1 /*-
2  * Copyright (c) 2003-2009 Tim Kientzle
3  * Copyright (c) 2010-2012 Michihiro NAKAJIMA
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR(S) ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR(S) BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /* This is the tree-walking code for POSIX systems. */
29 #if !defined(_WIN32) || defined(__CYGWIN__)
30 
31 #include "archive_platform.h"
32 __FBSDID("$FreeBSD$");
33 
34 #ifdef HAVE_SYS_PARAM_H
35 #include <sys/param.h>
36 #endif
37 #ifdef HAVE_SYS_STAT_H
38 #include <sys/stat.h>
39 #endif
40 #ifdef HAVE_SYS_STATFS_H
41 #include <sys/statfs.h>
42 #endif
43 #ifdef HAVE_SYS_STATVFS_H
44 #include <sys/statvfs.h>
45 #endif
46 #ifdef HAVE_SYS_TIME_H
47 #include <sys/time.h>
48 #endif
49 #ifdef HAVE_LINUX_MAGIC_H
50 #include <linux/magic.h>
51 #endif
52 #ifdef HAVE_LINUX_FS_H
53 #include <linux/fs.h>
54 #elif HAVE_SYS_MOUNT_H
55 #include <sys/mount.h>
56 #endif
57 /*
58  * Some Linux distributions have both linux/ext2_fs.h and ext2fs/ext2_fs.h.
59  * As the include guards don't agree, the order of include is important.
60  */
61 #ifdef HAVE_LINUX_EXT2_FS_H
62 #include <linux/ext2_fs.h>      /* for Linux file flags */
63 #endif
64 #if defined(HAVE_EXT2FS_EXT2_FS_H) && !defined(__CYGWIN__)
65 #include <ext2fs/ext2_fs.h>     /* Linux file flags, broken on Cygwin */
66 #endif
67 #ifdef HAVE_DIRECT_H
68 #include <direct.h>
69 #endif
70 #ifdef HAVE_DIRENT_H
71 #include <dirent.h>
72 #endif
73 #ifdef HAVE_ERRNO_H
74 #include <errno.h>
75 #endif
76 #ifdef HAVE_FCNTL_H
77 #include <fcntl.h>
78 #endif
79 #ifdef HAVE_LIMITS_H
80 #include <limits.h>
81 #endif
82 #ifdef HAVE_STDLIB_H
83 #include <stdlib.h>
84 #endif
85 #ifdef HAVE_STRING_H
86 #include <string.h>
87 #endif
88 #ifdef HAVE_UNISTD_H
89 #include <unistd.h>
90 #endif
91 #ifdef HAVE_SYS_IOCTL_H
92 #include <sys/ioctl.h>
93 #endif
94 
95 #include "archive.h"
96 #include "archive_string.h"
97 #include "archive_entry.h"
98 #include "archive_private.h"
99 #include "archive_read_disk_private.h"
100 
101 #ifndef HAVE_FCHDIR
102 #error fchdir function required.
103 #endif
104 #ifndef O_BINARY
105 #define O_BINARY	0
106 #endif
107 #ifndef O_CLOEXEC
108 #define O_CLOEXEC	0
109 #endif
110 
111 #if defined(__hpux) && !defined(HAVE_DIRFD)
112 #define dirfd(x) ((x)->__dd_fd)
113 #define HAVE_DIRFD
114 #endif
115 
116 /*-
117  * This is a new directory-walking system that addresses a number
118  * of problems I've had with fts(3).  In particular, it has no
119  * pathname-length limits (other than the size of 'int'), handles
120  * deep logical traversals, uses considerably less memory, and has
121  * an opaque interface (easier to modify in the future).
122  *
123  * Internally, it keeps a single list of "tree_entry" items that
124  * represent filesystem objects that require further attention.
125  * Non-directories are not kept in memory: they are pulled from
126  * readdir(), returned to the client, then freed as soon as possible.
127  * Any directory entry to be traversed gets pushed onto the stack.
128  *
129  * There is surprisingly little information that needs to be kept for
130  * each item on the stack.  Just the name, depth (represented here as the
131  * string length of the parent directory's pathname), and some markers
132  * indicating how to get back to the parent (via chdir("..") for a
133  * regular dir or via fchdir(2) for a symlink).
134  */
135 /*
136  * TODO:
137  *    1) Loop checking.
138  *    3) Arbitrary logical traversals by closing/reopening intermediate fds.
139  */
140 
141 struct restore_time {
142 	const char		*name;
143 	time_t			 mtime;
144 	long			 mtime_nsec;
145 	time_t			 atime;
146 	long			 atime_nsec;
147 	mode_t			 filetype;
148 	int			 noatime;
149 };
150 
151 struct tree_entry {
152 	int			 depth;
153 	struct tree_entry	*next;
154 	struct tree_entry	*parent;
155 	struct archive_string	 name;
156 	size_t			 dirname_length;
157 	int64_t			 dev;
158 	int64_t			 ino;
159 	int			 flags;
160 	int			 filesystem_id;
161 	/* How to return back to the parent of a symlink. */
162 	int			 symlink_parent_fd;
163 	/* How to restore time of a directory. */
164 	struct restore_time	 restore_time;
165 };
166 
167 struct filesystem {
168 	int64_t		dev;
169 	int		synthetic;
170 	int		remote;
171 	int		noatime;
172 #if defined(USE_READDIR_R)
173 	size_t		name_max;
174 #endif
175 	long		incr_xfer_size;
176 	long		max_xfer_size;
177 	long		min_xfer_size;
178 	long		xfer_align;
179 
180 	/*
181 	 * Buffer used for reading file contents.
182 	 */
183 	/* Exactly allocated memory pointer. */
184 	unsigned char	*allocation_ptr;
185 	/* Pointer adjusted to the filesystem alignment . */
186 	unsigned char	*buff;
187 	size_t		 buff_size;
188 };
189 
190 /* Definitions for tree_entry.flags bitmap. */
191 #define	isDir		1  /* This entry is a regular directory. */
192 #define	isDirLink	2  /* This entry is a symbolic link to a directory. */
193 #define	needsFirstVisit	4  /* This is an initial entry. */
194 #define	needsDescent	8  /* This entry needs to be previsited. */
195 #define	needsOpen	16 /* This is a directory that needs to be opened. */
196 #define	needsAscent	32 /* This entry needs to be postvisited. */
197 
198 /*
199  * Local data for this package.
200  */
201 struct tree {
202 	struct tree_entry	*stack;
203 	struct tree_entry	*current;
204 	DIR			*d;
205 #define	INVALID_DIR_HANDLE NULL
206 	struct dirent		*de;
207 #if defined(USE_READDIR_R)
208 	struct dirent		*dirent;
209 	size_t			 dirent_allocated;
210 #endif
211 	int			 flags;
212 	int			 visit_type;
213 	/* Error code from last failed operation. */
214 	int			 tree_errno;
215 
216 	/* Dynamically-sized buffer for holding path */
217 	struct archive_string	 path;
218 
219 	/* Last path element */
220 	const char		*basename;
221 	/* Leading dir length */
222 	size_t			 dirname_length;
223 
224 	int			 depth;
225 	int			 openCount;
226 	int			 maxOpenCount;
227 	int			 initial_dir_fd;
228 	int			 working_dir_fd;
229 
230 	struct stat		 lst;
231 	struct stat		 st;
232 	int			 descend;
233 	int			 nlink;
234 	/* How to restore time of a file. */
235 	struct restore_time	 restore_time;
236 
237 	struct entry_sparse {
238 		int64_t		 length;
239 		int64_t		 offset;
240 	}			*sparse_list, *current_sparse;
241 	int			 sparse_count;
242 	int			 sparse_list_size;
243 
244 	char			 initial_symlink_mode;
245 	char			 symlink_mode;
246 	struct filesystem	*current_filesystem;
247 	struct filesystem	*filesystem_table;
248 	int			 initial_filesystem_id;
249 	int			 current_filesystem_id;
250 	int			 max_filesystem_id;
251 	int			 allocated_filesystem;
252 
253 	int			 entry_fd;
254 	int			 entry_eof;
255 	int64_t			 entry_remaining_bytes;
256 	int64_t			 entry_total;
257 	unsigned char		*entry_buff;
258 	size_t			 entry_buff_size;
259 };
260 
261 /* Definitions for tree.flags bitmap. */
262 #define	hasStat		16 /* The st entry is valid. */
263 #define	hasLstat	32 /* The lst entry is valid. */
264 #define	onWorkingDir	64 /* We are on the working dir where we are
265 			    * reading directory entry at this time. */
266 #define	needsRestoreTimes 128
267 #define	onInitialDir	256 /* We are on the initial dir. */
268 
269 static int
270 tree_dir_next_posix(struct tree *t);
271 
272 #ifdef HAVE_DIRENT_D_NAMLEN
273 /* BSD extension; avoids need for a strlen() call. */
274 #define	D_NAMELEN(dp)	(dp)->d_namlen
275 #else
276 #define	D_NAMELEN(dp)	(strlen((dp)->d_name))
277 #endif
278 
279 /* Initiate/terminate a tree traversal. */
280 static struct tree *tree_open(const char *, int, int);
281 static struct tree *tree_reopen(struct tree *, const char *, int);
282 static void tree_close(struct tree *);
283 static void tree_free(struct tree *);
284 static void tree_push(struct tree *, const char *, int, int64_t, int64_t,
285 		struct restore_time *);
286 static int tree_enter_initial_dir(struct tree *);
287 static int tree_enter_working_dir(struct tree *);
288 static int tree_current_dir_fd(struct tree *);
289 
290 /*
291  * tree_next() returns Zero if there is no next entry, non-zero if
292  * there is.  Note that directories are visited three times.
293  * Directories are always visited first as part of enumerating their
294  * parent; that is a "regular" visit.  If tree_descend() is invoked at
295  * that time, the directory is added to a work list and will
296  * subsequently be visited two more times: once just after descending
297  * into the directory ("postdescent") and again just after ascending
298  * back to the parent ("postascent").
299  *
300  * TREE_ERROR_DIR is returned if the descent failed (because the
301  * directory couldn't be opened, for instance).  This is returned
302  * instead of TREE_POSTDESCENT/TREE_POSTASCENT.  TREE_ERROR_DIR is not a
303  * fatal error, but it does imply that the relevant subtree won't be
304  * visited.  TREE_ERROR_FATAL is returned for an error that left the
305  * traversal completely hosed.  Right now, this is only returned for
306  * chdir() failures during ascent.
307  */
308 #define	TREE_REGULAR		1
309 #define	TREE_POSTDESCENT	2
310 #define	TREE_POSTASCENT		3
311 #define	TREE_ERROR_DIR		-1
312 #define	TREE_ERROR_FATAL	-2
313 
314 static int tree_next(struct tree *);
315 
316 /*
317  * Return information about the current entry.
318  */
319 
320 /*
321  * The current full pathname, length of the full pathname, and a name
322  * that can be used to access the file.  Because tree does use chdir
323  * extensively, the access path is almost never the same as the full
324  * current path.
325  *
326  * TODO: On platforms that support it, use openat()-style operations
327  * to eliminate the chdir() operations entirely while still supporting
328  * arbitrarily deep traversals.  This makes access_path troublesome to
329  * support, of course, which means we'll need a rich enough interface
330  * that clients can function without it.  (In particular, we'll need
331  * tree_current_open() that returns an open file descriptor.)
332  *
333  */
334 static const char *tree_current_path(struct tree *);
335 static const char *tree_current_access_path(struct tree *);
336 
337 /*
338  * Request the lstat() or stat() data for the current path.  Since the
339  * tree package needs to do some of this anyway, and caches the
340  * results, you should take advantage of it here if you need it rather
341  * than make a redundant stat() or lstat() call of your own.
