde_n(fde_list, i, &fde, &de) != DW_DLV_OK) {
6245 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
6246 			continue;
6247 		}
6248 		if (dwarf_get_cie_of_fde(fde, &cie, &de) != DW_DLV_OK) {
6249 			warnx("dwarf_get_fde_n failed: %s", dwarf_errmsg(de));
6250 			continue;
6251 		}
6252 		if (dwarf_get_fde_range(fde, &low_pc, &func_len, &fde_addr,
6253 		    &fde_length, &cie_offset, &cie_index, &fde_offset,
6254 		    &de) != DW_DLV_OK) {
6255 			warnx("dwarf_get_fde_range failed: %s",
6256 			    dwarf_errmsg(de));
6257 			continue;
6258 		}
6259 		if (dwarf_get_fde_instr_bytes(fde, &fde_inst, &fde_instlen,
6260 		    &de) != DW_DLV_OK) {
6261 			warnx("dwarf_get_fde_instr_bytes failed: %s",
6262 			    dwarf_errmsg(de));
6263 			continue;
6264 		}
6265 		if (pre_cie == NULL || cie != pre_cie) {
6266 			pre_cie = cie;
6267 			if (dwarf_get_cie_info(cie, &cie_length, &cie_version,
6268 			    &cie_aug, &cie_caf, &cie_daf, &cie_ra,
6269 			    &cie_inst, &cie_instlen, &de) != DW_DLV_OK) {
6270 				warnx("dwarf_get_cie_info failed: %s",
6271 				    dwarf_errmsg(de));
6272 				continue;
6273 			}
6274 			printf("%08jx %08jx %8.8jx CIE",
6275 			    (uintmax_t) cie_offset,
6276 			    (uintmax_t) cie_length,
6277 			    (uintmax_t) (eh_frame ? 0 : ~0U));
6278 			if (!alt) {
6279 				putchar('\n');
6280 				printf("  Version:\t\t\t%u\n", cie_version);
6281 				printf("  Augmentation:\t\t\t\"");
6282 				while ((c = *cie_aug++) != '\0')
6283 					putchar(c);
6284 				printf("\"\n");
6285 				printf("  Code alignment factor:\t%ju\n",
6286 				    (uintmax_t) cie_caf);
6287 				printf("  Data alignment factor:\t%jd\n",
6288 				    (intmax_t) cie_daf);
6289 				printf("  Return address column:\t%ju\n",
6290 				    (uintmax_t) cie_ra);
6291 				putchar('\n');
6292 				dump_dwarf_frame_inst(re, cie, cie_inst,
6293 				    cie_instlen, cie_caf, cie_daf, 0,
6294 				    re->dbg);
6295 				putchar('\n');
6296 			} else {
6297 				printf(" \"");
6298 				while ((c = *cie_aug++) != '\0')
6299 					putchar(c);
6300 				putchar('"');
6301 				printf(" cf=%ju df=%jd ra=%ju\n",
6302 				    (uintmax_t) cie_caf,
6303 				    (uintmax_t) cie_daf,
6304 				    (uintmax_t) cie_ra);
6305 				dump_dwarf_frame_regtable(re, fde, low_pc, 1,
6306 				    cie_ra);
6307 				putchar('\n');
6308 			}
6309 		}
6310 		printf("%08jx %08jx %08jx FDE cie=%08jx pc=%08jx..%08jx\n",
6311 		    (uintmax_t) fde_offset, (uintmax_t) fde_length,
6312 		    (uintmax_t) cie_offset,
6313 		    (uintmax_t) (eh_frame ? fde_offset + 4 - cie_offset :
6314 			cie_offset),
6315 		    (uintmax_t) low_pc, (uintmax_t) (low_pc + func_len));
6316 		if (!alt)
6317 			dump_dwarf_frame_inst(re, cie, fde_inst, fde_instlen,
6318 			    cie_caf, cie_daf, low_pc, re->dbg);
6319 		else
6320 			dump_dwarf_frame_regtable(re, fde, low_pc, func_len,
6321 			    cie_ra);
6322 		putchar('\n');
6323 	}
6324 }
6325 
6326 static void
6327 dump_dwarf_frame(struct readelf *re, int alt)
6328 {
6329 	struct section *s;
6330 	int i;
6331 
6332 	(void) dwarf_set_frame_cfa_value(re->dbg, DW_FRAME_CFA_COL);
6333 
6334 	for (i = 0; (size_t) i < re->shnum; i++) {
6335 		s = &re->sl[i];
6336 		if (s->name != NULL && (!strcmp(s->name, ".debug_frame") ||
6337 		    !strcmp(s->name, ".eh_frame")))
6338 			dump_dwarf_frame_section(re, s, alt);
6339 	}
6340 }
6341 
6342 static void
6343 dump_dwarf_str(struct readelf *re)
6344 {
6345 	struct section *s;
6346 	Elf_Data *d;
6347 	unsigned char *p;
6348 	int elferr, end, i, j;
6349 
6350 	printf("\nContents of section .debug_str:\n");
6351 
6352 	s = NULL;
6353 	for (i = 0; (size_t) i < re->shnum; i++) {
6354 		s = &re->sl[i];
6355 		if (s->name != NULL && !strcmp(s->name, ".debug_str"))
6356 			break;
6357 	}
6358 	if ((size_t) i >= re->shnum)
6359 		return;
6360 
6361 	(void) elf_errno();
6362 	if ((d = elf_getdata(s->scn, NULL)) == NULL) {
6363 		elferr = elf_errno();
6364 		if (elferr != 0)
6365 			warnx("elf_getdata failed: %s", elf_errmsg(-1));
6366 		return;
6367 	}
6368 	if (d->d_size <= 0)
6369 		return;
6370 
6371 	for (i = 0, p = d->d_buf; (size_t) i < d->d_size; i += 16) {
6372 		printf("  0x%08x", (unsigned int) i);
6373 		if ((size_t) i + 16 > d->d_size)
6374 			end = d->d_size;
6375 		else
6376 			end = i + 16;
6377 		for (j = i; j < i + 16; j++) {
6378 			if ((j - i) % 4 == 0)
6379 				putchar(' ');
6380 			if (j >= end) {
6381 				printf("  ");
6382 				continue;
6383 			}
6384 			printf("%02x", (uint8_t) p[j]);
6385 		}
6386 		putchar(' ');
6387 		for (j = i; j < end; j++) {
6388 			if (isprint(p[j]))
6389 				putchar(p[j]);
6390 			else if (p[j] == 0)
6391 				putchar('.');
6392 			else
6393 				putchar(' ');
6394 		}
6395 		putchar('\n');
6396 	}
6397 }
6398 
6399 static int
6400 loc_at_comparator(const void *la1, const void *la2)
6401 {
6402 	const struct loc_at *left, *right;
6403 
6404 	left = (const struct loc_at *)la1;
6405 	right = (const struct loc_at *)la2;
6406 
6407 	if (left->la_off > right->la_off)
6408 		return (1);
6409 	else if (left->la_off < right->la_off)
6410 		return (-1);
6411 	else
6412 		return (0);
6413 }
6414 
6415 static void
6416 search_loclist_at(struct readelf *re, Dwarf_Die die, Dwarf_Unsigned lowpc,
6417     struct loc_at **la_list, size_t *la_list_len, size_t *la_list_cap)
6418 {
6419 	struct loc_at *la;
6420 	Dwarf_Attribute *attr_list;
6421 	Dwarf_Die ret_die;
6422 	Dwarf_Unsigned off;
6423 	Dwarf_Off ref;
6424 	Dwarf_Signed attr_count;
6425 	Dwarf_Half attr, form;
6426 	Dwarf_Bool is_info;
6427 	Dwarf_Error de;
6428 	int i, ret;
6429 
6430 	is_info = dwarf_get_die_infotypes_flag(die);
6431 
6432 	if ((ret = dwarf_attrlist(die, &attr_list, &attr_count, &de)) !=
6433 	    DW_DLV_OK) {
6434 		if (ret == DW_DLV_ERROR)
6435 			warnx("dwarf_attrlist failed: %s", dwarf_errmsg(de));
6436 		goto cont_search;
6437 	}
6438 	for (i = 0; i < attr_count; i++) {