342  */
343 static const struct stat *tree_current_stat(struct tree *);
344 static const struct stat *tree_current_lstat(struct tree *);
345 static int	tree_current_is_symblic_link_target(struct tree *);
346 
347 /* The following functions use tricks to avoid a certain number of
348  * stat()/lstat() calls. */
349 /* "is_physical_dir" is equivalent to S_ISDIR(tree_current_lstat()->st_mode) */
350 static int tree_current_is_physical_dir(struct tree *);
351 /* "is_dir" is equivalent to S_ISDIR(tree_current_stat()->st_mode) */
352 static int tree_current_is_dir(struct tree *);
353 static int update_current_filesystem(struct archive_read_disk *a,
354 		    int64_t dev);
355 static int setup_current_filesystem(struct archive_read_disk *);
356 static int tree_target_is_same_as_parent(struct tree *, const struct stat *);
357 
358 static int	_archive_read_disk_open(struct archive *, const char *);
359 static int	_archive_read_free(struct archive *);
360 static int	_archive_read_close(struct archive *);
361 static int	_archive_read_data_block(struct archive *,
362 		    const void **, size_t *, int64_t *);
363 static int	_archive_read_next_header(struct archive *,
364 		    struct archive_entry **);
365 static int	_archive_read_next_header2(struct archive *,
366 		    struct archive_entry *);
367 static const char *trivial_lookup_gname(void *, int64_t gid);
368 static const char *trivial_lookup_uname(void *, int64_t uid);
369 static int	setup_sparse(struct archive_read_disk *, struct archive_entry *);
370 static int	close_and_restore_time(int fd, struct tree *,
371 		    struct restore_time *);
372 static int	open_on_current_dir(struct tree *, const char *, int);
373 static int	tree_dup(int);
374 
375 
376 static const struct archive_vtable
377 archive_read_disk_vtable = {
378 	.archive_free = _archive_read_free,
379 	.archive_close = _archive_read_close,
380 	.archive_read_data_block = _archive_read_data_block,
381 	.archive_read_next_header = _archive_read_next_header,
382 	.archive_read_next_header2 = _archive_read_next_header2,
383 };
384 
385 const char *
386 archive_read_disk_gname(struct archive *_a, la_int64_t gid)
387 {
388 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
389 	if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
390 		ARCHIVE_STATE_ANY, "archive_read_disk_gname"))
391 		return (NULL);
392 	if (a->lookup_gname == NULL)
393 		return (NULL);
394 	return ((*a->lookup_gname)(a->lookup_gname_data, gid));
395 }
396 
397 const char *
398 archive_read_disk_uname(struct archive *_a, la_int64_t uid)
399 {
400 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
401 	if (ARCHIVE_OK != __archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
402 		ARCHIVE_STATE_ANY, "archive_read_disk_uname"))
403 		return (NULL);
404 	if (a->lookup_uname == NULL)
405 		return (NULL);
406 	return ((*a->lookup_uname)(a->lookup_uname_data, uid));
407 }
408 
409 int
410 archive_read_disk_set_gname_lookup(struct archive *_a,
411     void *private_data,
412     const char * (*lookup_gname)(void *private, la_int64_t gid),
413     void (*cleanup_gname)(void *private))
414 {
415 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
416 	archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
417 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_gname_lookup");
418 
419 	if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
420 		(a->cleanup_gname)(a->lookup_gname_data);
421 
422 	a->lookup_gname = lookup_gname;
423 	a->cleanup_gname = cleanup_gname;
424 	a->lookup_gname_data = private_data;
425 	return (ARCHIVE_OK);
426 }
427 
428 int
429 archive_read_disk_set_uname_lookup(struct archive *_a,
430     void *private_data,
431     const char * (*lookup_uname)(void *private, la_int64_t uid),
432     void (*cleanup_uname)(void *private))
433 {
434 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
435 	archive_check_magic(&a->archive, ARCHIVE_READ_DISK_MAGIC,
436 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_uname_lookup");
437 
438 	if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
439 		(a->cleanup_uname)(a->lookup_uname_data);
440 
441 	a->lookup_uname = lookup_uname;
442 	a->cleanup_uname = cleanup_uname;
443 	a->lookup_uname_data = private_data;
444 	return (ARCHIVE_OK);
445 }
446 
447 /*
448  * Create a new archive_read_disk object and initialize it with global state.
449  */
450 struct archive *
451 archive_read_disk_new(void)
452 {
453 	struct archive_read_disk *a;
454 
455 	a = (struct archive_read_disk *)calloc(1, sizeof(*a));
456 	if (a == NULL)
457 		return (NULL);
458 	a->archive.magic = ARCHIVE_READ_DISK_MAGIC;
459 	a->archive.state = ARCHIVE_STATE_NEW;
460 	a->archive.vtable = &archive_read_disk_vtable;
461 	a->entry = archive_entry_new2(&a->archive);
462 	a->lookup_uname = trivial_lookup_uname;
463 	a->lookup_gname = trivial_lookup_gname;
464 	a->flags = ARCHIVE_READDISK_MAC_COPYFILE;
465 	a->open_on_current_dir = open_on_current_dir;
466 	a->tree_current_dir_fd = tree_current_dir_fd;
467 	a->tree_enter_working_dir = tree_enter_working_dir;
468 	return (&a->archive);
469 }
470 
471 static int
472 _archive_read_free(struct archive *_a)
473 {
474 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
475 	int r;
476 
477 	if (_a == NULL)
478 		return (ARCHIVE_OK);
479 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
480 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_free");
481 
482 	if (a->archive.state != ARCHIVE_STATE_CLOSED)
483 		r = _archive_read_close(&a->archive);
484 	else
485 		r = ARCHIVE_OK;
486 
487 	tree_free(a->tree);
488 	if (a->cleanup_gname != NULL && a->lookup_gname_data != NULL)
489 		(a->cleanup_gname)(a->lookup_gname_data);
490 	if (a->cleanup_uname != NULL && a->lookup_uname_data != NULL)
491 		(a->cleanup_uname)(a->lookup_uname_data);
492 	archive_string_free(&a->archive.error_string);
493 	archive_entry_free(a->entry);
494 	a->archive.magic = 0;
495 	__archive_clean(&a->archive);
496 	free(a);
497 	return (r);
498 }
499 
500 static int
501 _archive_read_close(struct archive *_a)
502 {
503 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
504 
505 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
506 	    ARCHIVE_STATE_ANY | ARCHIVE_STATE_FATAL, "archive_read_close");
507 
508 	if (a->archive.state != ARCHIVE_STATE_FATAL)
509 		a->archive.state = ARCHIVE_STATE_CLOSED;
510 
511 	tree_close(a->tree);
512 
513 	return (ARCHIVE_OK);
514 }
515 
516 static void
517 setup_symlink_mode(struct archive_read_disk *a, char symlink_mode,
518     int follow_symlinks)
519 {
520 	a->symlink_mode = symlink_mode;
521 	a->follow_symlinks = follow_symlinks;
522 	if (a->tree != NULL) {
523 		a->tree->initial_symlink_mode = a->symlink_mode;
524 		a->tree->symlink_mode = a->symlink_mode;
525 	}
526 }
527 
528 int
529 archive_read_disk_set_symlink_logical(struct archive *_a)
530 {
531 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
532 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
533 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_logical");
534 	setup_symlink_mode(a, 'L', 1);
535 	return (ARCHIVE_OK);
536 }
537 
538 int
539 archive_read_disk_set_symlink_physical(struct archive *_a)
540 {
541 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
542 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
543 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_physical");
544 	setup_symlink_mode(a, 'P', 0);
545 	return (ARCHIVE_OK);
546 }
547 
548 int
549 archive_read_disk_set_symlink_hybrid(struct archive *_a)
550 {
551 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
552 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
553 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_symlink_hybrid");
554 	setup_symlink_mode(a, 'H', 1);/* Follow symlinks initially. */
555 	return (ARCHIVE_OK);
556 }
557 
558 int
559 archive_read_disk_set_atime_restored(struct archive *_a)
560 {
561 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
562 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
563 	    ARCHIVE_STATE_ANY, "archive_read_disk_restore_atime");
564 #ifdef HAVE_UTIMES
565 	a->flags |= ARCHIVE_READDISK_RESTORE_ATIME;
566 	if (a->tree != NULL)
567 		a->tree->flags |= needsRestoreTimes;
568 	return (ARCHIVE_OK);
569 #else
570 	/* Display warning and unset flag */
571 	archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
572 	    "Cannot restore access time on this system");
573 	a->flags &= ~ARCHIVE_READDISK_RESTORE_ATIME;
574 	return (ARCHIVE_WARN);
575 #endif
576 }
577 
578 int
579 archive_read_disk_set_behavior(struct archive *_a, int flags)
580 {
581 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
582 	int r = ARCHIVE_OK;
583 
584 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
585 	    ARCHIVE_STATE_ANY, "archive_read_disk_honor_nodump");
586 
587 	a->flags = flags;
588 
589 	if (flags & ARCHIVE_READDISK_RESTORE_ATIME)
590 		r = archive_read_disk_set_atime_restored(_a);
591 	else {
592 		if (a->tree != NULL)
593 			a->tree->flags &= ~needsRestoreTimes;
594 	}
595 	return (r);
596 }
597 
598 /*
599  * Trivial implementations of gname/uname lookup functions.
600  * These are normally overridden by the client, but these stub
601  * versions ensure that we always have something that works.
602  */
603 static const char *
604 trivial_lookup_gname(void *private_data, int64_t gid)
605 {
606 	(void)private_data; /* UNUSED */
607 	(void)gid; /* UNUSED */
608 	return (NULL);
609 }
610 
611 static const char *
612 trivial_lookup_uname(void *private_data, int64_t uid)
613 {
614 	(void)private_data; /* UNUSED */
615 	(void)uid; /* UNUSED */
616 	return (NULL);
617 }
618 
619 /*
620  * Allocate memory for the reading buffer adjusted to the filesystem
621  * alignment.
622  */
623 static int
624 setup_suitable_read_buffer(struct archive_read_disk *a)
625 {
626 	struct tree *t = a->tree;
627 	struct filesystem *cf = t->current_filesystem;
628 	size_t asize;
629 	size_t s;
630 
631 	if (cf->allocation_ptr == NULL) {
632 		/* If we couldn't get a filesystem alignment,
633 		 * we use 4096 as default value but we won't use
634 		 * O_DIRECT to open() and openat() operations. */
635 		long xfer_align = (cf->xfer_align == -1)?4096:cf->xfer_align;
636 
637 		if (cf->max_xfer_size != -1)
638 			asize = cf->max_xfer_size + xfer_align;
639 		else {
640 			long incr = cf->incr_xfer_size;
641 			/* Some platform does not set a proper value to
642 			 * incr_xfer_size.*/
643 			if (incr < 0)
644 				incr = cf->min_xfer_size;
645 			if (cf->min_xfer_size < 0) {
646 				incr = xfer_align;
647 				asize = xfer_align;
648 			} else
649 				asize = cf->min_xfer_size;
650 
651 			/* Increase a buffer size up to 64K bytes in
652 			 * a proper increment size. */
653 			while (asize < 1024*64)
654 				asize += incr;
655 			/* Take a margin to adjust to the filesystem
656 			 * alignment. */
657 			asize += xfer_align;
658 		}
659 		cf->allocation_ptr = malloc(asize);
660 		if (cf->allocation_ptr == NULL) {
661 			archive_set_error(&a->archive, ENOMEM,
662 			    "Couldn't allocate memory");
663 			a->archive.state = ARCHIVE_STATE_FATAL;
664 			return (ARCHIVE_FATAL);
665 		}
666 
667 		/*
668 		 * Calculate proper address for the filesystem.
669 		 */
670 		s = (uintptr_t)cf->allocation_ptr;
671 		s %= xfer_align;
672 		if (s > 0)
673 			s = xfer_align - s;
674 
675 		/*
676 		 * Set a read buffer pointer in the proper alignment of
677 		 * the current filesystem.
678 		 */
679 		cf->buff = cf->allocation_ptr + s;
680 		cf->buff_size = asize - xfer_align;
681 	}
682 	return (ARCHIVE_OK);
683 }
684 
685 static int
686 _archive_read_data_block(struct archive *_a, const void **buff,
687     size_t *size, int64_t *offset)
688 {
689 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
690 	struct tree *t = a->tree;
691 	int r;
692 	ssize_t bytes;
693 	int64_t sparse_bytes;
694 	size_t buffbytes;
695 	int empty_sparse_region = 0;
696 
697 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
698 	    "archive_read_data_block");
699 
700 	if (t->entry_eof || t->entry_remaining_bytes <= 0) {
701 		r = ARCHIVE_EOF;
702 		goto abort_read_data;
703 	}
704 
705 	/*
706 	 * Open the current file.
707 	 */
708 	if (t->entry_fd < 0) {
709 		int flags = O_RDONLY | O_BINARY | O_CLOEXEC;
710 
711 		/*
712 		 * Eliminate or reduce cache effects if we can.
713 		 *
714 		 * Carefully consider this to be enabled.
715 		 */
716 #if defined(O_DIRECT) && 0/* Disabled for now */
717 		if (t->current_filesystem->xfer_align != -1 &&
718 		    t->nlink == 1)
719 			flags |= O_DIRECT;
720 #endif
721 #if defined(O_NOATIME)
722 		/*
723 		 * Linux has O_NOATIME flag; use it if we need.
724 		 */
725 		if ((t->flags & needsRestoreTimes) != 0 &&
726 		    t->restore_time.noatime == 0)
727 			flags |= O_NOATIME;
728 #endif
729 		t->entry_fd = open_on_current_dir(t,
730 		    tree_current_access_path(t), flags);
731 		__archive_ensure_cloexec_flag(t->entry_fd);
732 #if defined(O_NOATIME)
733 		/*
734 		 * When we did open the file with O_NOATIME flag,
735 		 * if successful, set 1 to t->restore_time.noatime
736 		 * not to restore an atime of the file later.
737 		 * if failed by EPERM, retry it without O_NOATIME flag.
738 		 */
739 		if (flags & O_NOATIME) {
740 			if (t->entry_fd >= 0)
741 				t->restore_time.noatime = 1;
742 			else if (errno == EPERM)
743 				flags &= ~O_NOATIME;
744 		}
745 #endif
746 		if (t->entry_fd < 0) {
747 			archive_set_error(&a->archive, errno,
748 			    "Couldn't open %s", tree_current_path(t));
749 			r = ARCHIVE_FAILED;
750 			tree_enter_initial_dir(t);
751 			goto abort_read_data;
752 		}
753 		tree_enter_initial_dir(t);
754 	}
755 
756 	/*
757 	 * Allocate read buffer if not allocated.
758 	 */
759 	if (t->current_filesystem->allocation_ptr == NULL) {
760 		r = setup_suitable_read_buffer(a);
761 		if (r != ARCHIVE_OK) {
762 			a->archive.state = ARCHIVE_STATE_FATAL;
763 			goto abort_read_data;
764 		}
765 	}
766 	t->entry_buff = t->current_filesystem->buff;
767 	t->entry_buff_size = t->current_filesystem->buff_size;
768 
769 	buffbytes = t->entry_buff_size;
770 	if ((int64_t)buffbytes > t->current_sparse->length)
771 		buffbytes = t->current_sparse->length;
772 
773 	if (t->current_sparse->length == 0)
774 		empty_sparse_region = 1;
775 
776 	/*
777 	 * Skip hole.
778 	 * TODO: Should we consider t->current_filesystem->xfer_align?
779 	 */
780 	if (t->current_sparse->offset > t->entry_total) {
781 		if (lseek(t->entry_fd,
782 		    (off_t)t->current_sparse->offset, SEEK_SET) < 0) {
783 			archive_set_error(&a->archive, errno, "Seek error");
784 			r = ARCHIVE_FATAL;
785 			a->archive.state = ARCHIVE_STATE_FATAL;
786 			goto abort_read_data;
787 		}
788 		sparse_bytes = t->current_sparse->offset - t->entry_total;
789 		t->entry_remaining_bytes -= sparse_bytes;
790 		t->entry_total += sparse_bytes;
791 	}
792 
793 	/*
794 	 * Read file contents.
795 	 */
796 	if (buffbytes > 0) {
797 		bytes = read(t->entry_fd, t->entry_buff, buffbytes);
798 		if (bytes < 0) {
799 			archive_set_error(&a->archive, errno, "Read error");
800 			r = ARCHIVE_FATAL;
801 			a->archive.state = ARCHIVE_STATE_FATAL;
802 			goto abort_read_data;
803 		}
804 	} else
805 		bytes = 0;
806 	/*
807 	 * Return an EOF unless we've read a leading empty sparse region, which
808 	 * is used to represent fully-sparse files.
809 	*/
810 	if (bytes == 0 && !empty_sparse_region) {
811 		/* Get EOF */
812 		t->entry_eof = 1;
813 		r = ARCHIVE_EOF;
814 		goto abort_read_data;
815 	}
816 	*buff = t->entry_buff;
817 	*size = bytes;
818 	*offset = t->entry_total;
819 	t->entry_total += bytes;
820 	t->entry_remaining_bytes -= bytes;
821 	if (t->entry_remaining_bytes == 0) {
822 		/* Close the current file descriptor */
823 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
824 		t->entry_fd = -1;
825 		t->entry_eof = 1;
826 	}
827 	t->current_sparse->offset += bytes;
828 	t->current_sparse->length -= bytes;
829 	if (t->current_sparse->length == 0 && !t->entry_eof)
830 		t->current_sparse++;
831 	return (ARCHIVE_OK);
832 
833 abort_read_data:
834 	*buff = NULL;
835 	*size = 0;
836 	*offset = t->entry_total;
837 	if (t->entry_fd >= 0) {
838 		/* Close the current file descriptor */
839 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
840 		t->entry_fd = -1;
841 	}
842 	return (r);
843 }
844 
845 static int
846 next_entry(struct archive_read_disk *a, struct tree *t,
847     struct archive_entry *entry)
848 {
849 	const struct stat *st; /* info to use for this entry */
850 	const struct stat *lst;/* lstat() information */
851 	const char *name;
852 	int delayed, delayed_errno, descend, r;
853 	struct archive_string delayed_str;
854 
855 	delayed = ARCHIVE_OK;
856 	delayed_errno = 0;
857 	archive_string_init(&delayed_str);
858 
859 	st = NULL;
860 	lst = NULL;
861 	t->descend = 0;
862 	do {
863 		switch (tree_next(t)) {
864 		case TREE_ERROR_FATAL:
865 			archive_set_error(&a->archive, t->tree_errno,
866 			    "%s: Unable to continue traversing directory tree",
867 			    tree_current_path(t));
868 			a->archive.state = ARCHIVE_STATE_FATAL;
869 			tree_enter_initial_dir(t);
870 			return (ARCHIVE_FATAL);
871 		case TREE_ERROR_DIR:
872 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
873 			    "%s: Couldn't visit directory",
874 			    tree_current_path(t));
875 			tree_enter_initial_dir(t);
876 			return (ARCHIVE_FAILED);
877 		case 0:
878 			tree_enter_initial_dir(t);
879 			return (ARCHIVE_EOF);
880 		case TREE_POSTDESCENT:
881 		case TREE_POSTASCENT:
882 			break;
883 		case TREE_REGULAR:
884 			lst = tree_current_lstat(t);
885 			if (lst == NULL) {
886 			    if (errno == ENOENT && t->depth > 0) {
887 				delayed = ARCHIVE_WARN;
888 				delayed_errno = errno;
889 				if (delayed_str.length == 0) {
890 					archive_string_sprintf(&delayed_str,
891 					    "%s", tree_current_path(t));
892 				} else {
893 					archive_string_sprintf(&delayed_str,
894 					    " %s", tree_current_path(t));
895 				}
896 			    } else {
897 				archive_set_error(&a->archive, errno,
898 				    "%s: Cannot stat",
899 				    tree_current_path(t));
900 				tree_enter_initial_dir(t);
901 				return (ARCHIVE_FAILED);
902 			    }
903 			}
904 			break;
905 		}
906 	} while (lst == NULL);
907 
908 #ifdef __APPLE__
909 	if (a->flags & ARCHIVE_READDISK_MAC_COPYFILE) {
910 		/* If we're using copyfile(), ignore "._XXX" files. */
911 		const char *bname = strrchr(tree_current_path(t), '/');
912 		if (bname == NULL)
913 			bname = tree_current_path(t);
914 		else
915 			++bname;
916 		if (bname[0] == '.' && bname[1] == '_')
917 			return (ARCHIVE_RETRY);
918 	}
919 #endif
920 
921 	archive_entry_copy_pathname(entry, tree_current_path(t));
922 	/*
923 	 * Perform path matching.
924 	 */
925 	if (a->matching) {
926 		r = archive_match_path_excluded(a->matching, entry);
927 		if (r < 0) {
928 			archive_set_error(&(a->archive), errno,
929 			    "Failed : %s", archive_error_string(a->matching));
930 			return (r);
931 		}
932 		if (r) {
933 			if (a->excluded_cb_func)
934 				a->excluded_cb_func(&(a->archive),
935 				    a->excluded_cb_data, entry);
936 			return (ARCHIVE_RETRY);
937 		}
938 	}
939 
940 	/*
941 	 * Distinguish 'L'/'P'/'H' symlink following.
942 	 */
943 	switch(t->symlink_mode) {
944 	case 'H':
945 		/* 'H': After the first item, rest like 'P'. */
946 		t->symlink_mode = 'P';
947 		/* 'H': First item (from command line) like 'L'. */
948 		/* FALLTHROUGH */
949 	case 'L':
950 		/* 'L': Do descend through a symlink to dir. */
951 		descend = tree_current_is_dir(t);
952 		/* 'L': Follow symlinks to files. */
953 		a->symlink_mode = 'L';
954 		a->follow_symlinks = 1;
955 		/* 'L': Archive symlinks as targets, if we can. */
956 		st = tree_current_stat(t);
957 		if (st != NULL && !tree_target_is_same_as_parent(t, st))
958 			break;
959 		/* If stat fails, we have a broken symlink;
960 		 * in that case, don't follow the link. */
961 		/* FALLTHROUGH */
962 	default:
963 		/* 'P': Don't descend through a symlink to dir. */
964 		descend = tree_current_is_physical_dir(t);
965 		/* 'P': Don't follow symlinks to files. */
966 		a->symlink_mode = 'P';
967 		a->follow_symlinks = 0;
968 		/* 'P': Archive symlinks as symlinks. */
969 		st = lst;
970 		break;
971 	}
972 
973 	if (update_current_filesystem(a, st->st_dev) != ARCHIVE_OK) {
974 		a->archive.state = ARCHIVE_STATE_FATAL;
975 		tree_enter_initial_dir(t);
976 		return (ARCHIVE_FATAL);
977 	}
978 	if (t->initial_filesystem_id == -1)
979 		t->initial_filesystem_id = t->current_filesystem_id;
980 	if (a->flags & ARCHIVE_READDISK_NO_TRAVERSE_MOUNTS) {
981 		if (t->initial_filesystem_id != t->current_filesystem_id)
982 			descend = 0;
983 	}
984 	t->descend = descend;
985 
986 	/*
987 	 * Honor nodump flag.
988 	 * If the file is marked with nodump flag, do not return this entry.
989 	 */
990 	if (a->flags & ARCHIVE_READDISK_HONOR_NODUMP) {
991 #if defined(HAVE_STRUCT_STAT_ST_FLAGS) && defined(UF_NODUMP)
992 		if (st->st_flags & UF_NODUMP)
993 			return (ARCHIVE_RETRY);
994 #elif (defined(FS_IOC_GETFLAGS) && defined(FS_NODUMP_FL) && \
995        defined(HAVE_WORKING_FS_IOC_GETFLAGS)) || \
996       (defined(EXT2_IOC_GETFLAGS) && defined(EXT2_NODUMP_FL) && \
997        defined(HAVE_WORKING_EXT2_IOC_GETFLAGS))
998 		if (S_ISREG(st->st_mode) || S_ISDIR(st->st_mode)) {
999 			int stflags;
1000 
1001 			t->entry_fd = open_on_current_dir(t,
1002 			    tree_current_access_path(t),
1003 			    O_RDONLY | O_NONBLOCK | O_CLOEXEC);
1004 			__archive_ensure_cloexec_flag(t->entry_fd);
1005 			if (t->entry_fd >= 0) {
1006 				r = ioctl(t->entry_fd,
1007 #ifdef FS_IOC_GETFLAGS
1008 				FS_IOC_GETFLAGS,
1009 #else
1010 				EXT2_IOC_GETFLAGS,
1011 #endif
1012 					&stflags);
1013 #ifdef FS_NODUMP_FL
1014 				if (r == 0 && (stflags & FS_NODUMP_FL) != 0)
1015 #else
1016 				if (r == 0 && (stflags & EXT2_NODUMP_FL) != 0)
1017 #endif
1018 					return (ARCHIVE_RETRY);
1019 			}
1020 		}
1021 #endif
1022 	}
1023 
1024 	archive_entry_copy_stat(entry, st);
1025 
1026 	/* Save the times to be restored. This must be in before
1027 	 * calling archive_read_disk_descend() or any chance of it,
1028 	 * especially, invoking a callback. */
1029 	t->restore_time.mtime = archive_entry_mtime(entry);
1030 	t->restore_time.mtime_nsec = archive_entry_mtime_nsec(entry);
1031 	t->restore_time.atime = archive_entry_atime(entry);
1032 	t->restore_time.atime_nsec = archive_entry_atime_nsec(entry);
1033 	t->restore_time.filetype = archive_entry_filetype(entry);
1034 	t->restore_time.noatime = t->current_filesystem->noatime;
1035 
1036 	/*
1037 	 * Perform time matching.