6439 		if (dwarf_whatattr(attr_list[i], &attr, &de) != DW_DLV_OK) {
6440 			warnx("dwarf_whatattr failed: %s", dwarf_errmsg(de));
6441 			continue;
6442 		}
6443 		if (attr != DW_AT_location &&
6444 		    attr != DW_AT_string_length &&
6445 		    attr != DW_AT_return_addr &&
6446 		    attr != DW_AT_data_member_location &&
6447 		    attr != DW_AT_frame_base &&
6448 		    attr != DW_AT_segment &&
6449 		    attr != DW_AT_static_link &&
6450 		    attr != DW_AT_use_location &&
6451 		    attr != DW_AT_vtable_elem_location)
6452 			continue;
6453 		if (dwarf_whatform(attr_list[i], &form, &de) != DW_DLV_OK) {
6454 			warnx("dwarf_whatform failed: %s", dwarf_errmsg(de));
6455 			continue;
6456 		}
6457 		if (form == DW_FORM_data4 || form == DW_FORM_data8) {
6458 			if (dwarf_formudata(attr_list[i], &off, &de) !=
6459 			    DW_DLV_OK) {
6460 				warnx("dwarf_formudata failed: %s",
6461 				    dwarf_errmsg(de));
6462 				continue;
6463 			}
6464 		} else if (form == DW_FORM_sec_offset) {
6465 			if (dwarf_global_formref(attr_list[i], &ref, &de) !=
6466 			    DW_DLV_OK) {
6467 				warnx("dwarf_global_formref failed: %s",
6468 				    dwarf_errmsg(de));
6469 				continue;
6470 			}
6471 			off = ref;
6472 		} else
6473 			continue;
6474 
6475 		if (*la_list_cap == *la_list_len) {
6476 			*la_list = realloc(*la_list,
6477 			    *la_list_cap * 2 * sizeof(**la_list));
6478 			if (*la_list == NULL)
6479 				err(EXIT_FAILURE, "realloc failed");
6480 			*la_list_cap *= 2;
6481 		}
6482 		la = &((*la_list)[*la_list_len]);
6483 		la->la_at = attr_list[i];
6484 		la->la_off = off;
6485 		la->la_lowpc = lowpc;
6486 		la->la_cu_psize = re->cu_psize;
6487 		la->la_cu_osize = re->cu_osize;
6488 		la->la_cu_ver = re->cu_ver;
6489 		(*la_list_len)++;
6490 	}
6491 
6492 cont_search:
6493 	/* Search children. */
6494 	ret = dwarf_child(die, &ret_die, &de);
6495 	if (ret == DW_DLV_ERROR)
6496 		warnx("dwarf_child: %s", dwarf_errmsg(de));
6497 	else if (ret == DW_DLV_OK)
6498 		search_loclist_at(re, ret_die, lowpc, la_list,
6499 		    la_list_len, la_list_cap);
6500 
6501 	/* Search sibling. */
6502 	ret = dwarf_siblingof_b(re->dbg, die, &ret_die, is_info, &de);
6503 	if (ret == DW_DLV_ERROR)
6504 		warnx("dwarf_siblingof: %s", dwarf_errmsg(de));
6505 	else if (ret == DW_DLV_OK)
6506 		search_loclist_at(re, ret_die, lowpc, la_list,
6507 		    la_list_len, la_list_cap);
6508 }
6509 
6510 static void
6511 dump_dwarf_loc(struct readelf *re, Dwarf_Loc *lr)
6512 {
6513 	const char *op_str;
6514 	char unk_op[32];
6515 	uint8_t *b, n;
6516 	int i;
6517 
6518 	if (dwarf_get_OP_name(lr->lr_atom, &op_str) !=
6519 	    DW_DLV_OK) {
6520 		snprintf(unk_op, sizeof(unk_op),
6521 		    "[Unknown OP: %#x]", lr->lr_atom);
6522 		op_str = unk_op;
6523 	}
6524 
6525 	printf("%s", op_str);
6526 
6527 	switch (lr->lr_atom) {
6528 	case DW_OP_reg0:
6529 	case DW_OP_reg1:
6530 	case DW_OP_reg2:
6531 	case DW_OP_reg3:
6532 	case DW_OP_reg4:
6533 	case DW_OP_reg5:
6534 	case DW_OP_reg6:
6535 	case DW_OP_reg7:
6536 	case DW_OP_reg8:
6537 	case DW_OP_reg9:
6538 	case DW_OP_reg10:
6539 	case DW_OP_reg11:
6540 	case DW_OP_reg12:
6541 	case DW_OP_reg13:
6542 	case DW_OP_reg14:
6543 	case DW_OP_reg15:
6544 	case DW_OP_reg16:
6545 	case DW_OP_reg17:
6546 	case DW_OP_reg18:
6547 	case DW_OP_reg19:
6548 	case DW_OP_reg20:
6549 	case DW_OP_reg21:
6550 	case DW_OP_reg22:
6551 	case DW_OP_reg23:
6552 	case DW_OP_reg24:
6553 	case DW_OP_reg25:
6554 	case DW_OP_reg26:
6555 	case DW_OP_reg27:
6556 	case DW_OP_reg28:
6557 	case DW_OP_reg29:
6558 	case DW_OP_reg30:
6559 	case DW_OP_reg31:
6560 		printf(" (%s)", dwarf_regname(re, lr->lr_atom - DW_OP_reg0));
6561 		break;
6562 
6563 	case DW_OP_deref:
6564 	case DW_OP_lit0:
6565 	case DW_OP_lit1:
6566 	case DW_OP_lit2:
6567 	case DW_OP_lit3:
6568 	case DW_OP_lit4:
6569 	case DW_OP_lit5:
6570 	case DW_OP_lit6:
6571 	case DW_OP_lit7:
6572 	case DW_OP_lit8:
6573 	case DW_OP_lit9:
6574 	case DW_OP_lit10:
6575 	case DW_OP_lit11:
6576 	case DW_OP_lit12:
6577 	case DW_OP_lit13:
6578 	case DW_OP_lit14:
6579 	case DW_OP_lit15:
6580 	case DW_OP_lit16:
6581 	case DW_OP_lit17:
6582 	case DW_OP_lit18:
6583 	case DW_OP_lit19:
6584 	case DW_OP_lit20:
6585 	case DW_OP_lit21:
6586 	case DW_OP_lit22:
6587 	case DW_OP_lit23:
6588 	case DW_OP_lit24:
6589 	case DW_OP_lit25:
6590 	case DW_OP_lit26:
6591 	case DW_OP_lit27:
6592 	case DW_OP_lit28:
6593 	case DW_OP_lit29:
6594 	case DW_OP_lit30:
6595 	case DW_OP_lit31:
6596 	case DW_OP_dup:
6597 	case DW_OP_drop:
6598 	case DW_OP_over:
6599 	case DW_OP_swap:
6600 	case DW_OP_rot:
6601 	case DW_OP_xderef:
6602 	case DW_OP_abs:
6603 	case DW_OP_and:
6604 	case DW_OP_div:
6605 	case DW_OP_minus:
6606 	case DW_OP_mod:
6607 	case DW_OP_mul:
6608 	case DW_OP_neg:
6609 	case DW_OP_not:
6610 	case DW_OP_or:
6611 	case DW_OP_plus:
6612 	case DW_OP_shl:
6613 	case DW_OP_shr:
6614 	case DW_OP_shra:
6615 	case DW_OP_xor:
6616 	case DW_OP_eq:
6617 	case DW_OP_ge:
6618 	case DW_OP_gt:
6619 	case DW_OP_le:
6620 	case DW_OP_lt:
6621 	case DW_OP_ne:
6622 	case DW_OP_nop:
6623 	case DW_OP_push_object_address:
6624 	case DW_OP_form_tls_address:
6625 	case DW_OP_call_frame_cfa:
6626 	case DW_OP_stack_value:
6627 	case DW_OP_GNU_push_tls_address:
6628 	case DW_OP_GNU_uninit:
6629 		break;
6630 
6631 	case DW_OP_const1u:
6632 	case DW_OP_pick:
6633 	case DW_OP_deref_size:
6634 	case DW_OP_xderef_size:
6635 	case DW_OP_const2u:
6636 	case DW_OP_bra:
6637 	case DW_OP_skip:
6638 	case DW_OP_const4u:
6639 	case DW_OP_const8u:
6640 	case DW_OP_constu:
6641 	case DW_OP_plus_uconst:
6642 	case DW_OP_regx:
6643 	case DW_OP_piece:
6644 		printf(": %ju", (uintmax_t)
6645 		    lr->lr_number);
6646 		break;
6647 
6648 	case DW_OP_const1s:
6649 	case DW_OP_const2s:
6650 	case DW_OP_const4s:
6651 	case DW_OP_const8s:
6652 	case DW_OP_consts:
6653 		printf(": %jd", (intmax_t)
6654 		    lr->lr_number);