1038 	 */
1039 	if (a->matching) {
1040 		r = archive_match_time_excluded(a->matching, entry);
1041 		if (r < 0) {
1042 			archive_set_error(&(a->archive), errno,
1043 			    "Failed : %s", archive_error_string(a->matching));
1044 			return (r);
1045 		}
1046 		if (r) {
1047 			if (a->excluded_cb_func)
1048 				a->excluded_cb_func(&(a->archive),
1049 				    a->excluded_cb_data, entry);
1050 			return (ARCHIVE_RETRY);
1051 		}
1052 	}
1053 
1054 	/* Lookup uname/gname */
1055 	name = archive_read_disk_uname(&(a->archive), archive_entry_uid(entry));
1056 	if (name != NULL)
1057 		archive_entry_copy_uname(entry, name);
1058 	name = archive_read_disk_gname(&(a->archive), archive_entry_gid(entry));
1059 	if (name != NULL)
1060 		archive_entry_copy_gname(entry, name);
1061 
1062 	/*
1063 	 * Perform owner matching.
1064 	 */
1065 	if (a->matching) {
1066 		r = archive_match_owner_excluded(a->matching, entry);
1067 		if (r < 0) {
1068 			archive_set_error(&(a->archive), errno,
1069 			    "Failed : %s", archive_error_string(a->matching));
1070 			return (r);
1071 		}
1072 		if (r) {
1073 			if (a->excluded_cb_func)
1074 				a->excluded_cb_func(&(a->archive),
1075 				    a->excluded_cb_data, entry);
1076 			return (ARCHIVE_RETRY);
1077 		}
1078 	}
1079 
1080 	/*
1081 	 * Invoke a meta data filter callback.
1082 	 */
1083 	if (a->metadata_filter_func) {
1084 		if (!a->metadata_filter_func(&(a->archive),
1085 		    a->metadata_filter_data, entry))
1086 			return (ARCHIVE_RETRY);
1087 	}
1088 
1089 	/*
1090 	 * Populate the archive_entry with metadata from the disk.
1091 	 */
1092 	archive_entry_copy_sourcepath(entry, tree_current_access_path(t));
1093 	r = archive_read_disk_entry_from_file(&(a->archive), entry,
1094 		t->entry_fd, st);
1095 
1096 	if (r == ARCHIVE_OK) {
1097 		r = delayed;
1098 		if (r != ARCHIVE_OK) {
1099 			archive_string_sprintf(&delayed_str, ": %s",
1100 			    "File removed before we read it");
1101 			archive_set_error(&(a->archive), delayed_errno,
1102 			    "%s", delayed_str.s);
1103 		}
1104 	}
1105 	archive_string_free(&delayed_str);
1106 
1107 	return (r);
1108 }
1109 
1110 static int
1111 _archive_read_next_header(struct archive *_a, struct archive_entry **entryp)
1112 {
1113 	int ret;
1114 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1115 	*entryp = NULL;
1116 	ret = _archive_read_next_header2(_a, a->entry);
1117 	*entryp = a->entry;
1118 	return ret;
1119 }
1120 
1121 static int
1122 _archive_read_next_header2(struct archive *_a, struct archive_entry *entry)
1123 {
1124 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1125 	struct tree *t;
1126 	int r;
1127 
1128 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1129 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1130 	    "archive_read_next_header2");
1131 
1132 	t = a->tree;
1133 	if (t->entry_fd >= 0) {
1134 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
1135 		t->entry_fd = -1;
1136 	}
1137 
1138 	archive_entry_clear(entry);
1139 
1140 	for (;;) {
1141 		r = next_entry(a, t, entry);
1142 		if (t->entry_fd >= 0) {
1143 			close(t->entry_fd);
1144 			t->entry_fd = -1;
1145 		}
1146 
1147 		if (r == ARCHIVE_RETRY) {
1148 			archive_entry_clear(entry);
1149 			continue;
1150 		}
1151 		break;
1152 	}
1153 
1154 	/* Return to the initial directory. */
1155 	tree_enter_initial_dir(t);
1156 
1157 	/*
1158 	 * EOF and FATAL are persistent at this layer.  By
1159 	 * modifying the state, we guarantee that future calls to
1160 	 * read a header or read data will fail.
1161 	 */
1162 	switch (r) {
1163 	case ARCHIVE_EOF:
1164 		a->archive.state = ARCHIVE_STATE_EOF;
1165 		break;
1166 	case ARCHIVE_OK:
1167 	case ARCHIVE_WARN:
1168 		/* Overwrite the sourcepath based on the initial directory. */
1169 		archive_entry_copy_sourcepath(entry, tree_current_path(t));
1170 		t->entry_total = 0;
1171 		if (archive_entry_filetype(entry) == AE_IFREG) {
1172 			t->nlink = archive_entry_nlink(entry);
1173 			t->entry_remaining_bytes = archive_entry_size(entry);
1174 			t->entry_eof = (t->entry_remaining_bytes == 0)? 1: 0;
1175 			if (!t->entry_eof &&
1176 			    setup_sparse(a, entry) != ARCHIVE_OK)
1177 				return (ARCHIVE_FATAL);
1178 		} else {
1179 			t->entry_remaining_bytes = 0;
1180 			t->entry_eof = 1;
1181 		}
1182 		a->archive.state = ARCHIVE_STATE_DATA;
1183 		break;
1184 	case ARCHIVE_RETRY:
1185 		break;
1186 	case ARCHIVE_FATAL:
1187 		a->archive.state = ARCHIVE_STATE_FATAL;
1188 		break;
1189 	}
1190 
1191 	__archive_reset_read_data(&a->archive);
1192 	return (r);
1193 }
1194 
1195 static int
1196 setup_sparse(struct archive_read_disk *a, struct archive_entry *entry)
1197 {
1198 	struct tree *t = a->tree;
1199 	int64_t length, offset;
1200 	int i;
1201 
1202 	t->sparse_count = archive_entry_sparse_reset(entry);
1203 	if (t->sparse_count+1 > t->sparse_list_size) {
1204 		free(t->sparse_list);
1205 		t->sparse_list_size = t->sparse_count + 1;
1206 		t->sparse_list = malloc(sizeof(t->sparse_list[0]) *
1207 		    t->sparse_list_size);
1208 		if (t->sparse_list == NULL) {
1209 			t->sparse_list_size = 0;
1210 			archive_set_error(&a->archive, ENOMEM,
1211 			    "Can't allocate data");
1212 			a->archive.state = ARCHIVE_STATE_FATAL;
1213 			return (ARCHIVE_FATAL);
1214 		}
1215 	}
1216 	for (i = 0; i < t->sparse_count; i++) {
1217 		archive_entry_sparse_next(entry, &offset, &length);
1218 		t->sparse_list[i].offset = offset;
1219 		t->sparse_list[i].length = length;
1220 	}
1221 	if (i == 0) {
1222 		t->sparse_list[i].offset = 0;
1223 		t->sparse_list[i].length = archive_entry_size(entry);
1224 	} else {
1225 		t->sparse_list[i].offset = archive_entry_size(entry);
1226 		t->sparse_list[i].length = 0;
1227 	}
1228 	t->current_sparse = t->sparse_list;
1229 
1230 	return (ARCHIVE_OK);
1231 }
1232 
1233 int
1234 archive_read_disk_set_matching(struct archive *_a, struct archive *_ma,
1235     void (*_excluded_func)(struct archive *, void *, struct archive_entry *),
1236     void *_client_data)
1237 {
1238 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1239 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1240 	    ARCHIVE_STATE_ANY, "archive_read_disk_set_matching");
1241 	a->matching = _ma;
1242 	a->excluded_cb_func = _excluded_func;
1243 	a->excluded_cb_data = _client_data;
1244 	return (ARCHIVE_OK);
1245 }
1246 
1247 int
1248 archive_read_disk_set_metadata_filter_callback(struct archive *_a,
1249     int (*_metadata_filter_func)(struct archive *, void *,
1250     struct archive_entry *), void *_client_data)
1251 {
1252 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1253 
1254 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_ANY,
1255 	    "archive_read_disk_set_metadata_filter_callback");
1256 
1257 	a->metadata_filter_func = _metadata_filter_func;
1258 	a->metadata_filter_data = _client_data;
1259 	return (ARCHIVE_OK);
1260 }
1261 
1262 int
1263 archive_read_disk_can_descend(struct archive *_a)
1264 {
1265 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1266 	struct tree *t = a->tree;
1267 
1268 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1269 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1270 	    "archive_read_disk_can_descend");
1271 
1272 	return (t->visit_type == TREE_REGULAR && t->descend);
1273 }
1274 
1275 /*
1276  * Called by the client to mark the directory just returned from
1277  * tree_next() as needing to be visited.
1278  */
1279 int
1280 archive_read_disk_descend(struct archive *_a)
1281 {
1282 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1283 	struct tree *t = a->tree;
1284 
1285 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1286 	    ARCHIVE_STATE_HEADER | ARCHIVE_STATE_DATA,
1287 	    "archive_read_disk_descend");
1288 
1289 	if (!archive_read_disk_can_descend(_a))
1290 		return (ARCHIVE_OK);
1291 
1292 	/*
1293 	 * We must not treat the initial specified path as a physical dir,
1294 	 * because if we do then we will try and ascend out of it by opening
1295 	 * ".." which is (a) wrong and (b) causes spurious permissions errors
1296 	 * if ".." is not readable by us. Instead, treat it as if it were a
1297 	 * symlink. (This uses an extra fd, but it can only happen once at the
1298 	 * top level of a traverse.) But we can't necessarily assume t->st is
1299 	 * valid here (though t->lst is), which complicates the logic a
1300 	 * little.
1301 	 */
1302 	if (tree_current_is_physical_dir(t)) {
1303 		tree_push(t, t->basename, t->current_filesystem_id,
1304 		    t->lst.st_dev, t->lst.st_ino, &t->restore_time);
1305 		if (t->stack->parent->parent != NULL)
1306 			t->stack->flags |= isDir;
1307 		else
1308 			t->stack->flags |= isDirLink;
1309 	} else if (tree_current_is_dir(t)) {
1310 		tree_push(t, t->basename, t->current_filesystem_id,
1311 		    t->st.st_dev, t->st.st_ino, &t->restore_time);
1312 		t->stack->flags |= isDirLink;
1313 	}
1314 	t->descend = 0;
1315 	return (ARCHIVE_OK);
1316 }
1317 
1318 int
1319 archive_read_disk_open(struct archive *_a, const char *pathname)
1320 {
1321 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1322 
1323 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1324 	    ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1325 	    "archive_read_disk_open");
1326 	archive_clear_error(&a->archive);
1327 
1328 	return (_archive_read_disk_open(_a, pathname));
1329 }
1330 
1331 int
1332 archive_read_disk_open_w(struct archive *_a, const wchar_t *pathname)
1333 {
1334 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1335 	struct archive_string path;
1336 	int ret;
1337 
1338 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC,
1339 	    ARCHIVE_STATE_NEW | ARCHIVE_STATE_CLOSED,
1340 	    "archive_read_disk_open_w");
1341 	archive_clear_error(&a->archive);
1342 
1343 	/* Make a char string from a wchar_t string. */
1344 	archive_string_init(&path);
1345 	if (archive_string_append_from_wcs(&path, pathname,
1346 	    wcslen(pathname)) != 0) {
1347 		if (errno == ENOMEM)
1348 			archive_set_error(&a->archive, ENOMEM,
1349 			    "Can't allocate memory");
1350 		else
1351 			archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1352 			    "Can't convert a path to a char string");
1353 		a->archive.state = ARCHIVE_STATE_FATAL;
1354 		ret = ARCHIVE_FATAL;
1355 	} else
1356 		ret = _archive_read_disk_open(_a, path.s);
1357 
1358 	archive_string_free(&path);
1359 	return (ret);
1360 }
1361 
1362 static int
1363 _archive_read_disk_open(struct archive *_a, const char *pathname)
1364 {
1365 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1366 
1367 	if (a->tree != NULL)
1368 		a->tree = tree_reopen(a->tree, pathname,
1369 		    a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1370 	else
1371 		a->tree = tree_open(pathname, a->symlink_mode,
1372 		    a->flags & ARCHIVE_READDISK_RESTORE_ATIME);
1373 	if (a->tree == NULL) {
1374 		archive_set_error(&a->archive, ENOMEM,
1375 		    "Can't allocate tar data");
1376 		a->archive.state = ARCHIVE_STATE_FATAL;
1377 		return (ARCHIVE_FATAL);
1378 	}
1379 	a->archive.state = ARCHIVE_STATE_HEADER;
1380 
1381 	return (ARCHIVE_OK);
1382 }
1383 
1384 /*
1385  * Return a current filesystem ID which is index of the filesystem entry
1386  * you've visited through archive_read_disk.
1387  */
1388 int
1389 archive_read_disk_current_filesystem(struct archive *_a)
1390 {
1391 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1392 
1393 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1394 	    "archive_read_disk_current_filesystem");
1395 
1396 	return (a->tree->current_filesystem_id);
1397 }
1398 
1399 static int
1400 update_current_filesystem(struct archive_read_disk *a, int64_t dev)
1401 {
1402 	struct tree *t = a->tree;
1403 	int i, fid;
1404 
1405 	if (t->current_filesystem != NULL &&
1406 	    t->current_filesystem->dev == dev)
1407 		return (ARCHIVE_OK);
1408 
1409 	for (i = 0; i < t->max_filesystem_id; i++) {
1410 		if (t->filesystem_table[i].dev == dev) {
1411 			/* There is the filesystem ID we've already generated. */
1412 			t->current_filesystem_id = i;
1413 			t->current_filesystem = &(t->filesystem_table[i]);
1414 			return (ARCHIVE_OK);
1415 		}
1416 	}
1417 
1418 	/*
1419 	 * This is the new filesystem which we have to generate a new ID for.
1420 	 */
1421 	fid = t->max_filesystem_id++;
1422 	if (t->max_filesystem_id > t->allocated_filesystem) {
1423 		size_t s;
1424 		void *p;
1425 
1426 		s = t->max_filesystem_id * 2;
1427 		p = realloc(t->filesystem_table,
1428 		        s * sizeof(*t->filesystem_table));
1429 		if (p == NULL) {
1430 			archive_set_error(&a->archive, ENOMEM,
1431 			    "Can't allocate tar data");
1432 			return (ARCHIVE_FATAL);
1433 		}
1434 		t->filesystem_table = (struct filesystem *)p;
1435 		t->allocated_filesystem = s;
1436 	}
1437 	t->current_filesystem_id = fid;
1438 	t->current_filesystem = &(t->filesystem_table[fid]);
1439 	t->current_filesystem->dev = dev;
1440 	t->current_filesystem->allocation_ptr = NULL;
1441 	t->current_filesystem->buff = NULL;
1442 
1443 	/* Setup the current filesystem properties which depend on
1444 	 * platform specific. */
1445 	return (setup_current_filesystem(a));
1446 }
1447 
1448 /*
1449  * Returns 1 if current filesystem is generated filesystem, 0 if it is not
1450  * or -1 if it is unknown.
1451  */
1452 int
1453 archive_read_disk_current_filesystem_is_synthetic(struct archive *_a)
1454 {
1455 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1456 
1457 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1458 	    "archive_read_disk_current_filesystem");
1459 
1460 	return (a->tree->current_filesystem->synthetic);
1461 }
1462 
1463 /*
1464  * Returns 1 if current filesystem is remote filesystem, 0 if it is not
1465  * or -1 if it is unknown.
1466  */
1467 int
1468 archive_read_disk_current_filesystem_is_remote(struct archive *_a)
1469 {
1470 	struct archive_read_disk *a = (struct archive_read_disk *)_a;
1471 
1472 	archive_check_magic(_a, ARCHIVE_READ_DISK_MAGIC, ARCHIVE_STATE_DATA,
1473 	    "archive_read_disk_current_filesystem");
1474 
1475 	return (a->tree->current_filesystem->remote);
1476 }
1477 
1478 #if defined(_PC_REC_INCR_XFER_SIZE) && defined(_PC_REC_MAX_XFER_SIZE) &&\
1479 	defined(_PC_REC_MIN_XFER_SIZE) && defined(_PC_REC_XFER_ALIGN)
1480 static int
1481 get_xfer_size(struct tree *t, int fd, const char *path)
1482 {
1483 	t->current_filesystem->xfer_align = -1;
1484 	errno = 0;
1485 	if (fd >= 0) {
1486 		t->current_filesystem->incr_xfer_size =
1487 		    fpathconf(fd, _PC_REC_INCR_XFER_SIZE);
1488 		t->current_filesystem->max_xfer_size =
1489 		    fpathconf(fd, _PC_REC_MAX_XFER_SIZE);
1490 		t->current_filesystem->min_xfer_size =
1491 		    fpathconf(fd, _PC_REC_MIN_XFER_SIZE);
1492 		t->current_filesystem->xfer_align =
1493 		    fpathconf(fd, _PC_REC_XFER_ALIGN);
1494 	} else if (path != NULL) {
1495 		t->current_filesystem->incr_xfer_size =
1496 		    pathconf(path, _PC_REC_INCR_XFER_SIZE);
1497 		t->current_filesystem->max_xfer_size =
1498 		    pathconf(path, _PC_REC_MAX_XFER_SIZE);
1499 		t->current_filesystem->min_xfer_size =
1500 		    pathconf(path, _PC_REC_MIN_XFER_SIZE);
1501 		t->current_filesystem->xfer_align =
1502 		    pathconf(path, _PC_REC_XFER_ALIGN);
1503 	}
1504 	/* At least we need an alignment size. */
1505 	if (t->current_filesystem->xfer_align == -1)
1506 		return ((errno == EINVAL)?1:-1);
1507 	else
1508 		return (0);
1509 }
1510 #else
1511 static int
1512 get_xfer_size(struct tree *t, int fd, const char *path)
1513 {
1514 	(void)t; /* UNUSED */
1515 	(void)fd; /* UNUSED */
1516 	(void)path; /* UNUSED */
1517 	return (1);/* Not supported */
1518 }
1519 #endif
1520 
1521 #if defined(HAVE_STATVFS)
1522 static inline __LA_UNUSED void
1523 set_statvfs_transfer_size(struct filesystem *fs, const struct statvfs *sfs)
1524 {
1525 	fs->xfer_align = sfs->f_frsize > 0 ? (long)sfs->f_frsize : -1;
1526 	fs->max_xfer_size = -1;
1527 #if defined(HAVE_STRUCT_STATVFS_F_IOSIZE)
1528 	fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1529 	fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1530 #else
1531 	fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1532 	fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1533 #endif
1534 }
1535 #endif
1536 
1537 #if defined(HAVE_STRUCT_STATFS)
1538 static inline __LA_UNUSED void
1539 set_statfs_transfer_size(struct filesystem *fs, const struct statfs *sfs)
1540 {
1541 	fs->xfer_align = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1542 	fs->max_xfer_size = -1;
1543 #if defined(HAVE_STRUCT_STATFS_F_IOSIZE)
1544 	fs->min_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1545 	fs->incr_xfer_size = sfs->f_iosize > 0 ? (long)sfs->f_iosize : -1;
1546 #else
1547 	fs->min_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1548 	fs->incr_xfer_size = sfs->f_bsize > 0 ? (long)sfs->f_bsize : -1;
1549 #endif
1550 }
1551 #endif
1552 
1553 #if defined(HAVE_STRUCT_STATFS) && defined(HAVE_STATFS) && \
1554     defined(HAVE_FSTATFS) && defined(MNT_LOCAL) && !defined(ST_LOCAL)
1555 
1556 /*
1557  * Gather current filesystem properties on FreeBSD, OpenBSD and Mac OS X.
1558  */
1559 static int
1560 setup_current_filesystem(struct archive_read_disk *a)
1561 {
1562 	struct tree *t = a->tree;
1563 	struct statfs sfs;
1564 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1565 /* TODO: configure should set GETVFSBYNAME_ARG_TYPE to make
1566  * this accurate; some platforms have both and we need the one that's
1567  * used by getvfsbyname()
1568  *
1569  * Then the following would become:
1570  *  #if defined(GETVFSBYNAME_ARG_TYPE)
1571  *   GETVFSBYNAME_ARG_TYPE vfc;
1572  *  #endif
1573  */
1574 #  if defined(HAVE_STRUCT_XVFSCONF)
1575 	struct xvfsconf vfc;
1576 #  else
1577 	struct vfsconf vfc;
1578 #  endif
1579 #endif
1580 	int r, xr = 0;
1581 #if !defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1582 	long nm;
1583 #endif
1584 
1585 	t->current_filesystem->synthetic = -1;
1586 	t->current_filesystem->remote = -1;
1587 	if (tree_current_is_symblic_link_target(t)) {
1588 #if defined(HAVE_OPENAT)
1589 		/*
1590 		 * Get file system statistics on any directory
1591 		 * where current is.