6655 		break;
6656 
6657 	case DW_OP_breg0:
6658 	case DW_OP_breg1:
6659 	case DW_OP_breg2:
6660 	case DW_OP_breg3:
6661 	case DW_OP_breg4:
6662 	case DW_OP_breg5:
6663 	case DW_OP_breg6:
6664 	case DW_OP_breg7:
6665 	case DW_OP_breg8:
6666 	case DW_OP_breg9:
6667 	case DW_OP_breg10:
6668 	case DW_OP_breg11:
6669 	case DW_OP_breg12:
6670 	case DW_OP_breg13:
6671 	case DW_OP_breg14:
6672 	case DW_OP_breg15:
6673 	case DW_OP_breg16:
6674 	case DW_OP_breg17:
6675 	case DW_OP_breg18:
6676 	case DW_OP_breg19:
6677 	case DW_OP_breg20:
6678 	case DW_OP_breg21:
6679 	case DW_OP_breg22:
6680 	case DW_OP_breg23:
6681 	case DW_OP_breg24:
6682 	case DW_OP_breg25:
6683 	case DW_OP_breg26:
6684 	case DW_OP_breg27:
6685 	case DW_OP_breg28:
6686 	case DW_OP_breg29:
6687 	case DW_OP_breg30:
6688 	case DW_OP_breg31:
6689 		printf(" (%s): %jd",
6690 		    dwarf_regname(re, lr->lr_atom - DW_OP_breg0),
6691 		    (intmax_t) lr->lr_number);
6692 		break;
6693 
6694 	case DW_OP_fbreg:
6695 		printf(": %jd", (intmax_t)
6696 		    lr->lr_number);
6697 		break;
6698 
6699 	case DW_OP_bregx:
6700 		printf(": %ju (%s) %jd",
6701 		    (uintmax_t) lr->lr_number,
6702 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6703 		    (intmax_t) lr->lr_number2);
6704 		break;
6705 
6706 	case DW_OP_addr:
6707 	case DW_OP_GNU_encoded_addr:
6708 		printf(": %#jx", (uintmax_t)
6709 		    lr->lr_number);
6710 		break;
6711 
6712 	case DW_OP_GNU_implicit_pointer:
6713 		printf(": <0x%jx> %jd", (uintmax_t) lr->lr_number,
6714 		    (intmax_t) lr->lr_number2);
6715 		break;
6716 
6717 	case DW_OP_implicit_value:
6718 		printf(": %ju byte block:", (uintmax_t) lr->lr_number);
6719 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6720 		for (i = 0; (Dwarf_Unsigned) i < lr->lr_number; i++)
6721 			printf(" %x", b[i]);
6722 		break;
6723 
6724 	case DW_OP_GNU_entry_value:
6725 		printf(": (");
6726 		dump_dwarf_block(re, (uint8_t *)(uintptr_t) lr->lr_number2,
6727 		    lr->lr_number);
6728 		putchar(')');
6729 		break;
6730 
6731 	case DW_OP_GNU_const_type:
6732 		printf(": <0x%jx> ", (uintmax_t) lr->lr_number);
6733 		b = (uint8_t *)(uintptr_t) lr->lr_number2;
6734 		n = *b;
6735 		for (i = 1; (uint8_t) i < n; i++)
6736 			printf(" %x", b[i]);
6737 		break;
6738 
6739 	case DW_OP_GNU_regval_type:
6740 		printf(": %ju (%s) <0x%jx>", (uintmax_t) lr->lr_number,
6741 		    dwarf_regname(re, (unsigned int) lr->lr_number),
6742 		    (uintmax_t) lr->lr_number2);
6743 		break;
6744 
6745 	case DW_OP_GNU_convert:
6746 	case DW_OP_GNU_deref_type:
6747 	case DW_OP_GNU_parameter_ref:
6748 	case DW_OP_GNU_reinterpret:
6749 		printf(": <0x%jx>", (uintmax_t) lr->lr_number);
6750 		break;
6751 
6752 	default:
6753 		break;
6754 	}
6755 }
6756 
6757 static void
6758 dump_dwarf_block(struct readelf *re, uint8_t *b, Dwarf_Unsigned len)
6759 {
6760 	Dwarf_Locdesc *llbuf;
6761 	Dwarf_Signed lcnt;
6762 	Dwarf_Error de;
6763 	int i;
6764 
6765 	if (dwarf_loclist_from_expr_b(re->dbg, b, len, re->cu_psize,
6766 	    re->cu_osize, re->cu_ver, &llbuf, &lcnt, &de) != DW_DLV_OK) {
6767 		warnx("dwarf_loclist_form_expr_b: %s", dwarf_errmsg(de));
6768 		return;
6769 	}
6770 
6771 	for (i = 0; (Dwarf_Half) i < llbuf->ld_cents; i++) {
6772 		dump_dwarf_loc(re, &llbuf->ld_s[i]);
6773 		if (i < llbuf->ld_cents - 1)
6774 			printf("; ");
6775 	}
6776 
6777 	dwarf_dealloc(re->dbg, llbuf->ld_s, DW_DLA_LOC_BLOCK);
6778 	dwarf_dealloc(re->dbg, llbuf, DW_DLA_LOCDESC);
6779 }
6780 
6781 static void
6782 dump_dwarf_loclist(struct readelf *re)
6783 {
6784 	Dwarf_Die die;
6785 	Dwarf_Locdesc **llbuf;
6786 	Dwarf_Unsigned lowpc;
6787 	Dwarf_Signed lcnt;
6788 	Dwarf_Half tag, version, pointer_size, off_size;
6789 	Dwarf_Error de;
6790 	struct loc_at *la_list, *left, *right, *la;
6791 	size_t la_list_len, la_list_cap;
6792 	unsigned int duplicates, k;
6793 	int i, j, ret, has_content;
6794 
6795 	la_list_len = 0;
6796 	la_list_cap = 200;
6797 	if ((la_list = calloc(la_list_cap, sizeof(struct loc_at))) == NULL)
6798 		errx(EXIT_FAILURE, "calloc failed");
6799 	/* Search .debug_info section. */
6800 	while ((ret = dwarf_next_cu_header_b(re->dbg, NULL, &version, NULL,
6801 	    &pointer_size, &off_size, NULL, NULL, &de)) == DW_DLV_OK) {
6802 		set_cu_context(re, pointer_size, off_size, version);
6803 		die = NULL;
6804 		if (dwarf_siblingof(re->dbg, die, &die, &de) != DW_DLV_OK)
6805 			continue;
6806 		if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6807 			warnx("dwarf_tag failed: %s", dwarf_errmsg(de));
6808 			continue;
6809 		}
6810 		/* XXX: What about DW_TAG_partial_unit? */
6811 		lowpc = 0;
6812 		if (tag == DW_TAG_compile_unit) {
6813 			if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6814 			    &lowpc, &de) != DW_DLV_OK)
6815 				lowpc = 0;
6816 		}
6817 
6818 		/* Search attributes for reference to .debug_loc section. */
6819 		search_loclist_at(re, die, lowpc, &la_list,
6820 		    &la_list_len, &la_list_cap);
6821 	}
6822 	if (ret == DW_DLV_ERROR)
6823 		warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6824 
6825 	/* Search .debug_types section. */
6826 	do {
6827 		while ((ret = dwarf_next_cu_header_c(re->dbg, 0, NULL,
6828 		    &version, NULL, &pointer_size, &off_size, NULL, NULL,
6829 		    NULL, NULL, &de)) == DW_DLV_OK) {
6830 			set_cu_context(re, pointer_size, off_size, version);
6831 			die = NULL;
6832 			if (dwarf_siblingof(re->dbg, die, &die, &de) !=
6833 			    DW_DLV_OK)
6834 				continue;
6835 			if (dwarf_tag(die, &tag, &de) != DW_DLV_OK) {
6836 				warnx("dwarf_tag failed: %s",
6837 				    dwarf_errmsg(de));
6838 				continue;
6839 			}
6840 
6841 			lowpc = 0;
6842 			if (tag == DW_TAG_type_unit) {
6843 				if (dwarf_attrval_unsigned(die, DW_AT_low_pc,
6844 				    &lowpc, &de) != DW_DLV_OK)
6845 					lowpc = 0;
6846 			}
6847 
6848 			/*
6849 			 * Search attributes for reference to .debug_loc
6850 			 * section.