1592 		 */
1593 		int fd = openat(tree_current_dir_fd(t),
1594 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1595 		__archive_ensure_cloexec_flag(fd);
1596 		if (fd < 0) {
1597 			archive_set_error(&a->archive, errno,
1598 			    "openat failed");
1599 			return (ARCHIVE_FAILED);
1600 		}
1601 		r = fstatfs(fd, &sfs);
1602 		if (r == 0)
1603 			xr = get_xfer_size(t, fd, NULL);
1604 		close(fd);
1605 #else
1606 		if (tree_enter_working_dir(t) != 0) {
1607 			archive_set_error(&a->archive, errno, "fchdir failed");
1608 			return (ARCHIVE_FAILED);
1609 		}
1610 		r = statfs(tree_current_access_path(t), &sfs);
1611 		if (r == 0)
1612 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1613 #endif
1614 	} else {
1615 		r = fstatfs(tree_current_dir_fd(t), &sfs);
1616 		if (r == 0)
1617 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1618 	}
1619 	if (r == -1 || xr == -1) {
1620 		archive_set_error(&a->archive, errno, "statfs failed");
1621 		return (ARCHIVE_FAILED);
1622 	} else if (xr == 1) {
1623 		/* pathconf(_PC_REX_*) operations are not supported. */
1624 		set_statfs_transfer_size(t->current_filesystem, &sfs);
1625 	}
1626 	if (sfs.f_flags & MNT_LOCAL)
1627 		t->current_filesystem->remote = 0;
1628 	else
1629 		t->current_filesystem->remote = 1;
1630 
1631 #if defined(HAVE_GETVFSBYNAME) && defined(VFCF_SYNTHETIC)
1632 	r = getvfsbyname(sfs.f_fstypename, &vfc);
1633 	if (r == -1) {
1634 		archive_set_error(&a->archive, errno, "getvfsbyname failed");
1635 		return (ARCHIVE_FAILED);
1636 	}
1637 	if (vfc.vfc_flags & VFCF_SYNTHETIC)
1638 		t->current_filesystem->synthetic = 1;
1639 	else
1640 		t->current_filesystem->synthetic = 0;
1641 #endif
1642 
1643 #if defined(MNT_NOATIME)
1644 	if (sfs.f_flags & MNT_NOATIME)
1645 		t->current_filesystem->noatime = 1;
1646 	else
1647 #endif
1648 		t->current_filesystem->noatime = 0;
1649 
1650 #if defined(USE_READDIR_R)
1651 	/* Set maximum filename length. */
1652 #if defined(HAVE_STRUCT_STATFS_F_NAMEMAX)
1653 	t->current_filesystem->name_max = sfs.f_namemax;
1654 #else
1655 # if defined(_PC_NAME_MAX)
1656 	/* Mac OS X does not have f_namemax in struct statfs. */
1657 	if (tree_current_is_symblic_link_target(t)) {
1658 		if (tree_enter_working_dir(t) != 0) {
1659 			archive_set_error(&a->archive, errno, "fchdir failed");
1660 			return (ARCHIVE_FAILED);
1661 		}
1662 		nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1663 	} else
1664 		nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
1665 # else
1666 	nm = -1;
1667 # endif
1668 	if (nm == -1)
1669 		t->current_filesystem->name_max = NAME_MAX;
1670 	else
1671 		t->current_filesystem->name_max = nm;
1672 #endif
1673 	if (t->current_filesystem->name_max == 0) {
1674 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1675 		    "Cannot determine name_max");
1676 		return (ARCHIVE_FAILED);
1677 	}
1678 #endif /* USE_READDIR_R */
1679 	return (ARCHIVE_OK);
1680 }
1681 
1682 #elif (defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS)) && defined(ST_LOCAL)
1683 
1684 /*
1685  * Gather current filesystem properties on NetBSD
1686  */
1687 static int
1688 setup_current_filesystem(struct archive_read_disk *a)
1689 {
1690 	struct tree *t = a->tree;
1691 	struct statvfs svfs;
1692 	int r, xr = 0;
1693 
1694 	t->current_filesystem->synthetic = -1;
1695 	if (tree_enter_working_dir(t) != 0) {
1696 		archive_set_error(&a->archive, errno, "fchdir failed");
1697 		return (ARCHIVE_FAILED);
1698 	}
1699 	if (tree_current_is_symblic_link_target(t)) {
1700 		r = statvfs(tree_current_access_path(t), &svfs);
1701 		if (r == 0)
1702 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1703 	} else {
1704 #ifdef HAVE_FSTATVFS
1705 		r = fstatvfs(tree_current_dir_fd(t), &svfs);
1706 		if (r == 0)
1707 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1708 #else
1709 		r = statvfs(".", &svfs);
1710 		if (r == 0)
1711 			xr = get_xfer_size(t, -1, ".");
1712 #endif
1713 	}
1714 	if (r == -1 || xr == -1) {
1715 		t->current_filesystem->remote = -1;
1716 		archive_set_error(&a->archive, errno, "statvfs failed");
1717 		return (ARCHIVE_FAILED);
1718 	} else if (xr == 1) {
1719 		/* Usually come here unless NetBSD supports _PC_REC_XFER_ALIGN
1720 		 * for pathconf() function. */
1721 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1722 	}
1723 	if (svfs.f_flag & ST_LOCAL)
1724 		t->current_filesystem->remote = 0;
1725 	else
1726 		t->current_filesystem->remote = 1;
1727 
1728 #if defined(ST_NOATIME)
1729 	if (svfs.f_flag & ST_NOATIME)
1730 		t->current_filesystem->noatime = 1;
1731 	else
1732 #endif
1733 		t->current_filesystem->noatime = 0;
1734 
1735 	/* Set maximum filename length. */
1736 	t->current_filesystem->name_max = svfs.f_namemax;
1737 	return (ARCHIVE_OK);
1738 }
1739 
1740 #elif defined(HAVE_SYS_STATFS_H) && defined(HAVE_LINUX_MAGIC_H) &&\
1741 	defined(HAVE_STATFS) && defined(HAVE_FSTATFS)
1742 /*
1743  * Note: statfs is deprecated since LSB 3.2
1744  */
1745 
1746 #ifndef CIFS_SUPER_MAGIC
1747 #define CIFS_SUPER_MAGIC 0xFF534D42
1748 #endif
1749 #ifndef DEVFS_SUPER_MAGIC
1750 #define DEVFS_SUPER_MAGIC 0x1373
1751 #endif
1752 
1753 /*
1754  * Gather current filesystem properties on Linux
1755  */
1756 static int
1757 setup_current_filesystem(struct archive_read_disk *a)
1758 {
1759 	struct tree *t = a->tree;
1760 	struct statfs sfs;
1761 #if defined(HAVE_STATVFS)
1762 	struct statvfs svfs;
1763 #endif
1764 	int r, vr = 0, xr = 0;
1765 
1766 	if (tree_current_is_symblic_link_target(t)) {
1767 #if defined(HAVE_OPENAT)
1768 		/*
1769 		 * Get file system statistics on any directory
1770 		 * where current is.
1771 		 */
1772 		int fd = openat(tree_current_dir_fd(t),
1773 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1774 		__archive_ensure_cloexec_flag(fd);
1775 		if (fd < 0) {
1776 			archive_set_error(&a->archive, errno,
1777 			    "openat failed");
1778 			return (ARCHIVE_FAILED);
1779 		}
1780 #if defined(HAVE_FSTATVFS)
1781 		vr = fstatvfs(fd, &svfs);/* for f_flag, mount flags */
1782 #endif
1783 		r = fstatfs(fd, &sfs);
1784 		if (r == 0)
1785 			xr = get_xfer_size(t, fd, NULL);
1786 		close(fd);
1787 #else
1788 		if (tree_enter_working_dir(t) != 0) {
1789 			archive_set_error(&a->archive, errno, "fchdir failed");
1790 			return (ARCHIVE_FAILED);
1791 		}
1792 #if defined(HAVE_STATVFS)
1793 		vr = statvfs(tree_current_access_path(t), &svfs);
1794 #endif
1795 		r = statfs(tree_current_access_path(t), &sfs);
1796 		if (r == 0)
1797 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1798 #endif
1799 	} else {
1800 #ifdef HAVE_FSTATFS
1801 #if defined(HAVE_FSTATVFS)
1802 		vr = fstatvfs(tree_current_dir_fd(t), &svfs);
1803 #endif
1804 		r = fstatfs(tree_current_dir_fd(t), &sfs);
1805 		if (r == 0)
1806 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1807 #else
1808 		if (tree_enter_working_dir(t) != 0) {
1809 			archive_set_error(&a->archive, errno, "fchdir failed");
1810 			return (ARCHIVE_FAILED);
1811 		}
1812 #if defined(HAVE_STATVFS)
1813 		vr = statvfs(".", &svfs);
1814 #endif
1815 		r = statfs(".", &sfs);
1816 		if (r == 0)
1817 			xr = get_xfer_size(t, -1, ".");
1818 #endif
1819 	}
1820 	if (r == -1 || xr == -1 || vr == -1) {
1821 		t->current_filesystem->synthetic = -1;
1822 		t->current_filesystem->remote = -1;
1823 		archive_set_error(&a->archive, errno, "statfs failed");
1824 		return (ARCHIVE_FAILED);
1825 	} else if (xr == 1) {
1826 		/* pathconf(_PC_REX_*) operations are not supported. */
1827 #if defined(HAVE_STATVFS)
1828 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1829 #else
1830 		set_statfs_transfer_size(t->current_filesystem, &sfs);
1831 #endif
1832 	}
1833 	switch (sfs.f_type) {
1834 	case AFS_SUPER_MAGIC:
1835 	case CIFS_SUPER_MAGIC:
1836 	case CODA_SUPER_MAGIC:
1837 	case NCP_SUPER_MAGIC:/* NetWare */
1838 	case NFS_SUPER_MAGIC:
1839 	case SMB_SUPER_MAGIC:
1840 		t->current_filesystem->remote = 1;
1841 		t->current_filesystem->synthetic = 0;
1842 		break;
1843 	case DEVFS_SUPER_MAGIC:
1844 	case PROC_SUPER_MAGIC:
1845 	case USBDEVICE_SUPER_MAGIC:
1846 		t->current_filesystem->remote = 0;
1847 		t->current_filesystem->synthetic = 1;
1848 		break;
1849 	default:
1850 		t->current_filesystem->remote = 0;
1851 		t->current_filesystem->synthetic = 0;
1852 		break;
1853 	}
1854 
1855 #if defined(ST_NOATIME)
1856 #if defined(HAVE_STATVFS)
1857 	if (svfs.f_flag & ST_NOATIME)
1858 #else
1859 	if (sfs.f_flags & ST_NOATIME)
1860 #endif
1861 		t->current_filesystem->noatime = 1;
1862 	else
1863 #endif
1864 		t->current_filesystem->noatime = 0;
1865 
1866 #if defined(USE_READDIR_R)
1867 	/* Set maximum filename length. */
1868 #if defined(HAVE_STATVFS)
1869 	t->current_filesystem->name_max = svfs.f_namemax;
1870 #else
1871 	t->current_filesystem->name_max = sfs.f_namelen;
1872 #endif
1873 	if (t->current_filesystem->name_max == 0) {
1874 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1875 		    "Cannot determine name_max");
1876 		return (ARCHIVE_FAILED);
1877 	}
1878 #endif
1879 	return (ARCHIVE_OK);
1880 }
1881 
1882 #elif defined(HAVE_SYS_STATVFS_H) &&\
1883 	(defined(HAVE_STATVFS) || defined(HAVE_FSTATVFS))
1884 
1885 /*
1886  * Gather current filesystem properties on other posix platform.
1887  */
1888 static int
1889 setup_current_filesystem(struct archive_read_disk *a)
1890 {
1891 	struct tree *t = a->tree;
1892 	struct statvfs svfs;
1893 	int r, xr = 0;
1894 
1895 	t->current_filesystem->synthetic = -1;/* Not supported */
1896 	t->current_filesystem->remote = -1;/* Not supported */
1897 	if (tree_current_is_symblic_link_target(t)) {
1898 #if defined(HAVE_OPENAT)
1899 		/*
1900 		 * Get file system statistics on any directory
1901 		 * where current is.
1902 		 */
1903 		int fd = openat(tree_current_dir_fd(t),
1904 		    tree_current_access_path(t), O_RDONLY | O_CLOEXEC);
1905 		__archive_ensure_cloexec_flag(fd);
1906 		if (fd < 0) {
1907 			archive_set_error(&a->archive, errno,
1908 			    "openat failed");
1909 			return (ARCHIVE_FAILED);
1910 		}
1911 		r = fstatvfs(fd, &svfs);
1912 		if (r == 0)
1913 			xr = get_xfer_size(t, fd, NULL);
1914 		close(fd);
1915 #else
1916 		if (tree_enter_working_dir(t) != 0) {
1917 			archive_set_error(&a->archive, errno, "fchdir failed");
1918 			return (ARCHIVE_FAILED);
1919 		}
1920 		r = statvfs(tree_current_access_path(t), &svfs);
1921 		if (r == 0)
1922 			xr = get_xfer_size(t, -1, tree_current_access_path(t));
1923 #endif
1924 	} else {
1925 #ifdef HAVE_FSTATVFS
1926 		r = fstatvfs(tree_current_dir_fd(t), &svfs);
1927 		if (r == 0)
1928 			xr = get_xfer_size(t, tree_current_dir_fd(t), NULL);
1929 #else
1930 		if (tree_enter_working_dir(t) != 0) {
1931 			archive_set_error(&a->archive, errno, "fchdir failed");
1932 			return (ARCHIVE_FAILED);
1933 		}
1934 		r = statvfs(".", &svfs);
1935 		if (r == 0)
1936 			xr = get_xfer_size(t, -1, ".");
1937 #endif
1938 	}
1939 	if (r == -1 || xr == -1) {
1940 		t->current_filesystem->synthetic = -1;
1941 		t->current_filesystem->remote = -1;
1942 		archive_set_error(&a->archive, errno, "statvfs failed");
1943 		return (ARCHIVE_FAILED);
1944 	} else if (xr == 1) {
1945 		/* pathconf(_PC_REX_*) operations are not supported. */
1946 		set_statvfs_transfer_size(t->current_filesystem, &svfs);
1947 	}
1948 
1949 #if defined(ST_NOATIME)
1950 	if (svfs.f_flag & ST_NOATIME)
1951 		t->current_filesystem->noatime = 1;
1952 	else
1953 #endif
1954 		t->current_filesystem->noatime = 0;
1955 
1956 #if defined(USE_READDIR_R)
1957 	/* Set maximum filename length. */
1958 	t->current_filesystem->name_max = svfs.f_namemax;
1959 	if (t->current_filesystem->name_max == 0) {
1960 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
1961 		    "Cannot determine name_max");
1962 		return (ARCHIVE_FAILED);
1963 	}
1964 #endif
1965 	return (ARCHIVE_OK);
1966 }
1967 
1968 #else
1969 
1970 /*
1971  * Generic: Gather current filesystem properties.
1972  * TODO: Is this generic function really needed?
1973  */
1974 static int
1975 setup_current_filesystem(struct archive_read_disk *a)
1976 {
1977 	struct tree *t = a->tree;
1978 #if defined(_PC_NAME_MAX) && defined(USE_READDIR_R)
1979 	long nm;
1980 #endif
1981 	t->current_filesystem->synthetic = -1;/* Not supported */
1982 	t->current_filesystem->remote = -1;/* Not supported */
1983 	t->current_filesystem->noatime = 0;
1984 	(void)get_xfer_size(t, -1, ".");/* Dummy call to avoid build error. */
1985 	t->current_filesystem->xfer_align = -1;/* Unknown */
1986 	t->current_filesystem->max_xfer_size = -1;
1987 	t->current_filesystem->min_xfer_size = -1;
1988 	t->current_filesystem->incr_xfer_size = -1;
1989 
1990 #if defined(USE_READDIR_R)
1991 	/* Set maximum filename length. */
1992 #  if defined(_PC_NAME_MAX)
1993 	if (tree_current_is_symblic_link_target(t)) {
1994 		if (tree_enter_working_dir(t) != 0) {
1995 			archive_set_error(&a->archive, errno, "fchdir failed");
1996 			return (ARCHIVE_FAILED);
1997 		}
1998 		nm = pathconf(tree_current_access_path(t), _PC_NAME_MAX);
1999 	} else
2000 		nm = fpathconf(tree_current_dir_fd(t), _PC_NAME_MAX);
2001 	if (nm == -1)
2002 #  endif /* _PC_NAME_MAX */
2003 		/*
2004 		 * Some systems (HP-UX or others?) incorrectly defined
2005 		 * NAME_MAX macro to be a smaller value.
2006 		 */
2007 #  if defined(NAME_MAX) && NAME_MAX >= 255
2008 		t->current_filesystem->name_max = NAME_MAX;
2009 #  else
2010 		/* No way to get a trusted value of maximum filename
2011 		 * length. */
2012 		t->current_filesystem->name_max = PATH_MAX;
2013 #  endif /* NAME_MAX */
2014 #  if defined(_PC_NAME_MAX)
2015 	else
2016 		t->current_filesystem->name_max = nm;
2017 #  endif /* _PC_NAME_MAX */
2018 	if (t->current_filesystem->name_max == 0) {
2019 		archive_set_error(&a->archive, ARCHIVE_ERRNO_MISC,
2020 		    "Cannot determine name_max");
2021 		return (ARCHIVE_FAILED);
2022 	}
2023 #endif /* USE_READDIR_R */
2024 	return (ARCHIVE_OK);
2025 }
2026 
2027 #endif
2028 
2029 static int
2030 close_and_restore_time(int fd, struct tree *t, struct restore_time *rt)
2031 {
2032 #ifndef HAVE_UTIMES
2033 	(void)t; /* UNUSED */
2034 	(void)rt; /* UNUSED */
2035 	return (close(fd));
2036 #else
2037 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
2038 	struct timespec timespecs[2];
2039 #endif
2040 	struct timeval times[2];
2041 
2042 	if ((t->flags & needsRestoreTimes) == 0 || rt->noatime) {
2043 		if (fd >= 0)
2044 			return (close(fd));
2045 		else
2046 			return (0);
2047 	}
2048 
2049 #if defined(HAVE_FUTIMENS) && !defined(__CYGWIN__)
2050 	timespecs[1].tv_sec = rt->mtime;
2051 	timespecs[1].tv_nsec = rt->mtime_nsec;
2052 
2053 	timespecs[0].tv_sec = rt->atime;
2054 	timespecs[0].tv_nsec = rt->atime_nsec;
2055 	/* futimens() is defined in POSIX.1-2008. */
2056 	if (futimens(fd, timespecs) == 0)
2057 		return (close(fd));
2058 #endif
2059 
2060 	times[1].tv_sec = rt->mtime;
2061 	times[1].tv_usec = rt->mtime_nsec / 1000;
2062 
2063 	times[0].tv_sec = rt->atime;
2064 	times[0].tv_usec = rt->atime_nsec / 1000;
2065 
2066 #if !defined(HAVE_FUTIMENS) && defined(HAVE_FUTIMES) && !defined(__CYGWIN__)
2067 	if (futimes(fd, times) == 0)
2068 		return (close(fd));
2069 #endif
2070 	close(fd);
2071 #if defined(HAVE_FUTIMESAT)
2072 	if (futimesat(tree_current_dir_fd(t), rt->name, times) == 0)
2073 		return (0);
2074 #endif
2075 #ifdef HAVE_LUTIMES
2076 	if (lutimes(rt->name, times) != 0)
2077 #else
2078 	if (AE_IFLNK != rt->filetype && utimes(rt->name, times) != 0)
2079 #endif
2080 		return (-1);
2081 #endif
2082 	return (0);
2083 }
2084 
2085 static int
2086 open_on_current_dir(struct tree *t, const char *path, int flags)
2087 {
2088 #ifdef HAVE_OPENAT
2089 	return (openat(tree_current_dir_fd(t), path, flags));
2090 #else
2091 	if (tree_enter_working_dir(t) != 0)
2092 		return (-1);
2093 	return (open(path, flags));
2094 #endif
2095 }
2096 
2097 static int
2098 tree_dup(int fd)
2099 {
2100 	int new_fd;
2101 #ifdef F_DUPFD_CLOEXEC
2102 	static volatile int can_dupfd_cloexec = 1;
2103 
2104 	if (can_dupfd_cloexec) {
2105 		new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 0);
2106 		if (new_fd != -1)
2107 			return (new_fd);
2108 		/* Linux 2.6.18 - 2.6.23 declare F_DUPFD_CLOEXEC,
2109 		 * but it cannot be used. So we have to try dup(). */
2110 		/* We won't try F_DUPFD_CLOEXEC. */
2111 		can_dupfd_cloexec = 0;
2112 	}
2113 #endif /* F_DUPFD_CLOEXEC */
2114 	new_fd = dup(fd);
2115 	__archive_ensure_cloexec_flag(new_fd);
2116 	return (new_fd);
2117 }
2118 
2119 /*
2120  * Add a directory path to the current stack.
2121  */
2122 static void
2123 tree_push(struct tree *t, const char *path, int filesystem_id,
2124     int64_t dev, int64_t ino, struct restore_time *rt)
2125 {
2126 	struct tree_entry *te;
2127 
2128 	te = calloc(1, sizeof(*te));
2129 	if (te == NULL)
2130 		__archive_errx(1, "Out of memory");
2131 	te->next = t->stack;
2132 	te->parent = t->current;
2133 	if (te->parent)
2134 		te->depth = te->parent->depth + 1;
2135 	t->stack = te;
2136 	archive_string_init(&te->name);
2137 	te->symlink_parent_fd = -1;
2138 	archive_strcpy(&te->name, path);
2139 	te->flags = needsDescent | needsOpen | needsAscent;
2140 	te->filesystem_id = filesystem_id;
2141 	te->dev = dev;
2142 	te->ino = ino;
2143 	te->dirname_length = t->dirname_length;
2144 	te->restore_time.name = te->name.s;
2145 	if (rt != NULL) {
2146 		te->restore_time.mtime = rt->mtime;
2147 		te->restore_time.mtime_nsec = rt->mtime_nsec;
2148 		te->restore_time.atime = rt->atime;
2149 		te->restore_time.atime_nsec = rt->atime_nsec;
2150 		te->restore_time.filetype = rt->filetype;
2151 		te->restore_time.noatime = rt->noatime;
2152 	}
2153 }
2154 
2155 /*
2156  * Append a name to the current dir path.
2157  */
2158 static void
2159 tree_append(struct tree *t, const char *name, size_t name_length)
2160 {
2161 	size_t size_needed;
2162 
2163 	t->path.s[t->dirname_length] = '\0';
2164 	t->path.length = t->dirname_length;
2165 	/* Strip trailing '/' from name, unless entire name is "/". */
2166 	while (name_length > 1 && name[name_length - 1] == '/')
2167 		name_length--;
2168 
2169 	/* Resize pathname buffer as needed. */
2170 	size_needed = name_length + t->dirname_length + 2;
2171 	archive_string_ensure(&t->path, size_needed);
2172 	/* Add a separating '/' if it's needed. */
2173 	if (t->dirname_length > 0 && t->path.s[archive_strlen(&t->path)-1] != '/')
2174 		archive_strappend_char(&t->path, '/');
2175 	t->basename = t->path.s + archive_strlen(&t->path);
2176 	archive_strncat(&t->path, name, name_length);
2177 	t->restore_time.name = t->basename;
2178 }
2179 
2180 /*
2181  * Open a directory tree for traversal.
2182  */
2183 static struct tree *
2184 tree_open(const char *path, int symlink_mode, int restore_time)
2185 {
2186 	struct tree *t;
2187 
2188 	if ((t = calloc(1, sizeof(*t))) == NULL)
2189 		return (NULL);
2190 	archive_string_init(&t->path);
2191 	archive_string_ensure(&t->path, 31);
2192 	t->initial_symlink_mode = symlink_mode;
2193 	return (tree_reopen(t, path, restore_time));
2194 }
2195 
2196 static struct tree *
2197 tree_reopen(struct tree *t, const char *path, int restore_time)
2198 {
2199 #if defined(O_PATH)
2200 	/* Linux */
2201 	const int o_flag = O_PATH;
2202 #elif defined(O_SEARCH)
2203 	/* SunOS */
2204 	const int o_flag = O_SEARCH;
2205 #elif defined(__FreeBSD__) && defined(O_EXEC)
2206 	/* FreeBSD */
2207 	const int o_flag = O_EXEC;
2208 #endif
2209 
2210 	t->flags = (restore_time != 0)?needsRestoreTimes:0;
2211 	t->flags |= onInitialDir;
2212 	t->visit_type = 0;
2213 	t->tree_errno = 0;
2214 	t->dirname_length = 0;
2215 	t->depth = 0;
2216 	t->descend = 0;
2217 	t->current = NULL;
2218 	t->d = INVALID_DIR_HANDLE;
2219 	t->symlink_mode = t->initial_symlink_mode;
2220 	archive_string_empty(&t->path);
2221 	t->entry_fd = -1;
2222 	t->entry_eof = 0;
2223 	t->entry_remaining_bytes = 0;
2224 	t->initial_filesystem_id = -1;
2225 
2226 	/* First item is set up a lot like a symlink traversal. */
2227 	tree_push(t, path, 0, 0, 0, NULL);
2228 	t->stack->flags = needsFirstVisit;
2229 	t->maxOpenCount = t->openCount = 1;
2230 	t->initial_dir_fd = open(".", O_RDONLY | O_CLOEXEC);
2231 #if defined(O_PATH) || defined(O_SEARCH) || \
2232  (defined(__FreeBSD__) && defined(O_EXEC))
2233 	/*
2234 	 * Most likely reason to fail opening "." is that it's not readable,
2235 	 * so try again for execute. The consequences of not opening this are
2236 	 * unhelpful and unnecessary errors later.
2237 	 */
2238 	if (t->initial_dir_fd < 0)
2239 		t->initial_dir_fd = open(".", o_flag | O_CLOEXEC);
2240 #endif
2241 	__archive_ensure_cloexec_flag(t->initial_dir_fd);
2242 	t->working_dir_fd = tree_dup(t->initial_dir_fd);
2243 	return (t);
2244 }
2245 
2246 static int
2247 tree_descent(struct tree *t)
2248 {
2249 	int flag, new_fd, r = 0;
2250 
2251 	t->dirname_length = archive_strlen(&t->path);
2252 	flag = O_RDONLY | O_CLOEXEC;
2253 #if defined(O_DIRECTORY)
2254 	flag |= O_DIRECTORY;
2255 #endif
2256 	new_fd = open_on_current_dir(t, t->stack->name.s, flag);
2257 	__archive_ensure_cloexec_flag(new_fd);
2258 	if (new_fd < 0) {
2259 		t->tree_errno = errno;
2260 		r = TREE_ERROR_DIR;
2261 	} else {
2262 		t->depth++;
2263 		/* If it is a link, set up fd for the ascent. */
2264 		if (t->stack->flags & isDirLink) {
2265 			t->stack->symlink_parent_fd = t->working_dir_fd;
2266 			t->openCount++;
2267 			if (t->openCount > t->maxOpenCount)
2268 				t->maxOpenCount = t->openCount;
2269 		} else
2270 			close(t->working_dir_fd);
2271 		/* Renew the current working directory. */
2272 		t->working_dir_fd = new_fd;
2273 		t->flags &= ~onWorkingDir;
2274 	}
2275 	return (r);
2276 }
2277 
2278 /*
2279  * We've finished a directory; ascend back to the parent.