6851 			 */
6852 			search_loclist_at(re, die, lowpc, &la_list,
6853 			    &la_list_len, &la_list_cap);
6854 		}
6855 		if (ret == DW_DLV_ERROR)
6856 			warnx("dwarf_next_cu_header: %s", dwarf_errmsg(de));
6857 	} while (dwarf_next_types_section(re->dbg, &de) == DW_DLV_OK);
6858 
6859 	if (la_list_len == 0) {
6860 		free(la_list);
6861 		return;
6862 	}
6863 
6864 	/* Sort la_list using loc_at_comparator. */
6865 	qsort(la_list, la_list_len, sizeof(struct loc_at), loc_at_comparator);
6866 
6867 	/* Get rid of the duplicates in la_list. */
6868 	duplicates = 0;
6869 	for (k = 1; k < la_list_len; ++k) {
6870 		left = &la_list[k - 1 - duplicates];
6871 		right = &la_list[k];
6872 
6873 		if (left->la_off == right->la_off)
6874 			duplicates++;
6875 		else
6876 			la_list[k - duplicates] = *right;
6877 	}
6878 	la_list_len -= duplicates;
6879 
6880 	has_content = 0;
6881 	for (k = 0; k < la_list_len; ++k) {
6882 		la = &la_list[k];
6883 		if ((ret = dwarf_loclist_n(la->la_at, &llbuf, &lcnt, &de)) !=
6884 		    DW_DLV_OK) {
6885 			if (ret != DW_DLV_NO_ENTRY)
6886 				warnx("dwarf_loclist_n failed: %s",
6887 				    dwarf_errmsg(de));
6888 			continue;
6889 		}
6890 		if (!has_content) {
6891 			has_content = 1;
6892 			printf("\nContents of section .debug_loc:\n");
6893 			printf("    Offset   Begin    End      Expression\n");
6894 		}
6895 		set_cu_context(re, la->la_cu_psize, la->la_cu_osize,
6896 		    la->la_cu_ver);
6897 		for (i = 0; i < lcnt; i++) {
6898 			printf("    %8.8jx ", (uintmax_t) la->la_off);
6899 			if (llbuf[i]->ld_lopc == 0 && llbuf[i]->ld_hipc == 0) {
6900 				printf("<End of list>\n");
6901 				continue;
6902 			}
6903 
6904 			/* TODO: handle base selection entry. */
6905 
6906 			printf("%8.8jx %8.8jx ",
6907 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_lopc),
6908 			    (uintmax_t) (la->la_lowpc + llbuf[i]->ld_hipc));
6909 
6910 			putchar('(');
6911 			for (j = 0; (Dwarf_Half) j < llbuf[i]->ld_cents; j++) {
6912 				dump_dwarf_loc(re, &llbuf[i]->ld_s[j]);
6913 				if (j < llbuf[i]->ld_cents - 1)
6914 					printf("; ");
6915 			}
6916 			putchar(')');
6917 
6918 			if (llbuf[i]->ld_lopc == llbuf[i]->ld_hipc)
6919 				printf(" (start == end)");
6920 			putchar('\n');
6921 		}
6922 		for (i = 0; i < lcnt; i++) {
6923 			dwarf_dealloc(re->dbg, llbuf[i]->ld_s,
6924 			    DW_DLA_LOC_BLOCK);
6925 			dwarf_dealloc(re->dbg, llbuf[i], DW_DLA_LOCDESC);
6926 		}
6927 		dwarf_dealloc(re->dbg, llbuf, DW_DLA_LIST);
6928 	}
6929 
6930 	if (!has_content)
6931 		printf("\nSection '.debug_loc' has no debugging data.\n");
6932 
6933 	free(la_list);
6934 }
6935 
6936 /*
6937  * Retrieve a string using string table section index and the string offset.
6938  */
6939 static const char*
6940 get_string(struct readelf *re, int strtab, size_t off)
6941 {
6942 	const char *name;
6943 
6944 	if ((name = elf_strptr(re->elf, strtab, off)) == NULL)
6945 		return ("");
6946 
6947 	return (name);
6948 }
6949 
6950 /*
6951  * Retrieve the name of a symbol using the section index of the symbol
6952  * table and the index of the symbol within that table.
6953  */
6954 static const char *
6955 get_symbol_name(struct readelf *re, int symtab, int i)
6956 {
6957 	struct section	*s;
6958 	const char	*name;
6959 	GElf_Sym	 sym;
6960 	Elf_Data	*data;
6961 	int		 elferr;
6962 
6963 	s = &re->sl[symtab];
6964 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6965 		return ("");
6966 	(void) elf_errno();
6967 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
6968 		elferr = elf_errno();
6969 		if (elferr != 0)
6970 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
6971 		return ("");
6972 	}
6973 	if (gelf_getsym(data, i, &sym) != &sym)
6974 		return ("");
6975 	/* Return section name for STT_SECTION symbol. */
6976 	if (GELF_ST_TYPE(sym.st_info) == STT_SECTION) {
6977 		if (sym.st_shndx < re->shnum &&
6978 		    re->sl[sym.st_shndx].name != NULL)
6979 			return (re->sl[sym.st_shndx].name);
6980 		return ("");
6981 	}
6982 	if (s->link >= re->shnum ||
6983 	    (name = elf_strptr(re->elf, s->link, sym.st_name)) == NULL)
6984 		return ("");
6985 
6986 	return (name);
6987 }
6988 
6989 static uint64_t
6990 get_symbol_value(struct readelf *re, int symtab, int i)
6991 {
6992 	struct section	*s;
6993 	GElf_Sym	 sym;
6994 	Elf_Data	*data;
6995 	int		 elferr;
6996 
6997 	s = &re->sl[symtab];
6998 	if (s->type != SHT_SYMTAB && s->type != SHT_DYNSYM)
6999 		return (0);
7000 	(void) elf_errno();
7001 	if ((data = elf_getdata(s->scn, NULL)) == NULL) {
7002 		elferr = elf_errno();
7003 		if (elferr != 0)
7004 			warnx("elf_getdata failed: %s", elf_errmsg(elferr));
7005 		return (0);
7006 	}
7007 	if (gelf_getsym(data, i, &sym) != &sym)
7008 		return (0);
7009 
7010 	return (sym.st_value);
7011 }
7012 
7013 /*
7014  * Decompress a data section if needed (using ZLIB).
7015  * Returns true if sucessful, false otherwise.
7016  */
7017 static bool decompress_section(struct section *s,
7018     unsigned char *compressed_data_buffer, size_t compressed_size,
7019     unsigned char **ret_buf, size_t *ret_sz)
7020 {
7021 	GElf_Shdr sh;
7022 
7023 	if (gelf_getshdr(s->scn, &sh) == NULL)
7024 		errx(EXIT_FAILURE, "gelf_getshdr() failed: %s", elf_errmsg(-1));
7025 
7026 	if (sh.sh_flags & SHF_COMPRESSED) {
7027 		int ret;
7028 		GElf_Chdr chdr;
7029 		Elf64_Xword inflated_size;
7030 		unsigned char *uncompressed_data_buffer = NULL;
7031 		Elf64_Xword uncompressed_size;
7032 		z_stream strm;
7033 
7034 		if (gelf_getchdr(s->scn, &chdr) == NULL)
7035 			errx(EXIT_FAILURE, "gelf_getchdr() failed: %s", elf_errmsg(-1));
7036 		if (chdr.ch_type != ELFCOMPRESS_ZLIB) {
7037 			warnx("unknown compression type: %d", chdr.ch_type);
7038 			return (false);
7039 		}
7040 
7041 		inflated_size = 0;
7042 		uncompressed_size = chdr.ch_size;
7043 		uncompressed_data_buffer = malloc(uncompressed_size);
7044 		compressed_data_buffer += sizeof(chdr);
7045 		compressed_size -= sizeof(chdr);
7046 
7047 		strm.zalloc = Z_NULL;
7048 		strm.zfree = Z_NULL;
7049 		strm.opaque = Z_NULL;
7050 		strm.avail_in = compressed_size;
7051 		strm.avail_out = uncompressed_size;
7052 		ret = inflateInit(&strm);
7053 
7054 		if (ret != Z_OK)
7055 			goto fail;
7056 		/*
7057 		 * The section can contain several compressed buffers,
7058 		 * so decompress in a loop until all data is inflated.
7059 		 */
7060 		while (inflated_size < compressed_size) {
7061 			strm.next_in = compressed_data_buffer + inflated_size;
7062 			strm.next_out = uncompressed_data_buffer + inflated_size;
7063 			ret = inflate(&strm, Z_FINISH);
7064 			if (ret != Z_STREAM_END)
7065 				goto fail;
7066 			inflated_size = uncompressed_size - strm.avail_out;
7067 			ret = inflateReset(&strm);
7068 			if (ret != Z_OK)
7069 				goto fail;
7070 		}
7071 		if (strm.avail_out != 0)
7072 			warnx("Warning: wrong info in compression header.");
7073 		ret = inflateEnd(&strm);
7074 		if (ret != Z_OK)
7075 			goto fail;
7076 		*ret_buf = uncompressed_data_buffer;
7077 		*ret_sz = uncompressed_size;
7078 		return (true);
7079 fail:
7080 		inflateEnd(&strm);
7081 		if (strm.msg)
7082 			warnx("%s", strm.msg);
7083 		else
7084 			warnx("ZLIB error: %d", ret);
7085 		free(uncompressed_data_buffer);
7086 		return (false);
7087 	}
7088 	return (false);
7089 }
7090 
7091 static void
7092 hex_dump(struct readelf *re)
7093 {
7094 	struct section *s;
7095 	Elf_Data *d;
7096 	uint8_t *buf, *new_buf;
7097 	size_t sz, nbytes;
7098 	uint64_t addr;
7099 	int elferr, i, j;
7100 
7101 	for (i = 1; (size_t) i < re->shnum; i++) {
7102 		new_buf = NULL;
7103 		s = &re->sl[i];
7104 		if (find_dumpop(re, (size_t) i, s->name, HEX_DUMP, -1) == NULL)
7105 			continue;
7106 		(void) elf_errno();
7107 		if ((d = elf_getdata(s->scn, NULL)) == NULL &&
7108 		    (d = elf_rawdata(s->scn, NULL)) == NULL) {
7109 			elferr = elf_errno();
7110 			if (elferr != 0)
7111 				warnx("elf_getdata failed: %s",
7112 				    elf_errmsg(elferr));
7113 			continue;
7114 		}
7115 		(void) elf_errno();
7116 		if (d->d_size <= 0 || d->d_buf == NULL) {
7117 			printf("\nSection '%s' has no data to dump.\n",
7118 			    s->name);
7119 			continue;
7120 		}
7121 		buf = d->d_buf;
7122 		sz = d->d_size;
7123 		addr = s->addr;
7124 		if (re->options & RE_Z) {
7125 			if (decompress_section(s, d->d_buf, d->d_size,
7126 			    &new_buf, &sz))
7127 				buf = new_buf;
7128 		}
7129 		printf("\nHex dump of section '%s':\n", s->name);
7130 		while (sz > 0) {
7131 			printf("  0x%8.8jx ", (uintmax_t)addr);
7132 			nbytes = sz > 16? 16 : sz;
7133 			for (j = 0; j < 16; j++) {
7134 				if ((size_t)j < nbytes)
7135 					printf("%2.2x", buf[j]);
7136 				else
7137 					printf("  ");
7138 				if ((j & 3) == 3)
7139 					printf(" ");
7140 			}
7141 			for (j = 0; (size_t)j < nbytes; j++) {
7142 				if (isprint(buf[j]))
7143 					printf("%c", buf[j]);
7144 				else
7145 					printf(".");
7146 			}
7147 			printf("\n");
7148 			buf += nbytes;
7149 			addr += nbytes;
7150 			sz -= nbytes;
7151 		}
7152 		free(new_buf);
7153 	}
7154 }
7155 
7156 static void
7157 str_dump(struct readelf *re)
7158 {
7159 	struct section *s;
7160 	Elf_Data *d;
7161 	unsigned char *start, *end, *buf_end, *new_buf;
7162 	unsigned int len;
7163 	size_t sz;
7164 	int i, j, elferr, found;
7165 
7166 	for (i = 1; (size_t) i < re->shnum; i++) {
7167 		new_buf = NULL;
7168 		s = &re->sl[i];
7169 		if (find_dumpop(re, (size_t) i, s->name, STR_DUMP, -1) == NULL)
7170 			continue;
7171 		(void) elf_errno();
7172 		if ((d = elf_getdata(s->scn, NULL)) == NULL &&
7173 		    (d = elf_rawdata(s->scn, NULL)) == NULL) {
7174 			elferr = elf_errno();
7175 			if (elferr != 0)
7176 				warnx("elf_getdata failed: %s",
7177 				    elf_errmsg(elferr));
7178 			continue;
7179 		}
7180 		(void) elf_errno();
7181 		if (d->d_size <= 0 || d->d_buf == NULL) {
7182 			printf("\nSection '%s' has no data to dump.\n",
7183 			    s->name);
7184 			continue;
7185 		}
7186 		found = 0;
7187 		start = d->d_buf;
7188 		sz = d->d_size;
7189 		if (re->options & RE_Z) {
7190 			if (decompress_section(s, d->d_buf, d->d_size,
7191 			    &new_buf, &sz))
7192 				start = new_buf;
7193 		}
7194 		buf_end = start + sz;
7195 		printf("\nString dump of section '%s':\n", s->name);
7196 		for (;;) {
7197 			while (start < buf_end && !isprint(*start))
7198 				start++;
7199 			if (start >= buf_end)
7200 				break;
7201 			end = start + 1;
7202 			while (end < buf_end && isprint(*end))
7203 				end++;
7204 			printf("  [%6lx]  ",
7205 			    (long) (start - (unsigned char *) d->d_buf));
7206 			len = end - start;
7207 			for (j = 0; (unsigned int) j < len; j++)
7208 				putchar(start[j]);
7209 			putchar('\n');
7210 			found = 1;
7211 			if (end >= buf_end)
7212 				break;
7213 			start = end + 1;
7214 		}
7215 		free(new_buf);
7216 		if (!found)
7217 			printf("  No strings found in this section.");
7218 		putchar('\n');
7219 	}
7220 }
7221 
7222 static void
7223 load_sections(struct readelf *re)
7224 {
7225 	struct section	*s;
7226 	const char	*name;
7227 	Elf_Scn		*scn;
7228 	GElf_Shdr	 sh;
7229 	size_t		 shstrndx, ndx;
7230 	int		 elferr;
7231 
7232 	/* Allocate storage for internal section list. */
7233 	if (!elf_getshnum(re->elf, &re->shnum)) {
7234 		warnx("elf_getshnum failed: %s", elf_errmsg(-1));
7235 		return;
7236 	}
7237 	if (re->sl != NULL)
7238 		free(re->sl);
7239 	if ((re->sl = calloc(re->shnum, sizeof(*re->sl))) == NULL)
7240 		err(EXIT_FAILURE, "calloc failed");
7241 
7242 	/* Get the index of .shstrtab section. */
7243 	if (!elf_getshstrndx(re->elf, &shstrndx)) {
7244 		warnx("elf_getshstrndx failed: %s", elf_errmsg(-1));
7245 		return;
7246 	}
7247 
7248 	if ((scn = elf_getscn(re->elf, 0)) == NULL)
7249 		return;
7250 
7251 	(void) elf_errno();
7252 	do {
7253 		if (gelf_getshdr(scn, &sh) == NULL) {
7254 			warnx("gelf_getshdr failed: %s", elf_errmsg(-1));
7255 			(void) elf_errno();
7256 			continue;
7257 		}
7258 		if ((name = elf_strptr(re->elf, shstrndx, sh.sh_name)) == NULL) {
7259 			(void) elf_errno();
7260 			name = "<no-name>";
7261 		}
7262 		if ((ndx = elf_ndxscn(scn)) == SHN_UNDEF) {
7263 			if ((elferr = elf_errno()) != 0) {
7264 				warnx("elf_ndxscn failed: %s",
7265 				    elf_errmsg(elferr));
7266 				continue;
7267 			}
7268 		}
7269 		if (ndx >= re->shnum) {
7270 			warnx("section index of '%s' out of range", name);
7271 			continue;
7272 		}
7273 		if (sh.sh_link >= re->shnum)
7274 			warnx("section link %llu of '%s' out of range",
7275 			    (unsigned long long)sh.sh_link, name);
7276 		s = &re->sl[ndx];
7277 		s->name = name;
7278 		s->scn = scn;
7279 		s->off = sh.sh_offset;
7280 		s->sz = sh.sh_size;
7281 		s->entsize = sh.sh_entsize;
7282 		s->align = sh.sh_addralign;
7283 		s->type = sh.sh_type;
7284 		s->flags = sh.sh_flags;
7285 		s->addr = sh.sh_addr;
7286 		s->link = sh.sh_link;
7287 		s->info = sh.sh_info;
7288 	} while ((scn = elf_nextscn(re->elf, scn)) != NULL);
7289 	elferr = elf_errno();
7290 	if (elferr != 0)
7291 		warnx("elf_nextscn failed: %s", elf_errmsg(elferr));
7292 }
7293 
7294 static void
7295 unload_sections(struct readelf *re)
7296 {
7297 
7298 	if (re->sl != NULL) {
7299 		free(re->sl);
7300 		re->sl = NULL;
7301 	}
7302 	re->shnum = 0;
7303 	re->vd_s = NULL;
7304 	re->vn_s = NULL;
7305 	re->vs_s = NULL;
7306 	re->vs = NULL;
7307 	re->vs_sz = 0;
7308 	if (re->ver != NULL) {
7309 		free(re->ver);
7310 		re->ver = NULL;
7311 		re->ver_sz = 0;
7312 	}
7313 }
7314 
7315 static bool
7316 dump_elf(struct readelf *re)
7317 {
7318 
7319 	/* Fetch ELF header. No need to continue if it fails. */
7320 	if (gelf_getehdr(re->elf, &re->ehdr) == NULL) {
7321 		warnx("gelf_getehdr failed: %s", elf_errmsg(-1));
7322 		return (false);
7323 	}
7324 	if ((re->ec = gelf_getclass(re->elf)) == ELFCLASSNONE) {
7325 		warnx("gelf_getclass failed: %s", elf_errmsg(-1));
7326 		return (false);
7327 	}
7328 	if (re->ehdr.e_ident[EI_DATA] == ELFDATA2MSB) {
7329 		re->dw_read = _read_msb;
7330 		re->dw_decode = _decode_msb;
7331 	} else {
7332 		re->dw_read = _read_lsb;
7333 		re->dw_decode = _decode_lsb;
7334 	}
7335 
7336 	if (re->options & ~RE_H)
7337 		load_sections(re);
7338 	if ((re->options & RE_VV) || (re->options & RE_S))
7339 		search_ver(re);
7340 	if (re->options & RE_H)
7341 		dump_ehdr(re);
7342 	if (re->options & RE_L)
7343 		dump_phdr(re);
7344 	if (re->options & RE_SS)
7345 		dump_shdr(re);
7346 	if (re->options & RE_G)
7347 		dump_section_groups(re);
7348 	if (re->options & RE_D)
7349 		dump_dynamic(re);
7350 	if (re->options & RE_R)
7351 		dump_reloc(re);
7352 	if (re->options & RE_S)
7353 		dump_symtabs(re);
7354 	if (re->options & RE_N)
7355 		dump_notes(re);
7356 	if (re->options & RE_II)
7357 		dump_hash(re);
7358 	if (re->options & RE_X)
7359 		hex_dump(re);
7360 	if (re->options & RE_P)
7361 		str_dump(re);
7362 	if (re->options & RE_VV)
7363 		dump_ver(re);
7364 	if (re->options & RE_AA)
7365 		dump_arch_specific_info(re);
7366 	if (re->options & RE_W)
7367 		dump_dwarf(re);
7368 	if (re->options & ~RE_H)
7369 		unload_sections(re);
7370 	return (true);
7371 }
7372 
7373 static void
7374 dump_dwarf(struct readelf *re)
7375 {
7376 	Dwarf_Error de;
7377 	int error;
7378 
7379 	if (dwarf_elf_init(re->elf, DW_DLC_READ, NULL, NULL, &re->dbg, &de)) {
7380 		if ((error = dwarf_errno(de)) != DW_DLE_DEBUG_INFO_NULL)
7381 			errx(EXIT_FAILURE, "dwarf_elf_init failed: %s",
7382 			    dwarf_errmsg(de));
7383 		return;
7384 	}
7385 
7386 	if (re->dop & DW_A)
7387 		dump_dwarf_abbrev(re);
7388 	if (re->dop & DW_L)
7389 		dump_dwarf_line(re);
7390 	if (re->dop & DW_LL)
7391 		dump_dwarf_line_decoded(re);
7392 	if (re->dop & DW_I) {
7393 		dump_dwarf_info(re, 0);
7394 		dump_dwarf_info(re, 1);
7395 	}
7396 	if (re->dop & DW_P)
7397 		dump_dwarf_pubnames(re);
7398 	if (re->dop & DW_R)
7399 		dump_dwarf_aranges(re);
7400 	if (re->dop & DW_RR)
7401 		dump_dwarf_ranges(re);
7402 	if (re->dop & DW_M)
7403 		dump_dwarf_macinfo(re);
7404 	if (re->dop & DW_F)
7405 		dump_dwarf_frame(re, 0);
7406 	else if (re->dop & DW_FF)
7407 		dump_dwarf_frame(re, 1);
7408 	if (re->dop & DW_S)
7409 		dump_dwarf_str(re);
7410 	if (re->dop & DW_O)
7411 		dump_dwarf_loclist(re);
7412 
7413 	dwarf_finish(re->dbg, &de);
7414 }
7415 
7416 static bool
7417 dump_ar(struct readelf *re, int fd)
7418 {
7419 	Elf_Arsym *arsym;
7420 	Elf_Arhdr *arhdr;
7421 	Elf_Cmd cmd;
7422 	Elf *e;
7423 	size_t sz;
7424 	off_t off;
7425 	int i;
7426 
7427 	re->ar = re->elf;
7428 
7429 	if (re->options & RE_C) {
7430 		if ((arsym = elf_getarsym(re->ar, &sz)) == NULL) {
7431 			warnx("elf_getarsym() failed: %s", elf_errmsg(-1));
7432 			goto process_members;
7433 		}
7434 		printf("Index of archive %s: (%ju entries)\n", re->filename,
7435 		    (uintmax_t) sz - 1);
7436 		off = 0;
7437 		for (i = 0; (size_t) i < sz; i++) {
7438 			if (arsym[i].as_name == NULL)
7439 				break;
7440 			if (arsym[i].as_off != off) {
7441 				off = arsym[i].as_off;
7442 				if (elf_rand(re->ar, off) != off) {
7443 					warnx("elf_rand() failed: %s",
7444 					    elf_errmsg(-1));
7445 					continue;
7446 				}
7447 				if ((e = elf_begin(fd, ELF_C_READ, re->ar)) ==
7448 				    NULL) {
7449 					warnx("elf_begin() failed: %s",
7450 					    elf_errmsg(-1));
7451 					continue;
7452 				}
7453 				if ((arhdr = elf_getarhdr(e)) == NULL) {
7454 					warnx("elf_getarhdr() failed: %s",
7455 					    elf_errmsg(-1));
7456 					elf_end(e);
7457 					continue;
7458 				}
7459 				printf("Binary %s(%s) contains:\n",
7460 				    re->filename, arhdr->ar_name);
7461 				elf_end(e);
7462 			}
7463 			printf("\t%s\n", arsym[i].as_name);
7464 		}
7465 		if (elf_rand(re->ar, SARMAG) != SARMAG) {
7466 			warnx("elf_rand() failed: %s", elf_errmsg(-1));
7467 			return (false);
7468 		}
7469 	}
7470 
7471 process_members:
7472 
7473 	if ((re->options & ~RE_C) == 0)
7474 		return (true);
7475 
7476 	cmd = ELF_C_READ;
7477 	while ((re->elf = elf_begin(fd, cmd, re->ar)) != NULL) {
7478 		if ((arhdr = elf_getarhdr(re->elf)) == NULL) {
7479 			warnx("elf_getarhdr() failed: %s", elf_errmsg(-1));
7480 			goto next_member;
7481 		}
7482 		if (strcmp(arhdr->ar_name, "/") == 0 ||
7483 		    strcmp(arhdr->ar_name, "//") == 0 ||
7484 		    strcmp(arhdr->ar_name, "__.SYMDEF") == 0)
7485 			goto next_member;
7486 		printf("\nFile: %s(%s)\n", re->filename, arhdr->ar_name);
7487 		dump_elf(re);
7488 
7489 	next_member:
7490 		cmd = elf_next(re->elf);
7491 		elf_end(re->elf);
7492 	}
7493 	re->elf = re->ar;
7494 	return (true);
7495 }
7496 
7497 static bool
7498 dump_object(struct readelf *re, int fd)
7499 {
7500 	bool rv = false;
7501 
7502 	if ((re->flags & DISPLAY_FILENAME) != 0)
7503 		printf("\nFile: %s\n", re->filename);
7504 
7505 	if ((re->elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL) {
7506 		warnx("elf_begin() failed: %s", elf_errmsg(-1));
7507 		goto done;
7508 	}
7509 
7510 	switch (elf_kind(re->elf)) {
7511 	case ELF_K_NONE:
7512 		warnx("Not an ELF file.");
7513 		goto done;
7514 	case ELF_K_ELF:
7515 		rv = dump_elf(re);
7516 		break;
7517 	case ELF_K_AR:
7518 		rv = dump_ar(re, fd);
7519 		break;
7520 	default:
7521 		warnx("Internal: libelf returned unknown elf kind.");
7522 	}
7523 
7524 done:
7525 	elf_end(re->elf);
7526 	return (rv);
7527 }
7528 
7529 static void
7530 add_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7531 {
7532 	struct dumpop *d;
7533 
7534 	if ((d = find_dumpop(re, si, sn, -1, t)) == NULL) {
7535 		if ((d = calloc(1, sizeof(*d))) == NULL)
7536 			err(EXIT_FAILURE, "calloc failed");
7537 		if (t == DUMP_BY_INDEX)
7538 			d->u.si = si;
7539 		else
7540 			d->u.sn = sn;
7541 		d->type = t;
7542 		d->op = op;
7543 		STAILQ_INSERT_TAIL(&re->v_dumpop, d, dumpop_list);
7544 	} else
7545 		d->op |= op;
7546 }
7547 
7548 static struct dumpop *
7549 find_dumpop(struct readelf *re, size_t si, const char *sn, int op, int t)
7550 {
7551 	struct dumpop *d;
7552 
7553 	STAILQ_FOREACH(d, &re->v_dumpop, dumpop_list) {
7554 		if ((op == -1 || op & d->op) &&
7555 		    (t == -1 || (unsigned) t == d->type)) {
7556 			if ((d->type == DUMP_BY_INDEX && d->u.si == si) ||
7557 			    (d->type == DUMP_BY_NAME && !strcmp(d->u.sn, sn)))
7558 				return (d);
7559 		}
7560 	}
7561 
7562 	return (NULL);
7563 }
7564 
7565 static struct {
7566 	const char *ln;
7567 	char sn;
7568 	int value;
7569 } dwarf_op[] = {
7570 	{"rawline", 'l', DW_L},
7571 	{"decodedline", 'L', DW_LL},
7572 	{"info", 'i', DW_I},
7573 	{"abbrev", 'a', DW_A},
7574 	{"pubnames", 'p', DW_P},
7575 	{"aranges", 'r', DW_R},
7576 	{"ranges", 'r', DW_R},
7577 	{"Ranges", 'R', DW_RR},
7578 	{"macro", 'm', DW_M},
7579 	{"frames", 'f', DW_F},
7580 	{"frames-interp", 'F', DW_FF},
7581 	{"str", 's', DW_S},
7582 	{"loc", 'o', DW_O},
7583 	{NULL, 0, 0}
7584 };
7585 
7586 static void
7587 parse_dwarf_op_short(struct readelf *re, const char *op)
7588 {
7589 	int i;
7590 
7591 	if (op == NULL) {
7592 		re->dop |= DW_DEFAULT_OPTIONS;
7593 		return;
7594 	}
7595 
7596 	for (; *op != '\0'; op++) {
7597 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7598 			if (dwarf_op[i].sn == *op) {
7599 				re->dop |= dwarf_op[i].value;
7600 				break;
7601 			}
7602 		}
7603 	}
7604 }
7605 
7606 static void
7607 parse_dwarf_op_long(struct readelf *re, const char *op)
7608 {
7609 	char *p, *token, *bp;
7610 	int i;
7611 
7612 	if (op == NULL) {
7613 		re->dop |= DW_DEFAULT_OPTIONS;
7614 		return;
7615 	}
7616 
7617 	if ((p = strdup(op)) == NULL)
7618 		err(EXIT_FAILURE, "strdup failed");
7619 	bp = p;
7620 
7621 	while ((token = strsep(&p, ",")) != NULL) {
7622 		for (i = 0; dwarf_op[i].ln != NULL; i++) {
7623 			if (!strcmp(token, dwarf_op[i].ln)) {
7624 				re->dop |= dwarf_op[i].value;
7625 				break;
7626 			}
7627 		}
7628 	}
7629 
7630 	free(bp);
7631 }
7632 
7633 static uint64_t
7634 _read_lsb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7635 {
7636 	uint64_t ret;
7637 	uint8_t *src;
7638 
7639 	src = (uint8_t *) d->d_buf + *offsetp;
7640 
7641 	ret = 0;
7642 	switch (bytes_to_read) {
7643 	case 8:
7644 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7645 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7646 		/* FALLTHROUGH */
7647 	case 4:
7648 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7649 		/* FALLTHROUGH */
7650 	case 2:
7651 		ret |= ((uint64_t) src[1]) << 8;
7652 		/* FALLTHROUGH */
7653 	case 1:
7654 		ret |= src[0];
7655 		break;
7656 	default:
7657 		return (0);
7658 	}
7659 
7660 	*offsetp += bytes_to_read;
7661 
7662 	return (ret);
7663 }
7664 
7665 static uint64_t
7666 _read_msb(Elf_Data *d, uint64_t *offsetp, int bytes_to_read)
7667 {
7668 	uint64_t ret;
7669 	uint8_t *src;
7670 
7671 	src = (uint8_t *) d->d_buf + *offsetp;
7672 
7673 	switch (bytes_to_read) {
7674 	case 1:
7675 		ret = src[0];
7676 		break;
7677 	case 2:
7678 		ret = src[1] | ((uint64_t) src[0]) << 8;
7679 		break;
7680 	case 4:
7681 		ret = src[3] | ((uint64_t) src[2]) << 8;
7682 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7683 		break;
7684 	case 8:
7685 		ret = src[7] | ((uint64_t) src[6]) << 8;
7686 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7687 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7688 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7689 		break;
7690 	default:
7691 		return (0);
7692 	}
7693 
7694 	*offsetp += bytes_to_read;
7695 
7696 	return (ret);
7697 }
7698 
7699 static uint64_t
7700 _decode_lsb(uint8_t **data, int bytes_to_read)
7701 {
7702 	uint64_t ret;
7703 	uint8_t *src;
7704 
7705 	src = *data;
7706 
7707 	ret = 0;
7708 	switch (bytes_to_read) {
7709 	case 8:
7710 		ret |= ((uint64_t) src[4]) << 32 | ((uint64_t) src[5]) << 40;
7711 		ret |= ((uint64_t) src[6]) << 48 | ((uint64_t) src[7]) << 56;
7712 		/* FALLTHROUGH */
7713 	case 4:
7714 		ret |= ((uint64_t) src[2]) << 16 | ((uint64_t) src[3]) << 24;
7715 		/* FALLTHROUGH */
7716 	case 2:
7717 		ret |= ((uint64_t) src[1]) << 8;
7718 		/* FALLTHROUGH */
7719 	case 1:
7720 		ret |= src[0];
7721 		break;
7722 	default:
7723 		return (0);
7724 	}
7725 
7726 	*data += bytes_to_read;
7727 
7728 	return (ret);
7729 }
7730 
7731 static uint64_t
7732 _decode_msb(uint8_t **data, int bytes_to_read)
7733 {
7734 	uint64_t ret;
7735 	uint8_t *src;
7736 
7737 	src = *data;
7738 
7739 	ret = 0;
7740 	switch (bytes_to_read) {
7741 	case 1:
7742 		ret = src[0];
7743 		break;
7744 	case 2:
7745 		ret = src[1] | ((uint64_t) src[0]) << 8;
7746 		break;
7747 	case 4:
7748 		ret = src[3] | ((uint64_t) src[2]) << 8;
7749 		ret |= ((uint64_t) src[1]) << 16 | ((uint64_t) src[0]) << 24;
7750 		break;
7751 	case 8:
7752 		ret = src[7] | ((uint64_t) src[6]) << 8;
7753 		ret |= ((uint64_t) src[5]) << 16 | ((uint64_t) src[4]) << 24;
7754 		ret |= ((uint64_t) src[3]) << 32 | ((uint64_t) src[2]) << 40;
7755 		ret |= ((uint64_t) src[1]) << 48 | ((uint64_t) src[0]) << 56;
7756 		break;
7757 	default:
7758 		return (0);
7759 		break;
7760 	}
7761 
7762 	*data += bytes_to_read;
7763 
7764 	return (ret);
7765 }
7766 
7767 static int64_t
7768 _decode_sleb128(uint8_t **dp, uint8_t *dpe)
7769 {
7770 	int64_t ret = 0;
7771 	uint8_t b = 0;
7772 	int shift = 0;
7773 
7774 	uint8_t *src = *dp;
7775 
7776 	do {
7777 		if (src >= dpe)
7778 			break;
7779 		b = *src++;
7780 		ret |= ((b & 0x7f) << shift);
7781 		shift += 7;
7782 	} while ((b & 0x80) != 0);
7783 
7784 	if (shift < 32 && (b & 0x40) != 0)
7785 		ret |= (-1 << shift);
7786 
7787 	*dp = src;
7788 
7789 	return (ret);
7790 }
7791 
7792 static uint64_t
7793 _decode_uleb128(uint8_t **dp, uint8_t *dpe)
7794 {
7795 	uint64_t ret = 0;
7796 	uint8_t b;
7797 	int shift = 0;
7798 
7799 	uint8_t *src = *dp;
7800 
7801 	do {
7802 		if (src >= dpe)
7803 			break;
7804 		b = *src++;
7805 		ret |= ((b & 0x7f) << shift);
7806 		shift += 7;
7807 	} while ((b & 0x80) != 0);
7808 
7809 	*dp = src;
7810 
7811 	return (ret);
7812 }
7813 
7814 static void
7815 readelf_version(void)
7816 {
7817 	(void) printf("%s (%s)\n", ELFTC_GETPROGNAME(),
7818 	    elftc_version());
7819 	exit(EXIT_SUCCESS);
7820 }
7821 
7822 #define	USAGE_MESSAGE	"\
7823 Usage: %s [options] file...\n\
7824   Display information about ELF objects and ar(1) archives.\n\n\
7825   Options:\n\
7826   -a | --all               Equivalent to specifying options '-dhIlrsASV'.\n\
7827   -c | --archive-index     Print the archive symbol table for archives.\n\
7828   -d | --dynamic           Print the contents of SHT_DYNAMIC sections.\n\
7829   -e | --headers           Print all headers in the object.\n\
7830   -g | --section-groups    Print the contents of the section groups.\n\
7831   -h | --file-header       Print the file header for the object.\n\
7832   -l | --program-headers   Print the PHDR table for the object.\n\
7833   -n | --notes             Print the contents of SHT_NOTE sections.\n\
7834   -p INDEX | --string-dump=INDEX\n\
7835                            Print the contents of section at index INDEX.\n\
7836   -r | --relocs            Print relocation information.\n\
7837   -s | --syms | --symbols  Print symbol tables.\n\
7838   -t | --section-details   Print additional information about sections.\n\
7839   -v | --version           Print a version identifier and exit.\n\
7840   -w[afilmoprsFLR] | --debug-dump={abbrev,aranges,decodedline,frames,\n\
7841                                frames-interp,info,loc,macro,pubnames,\n\
7842                                ranges,Ranges,rawline,str}\n\
7843                            Display DWARF information.\n\
7844   -x INDEX | --hex-dump=INDEX\n\
7845                            Display contents of a section as hexadecimal.\n\
7846   -z | --decompress        Decompress the contents of a section before displaying it.\n\
7847   -A | --arch-specific     (accepted, but ignored)\n\
7848   -D | --use-dynamic       Print the symbol table specified by the DT_SYMTAB\n\
7849                            entry in the \".dynamic\" section.\n\
7850   -H | --help              Print a help message.\n\
7851   -I | --histogram         Print information on bucket list lengths for \n\
7852                            hash sections.\n\
7853   -N | --full-section-name (accepted, but ignored)\n\
7854   -S | --sections | --section-headers\n\
7855                            Print information about section headers.\n\
7856   -V | --version-info      Print symbol versoning information.\n\
7857   -W | --wide              Print information without wrapping long lines.\n"
7858 
7859 
7860 static void
7861 readelf_usage(int status)
7862 {
7863 	fprintf(stderr, USAGE_MESSAGE, ELFTC_GETPROGNAME());
7864 	exit(status);
7865 }
7866 
7867 int
7868 main(int argc, char **argv)
7869 {
7870 	cap_rights_t	rights;
7871 	fileargs_t	*fa;
7872 	struct readelf	*re, re_storage;
7873 	unsigned long	 si;
7874 	int		 fd, opt, i, exit_code;
7875 	char		*ep;
7876 
7877 	re = &re_storage;
7878 	memset(re, 0, sizeof(*re));
7879 	STAILQ_INIT(&re->v_dumpop);
7880 
7881 	while ((opt = getopt_long(argc, argv, "AacDdegHhIi:lNnp:rSstuVvWw::x:z",
7882 	    longopts, NULL)) != -1) {
7883 		switch(opt) {
7884 		case '?':
7885 			readelf_usage(EXIT_SUCCESS);
7886 			break;
7887 		case 'A':
7888 			re->options |= RE_AA;
7889 			break;
7890 		case 'a':
7891 			re->options |= RE_AA | RE_D | RE_G | RE_H | RE_II |
7892 			    RE_L | RE_N | RE_R | RE_SS | RE_S | RE_U | RE_VV;
7893 			break;
7894 		case 'c':
7895 			re->options |= RE_C;
7896 			break;
7897 		case 'D':
7898 			re->options |= RE_DD;
7899 			break;
7900 		case 'd':
7901 			re->options |= RE_D;
7902 			break;
7903 		case 'e':
7904 			re->options |= RE_H | RE_L | RE_SS;
7905 			break;
7906 		case 'g':
7907 			re->options |= RE_G;
7908 			break;
7909 		case 'H':
7910 			readelf_usage(EXIT_SUCCESS);
7911 			break;
7912 		case 'h':
7913 			re->options |= RE_H;
7914 			break;
7915 		case 'I':
7916 			re->options |= RE_II;
7917 			break;
7918 		case 'i':
7919 			/* Not implemented yet. */
7920 			break;
7921 		case 'l':
7922 			re->options |= RE_L;
7923 			break;
7924 		case 'N':
7925 			re->options |= RE_NN;
7926 			break;
7927 		case 'n':
7928 			re->options |= RE_N;
7929 			break;
7930 		case 'p':
7931 			re->options |= RE_P;
7932 			si = strtoul(optarg, &ep, 10);
7933 			if (*ep == '\0')
7934 				add_dumpop(re, (size_t) si, NULL, STR_DUMP,
7935 				    DUMP_BY_INDEX);
7936 			else
7937 				add_dumpop(re, 0, optarg, STR_DUMP,
7938 				    DUMP_BY_NAME);
7939 			break;
7940 		case 'r':
7941 			re->options |= RE_R;
7942 			break;
7943 		case 'S':
7944 			re->options |= RE_SS;
7945 			break;
7946 		case 's':
7947 			re->options |= RE_S;
7948 			break;
7949 		case 't':
7950 			re->options |= RE_SS | RE_T;
7951 			break;
7952 		case 'u':
7953 			re->options |= RE_U;
7954 			break;
7955 		case 'V':
7956 			re->options |= RE_VV;
7957 			break;
7958 		case 'v':
7959 			readelf_version();
7960 			break;
7961 		case 'W':
7962 			re->options |= RE_WW;
7963 			break;
7964 		case 'w':
7965 			re->options |= RE_W;
7966 			parse_dwarf_op_short(re, optarg);
7967 			break;
7968 		case 'x':
7969 			re->options |= RE_X;
7970 			si = strtoul(optarg, &ep, 10);
7971 			if (*ep == '\0')
7972 				add_dumpop(re, (size_t) si, NULL, HEX_DUMP,
7973 				    DUMP_BY_INDEX);
7974 			else
7975 				add_dumpop(re, 0, optarg, HEX_DUMP,
7976 				    DUMP_BY_NAME);
7977 			break;
7978 		case 'z':
7979 			re->options |= RE_Z;
7980 			break;
7981 		case OPTION_DEBUG_DUMP:
7982 			re->options |= RE_W;
7983 			parse_dwarf_op_long(re, optarg);
7984 		}
7985 	}
7986 
7987 	argv += optind;
7988 	argc -= optind;
7989 
7990 	if (argc == 0 || re->options == 0)
7991 		readelf_usage(EXIT_FAILURE);
7992 
7993 	if (argc > 1)
7994 		re->flags |= DISPLAY_FILENAME;
7995 
7996 	if (elf_version(EV_CURRENT) == EV_NONE)
7997 		errx(EXIT_FAILURE, "ELF library initialization failed: %s",
7998 		    elf_errmsg(-1));
7999 
8000 	cap_rights_init(&rights, CAP_FCNTL, CAP_FSTAT, CAP_MMAP_R, CAP_SEEK);
8001 	fa = fileargs_init(argc, argv, O_RDONLY, 0, &rights, FA_OPEN);
8002 	if (fa == NULL)
8003 		err(1, "Unable to initialize casper fileargs");
8004 
8005 	caph_cache_catpages();
8006 	if (caph_limit_stdio() < 0) {
8007 		fileargs_free(fa);
8008 		err(1, "Unable to limit stdio rights");
8009 	}
8010 	if (caph_enter_casper() < 0) {
8011 		fileargs_free(fa);
8012 		err(1, "Unable to enter capability mode");
8013 	}
8014 
8015 	exit_code = EXIT_SUCCESS;
8016 	for (i = 0; i < argc; i++) {
8017 		re->filename = argv[i];
8018 		fd = fileargs_open(fa, re->filename);
8019 		if (fd < 0) {
8020 			warn("open %s failed", re->filename);
8021 			exit_code = EXIT_FAILURE;
8022 		} else {
8023 			if (!dump_object(re, fd))
8024 				exit_code = EXIT_FAILURE;
8025 			close(fd);
8026 		}
8027 	}
8028 
8029 	exit(exit_code);
8030 }
8031