2280  */
2281 static int
2282 tree_ascend(struct tree *t)
2283 {
2284 	struct tree_entry *te;
2285 	int new_fd, r = 0, prev_dir_fd;
2286 
2287 	te = t->stack;
2288 	prev_dir_fd = t->working_dir_fd;
2289 	if (te->flags & isDirLink)
2290 		new_fd = te->symlink_parent_fd;
2291 	else {
2292 		new_fd = open_on_current_dir(t, "..", O_RDONLY | O_CLOEXEC);
2293 		__archive_ensure_cloexec_flag(new_fd);
2294 	}
2295 	if (new_fd < 0) {
2296 		t->tree_errno = errno;
2297 		r = TREE_ERROR_FATAL;
2298 	} else {
2299 		/* Renew the current working directory. */
2300 		t->working_dir_fd = new_fd;
2301 		t->flags &= ~onWorkingDir;
2302 		/* Current directory has been changed, we should
2303 		 * close an fd of previous working directory. */
2304 		close_and_restore_time(prev_dir_fd, t, &te->restore_time);
2305 		if (te->flags & isDirLink) {
2306 			t->openCount--;
2307 			te->symlink_parent_fd = -1;
2308 		}
2309 		t->depth--;
2310 	}
2311 	return (r);
2312 }
2313 
2314 /*
2315  * Return to the initial directory where tree_open() was performed.
2316  */
2317 static int
2318 tree_enter_initial_dir(struct tree *t)
2319 {
2320 	int r = 0;
2321 
2322 	if ((t->flags & onInitialDir) == 0) {
2323 		r = fchdir(t->initial_dir_fd);
2324 		if (r == 0) {
2325 			t->flags &= ~onWorkingDir;
2326 			t->flags |= onInitialDir;
2327 		}
2328 	}
2329 	return (r);
2330 }
2331 
2332 /*
2333  * Restore working directory of directory traversals.
2334  */
2335 static int
2336 tree_enter_working_dir(struct tree *t)
2337 {
2338 	int r = 0;
2339 
2340 	/*
2341 	 * Change the current directory if really needed.
2342 	 * Sometimes this is unneeded when we did not do
2343 	 * descent.
2344 	 */
2345 	if (t->depth > 0 && (t->flags & onWorkingDir) == 0) {
2346 		r = fchdir(t->working_dir_fd);
2347 		if (r == 0) {
2348 			t->flags &= ~onInitialDir;
2349 			t->flags |= onWorkingDir;
2350 		}
2351 	}
2352 	return (r);
2353 }
2354 
2355 static int
2356 tree_current_dir_fd(struct tree *t)
2357 {
2358 	return (t->working_dir_fd);
2359 }
2360 
2361 /*
2362  * Pop the working stack.
2363  */
2364 static void
2365 tree_pop(struct tree *t)
2366 {
2367 	struct tree_entry *te;
2368 
2369 	t->path.s[t->dirname_length] = '\0';
2370 	t->path.length = t->dirname_length;
2371 	if (t->stack == t->current && t->current != NULL)
2372 		t->current = t->current->parent;
2373 	te = t->stack;
2374 	t->stack = te->next;
2375 	t->dirname_length = te->dirname_length;
2376 	t->basename = t->path.s + t->dirname_length;
2377 	while (t->basename[0] == '/')
2378 		t->basename++;
2379 	archive_string_free(&te->name);
2380 	free(te);
2381 }
2382 
2383 /*
2384  * Get the next item in the tree traversal.
2385  */
2386 static int
2387 tree_next(struct tree *t)
2388 {
2389 	int r;
2390 
2391 	while (t->stack != NULL) {
2392 		/* If there's an open dir, get the next entry from there. */
2393 		if (t->d != INVALID_DIR_HANDLE) {
2394 			r = tree_dir_next_posix(t);
2395 			if (r == 0)
2396 				continue;
2397 			return (r);
2398 		}
2399 
2400 		if (t->stack->flags & needsFirstVisit) {
2401 			/* Top stack item needs a regular visit. */
2402 			t->current = t->stack;
2403 			tree_append(t, t->stack->name.s,
2404 			    archive_strlen(&(t->stack->name)));
2405 			/* t->dirname_length = t->path_length; */
2406 			/* tree_pop(t); */
2407 			t->stack->flags &= ~needsFirstVisit;
2408 			return (t->visit_type = TREE_REGULAR);
2409 		} else if (t->stack->flags & needsDescent) {
2410 			/* Top stack item is dir to descend into. */
2411 			t->current = t->stack;
2412 			tree_append(t, t->stack->name.s,
2413 			    archive_strlen(&(t->stack->name)));
2414 			t->stack->flags &= ~needsDescent;
2415 			r = tree_descent(t);
2416 			if (r != 0) {
2417 				tree_pop(t);
2418 				t->visit_type = r;
2419 			} else
2420 				t->visit_type = TREE_POSTDESCENT;
2421 			return (t->visit_type);
2422 		} else if (t->stack->flags & needsOpen) {
2423 			t->stack->flags &= ~needsOpen;
2424 			r = tree_dir_next_posix(t);
2425 			if (r == 0)
2426 				continue;
2427 			return (r);
2428 		} else if (t->stack->flags & needsAscent) {
2429 		        /* Top stack item is dir and we're done with it. */
2430 			r = tree_ascend(t);
2431 			tree_pop(t);
2432 			t->visit_type = r != 0 ? r : TREE_POSTASCENT;
2433 			return (t->visit_type);
2434 		} else {
2435 			/* Top item on stack is dead. */
2436 			tree_pop(t);
2437 			t->flags &= ~hasLstat;
2438 			t->flags &= ~hasStat;
2439 		}
2440 	}
2441 	return (t->visit_type = 0);
2442 }
2443 
2444 static int
2445 tree_dir_next_posix(struct tree *t)
2446 {
2447 	int r;
2448 	const char *name;
2449 	size_t namelen;
2450 
2451 	if (t->d == NULL) {
2452 #if defined(USE_READDIR_R)
2453 		size_t dirent_size;
2454 #endif
2455 
2456 #if defined(HAVE_FDOPENDIR)
2457 		t->d = fdopendir(tree_dup(t->working_dir_fd));
2458 #else /* HAVE_FDOPENDIR */
2459 		if (tree_enter_working_dir(t) == 0) {
2460 			t->d = opendir(".");
2461 #ifdef HAVE_DIRFD
2462 			__archive_ensure_cloexec_flag(dirfd(t->d));
2463 #endif
2464 		}
2465 #endif /* HAVE_FDOPENDIR */
2466 		if (t->d == NULL) {
2467 			r = tree_ascend(t); /* Undo "chdir" */
2468 			tree_pop(t);
2469 			t->tree_errno = errno;
2470 			t->visit_type = r != 0 ? r : TREE_ERROR_DIR;
2471 			return (t->visit_type);
2472 		}
2473 #if defined(USE_READDIR_R)
2474 		dirent_size = offsetof(struct dirent, d_name) +
2475 		  t->filesystem_table[t->current->filesystem_id].name_max + 1;
2476 		if (t->dirent == NULL || t->dirent_allocated < dirent_size) {
2477 			free(t->dirent);
2478 			t->dirent = malloc(dirent_size);
2479 			if (t->dirent == NULL) {
2480 				closedir(t->d);
2481 				t->d = INVALID_DIR_HANDLE;
2482 				(void)tree_ascend(t);
2483 				tree_pop(t);
2484 				t->tree_errno = ENOMEM;
2485 				t->visit_type = TREE_ERROR_DIR;
2486 				return (t->visit_type);
2487 			}
2488 			t->dirent_allocated = dirent_size;
2489 		}
2490 #endif /* USE_READDIR_R */
2491 	}
2492 	for (;;) {
2493 		errno = 0;
2494 #if defined(USE_READDIR_R)
2495 		r = readdir_r(t->d, t->dirent, &t->de);
2496 #ifdef _AIX
2497 		/* Note: According to the man page, return value 9 indicates
2498 		 * that the readdir_r was not successful and the error code
2499 		 * is set to the global errno variable. And then if the end
2500 		 * of directory entries was reached, the return value is 9
2501 		 * and the third parameter is set to NULL and errno is
2502 		 * unchanged. */
2503 		if (r == 9)
2504 			r = errno;
2505 #endif /* _AIX */
2506 		if (r != 0 || t->de == NULL) {
2507 #else
2508 		t->de = readdir(t->d);
2509 		if (t->de == NULL) {
2510 			r = errno;
2511 #endif
2512 			closedir(t->d);
2513 			t->d = INVALID_DIR_HANDLE;
2514 			if (r != 0) {
2515 				t->tree_errno = r;
2516 				t->visit_type = TREE_ERROR_DIR;
2517 				return (t->visit_type);
2518 			} else
2519 				return (0);
2520 		}
2521 		name = t->de->d_name;
2522 		namelen = D_NAMELEN(t->de);
2523 		t->flags &= ~hasLstat;
2524 		t->flags &= ~hasStat;
2525 		if (name[0] == '.' && name[1] == '\0')
2526 			continue;
2527 		if (name[0] == '.' && name[1] == '.' && name[2] == '\0')
2528 			continue;
2529 		tree_append(t, name, namelen);
2530 		return (t->visit_type = TREE_REGULAR);
2531 	}
2532 }
2533 
2534 
2535 /*
2536  * Get the stat() data for the entry just returned from tree_next().
2537  */
2538 static const struct stat *
2539 tree_current_stat(struct tree *t)
2540 {
2541 	if (!(t->flags & hasStat)) {
2542 #ifdef HAVE_FSTATAT
2543 		if (fstatat(tree_current_dir_fd(t),
2544 		    tree_current_access_path(t), &t->st, 0) != 0)
2545 #else
2546 		if (tree_enter_working_dir(t) != 0)
2547 			return NULL;
2548 		if (la_stat(tree_current_access_path(t), &t->st) != 0)
2549 #endif
2550 			return NULL;
2551 		t->flags |= hasStat;
2552 	}
2553 	return (&t->st);
2554 }
2555 
2556 /*
2557  * Get the lstat() data for the entry just returned from tree_next().
2558  */
2559 static const struct stat *
2560 tree_current_lstat(struct tree *t)
2561 {
2562 	if (!(t->flags & hasLstat)) {
2563 #ifdef HAVE_FSTATAT
2564 		if (fstatat(tree_current_dir_fd(t),
2565 		    tree_current_access_path(t), &t->lst,
2566 		    AT_SYMLINK_NOFOLLOW) != 0)
2567 #else
2568 		if (tree_enter_working_dir(t) != 0)
2569 			return NULL;
2570 #ifdef HAVE_LSTAT
2571 		if (lstat(tree_current_access_path(t), &t->lst) != 0)
2572 #else
2573 		if (la_stat(tree_current_access_path(t), &t->lst) != 0)
2574 #endif
2575 #endif
2576 			return NULL;
2577 		t->flags |= hasLstat;
2578 	}
2579 	return (&t->lst);
2580 }
2581 
2582 /*
2583  * Test whether current entry is a dir or link to a dir.
2584  */
2585 static int
2586 tree_current_is_dir(struct tree *t)
2587 {
2588 	const struct stat *st;
2589 	/*
2590 	 * If we already have lstat() info, then try some
2591 	 * cheap tests to determine if this is a dir.
2592 	 */
2593 	if (t->flags & hasLstat) {
2594 		/* If lstat() says it's a dir, it must be a dir. */
2595 		st = tree_current_lstat(t);
2596 		if (st == NULL)
2597 			return 0;
2598 		if (S_ISDIR(st->st_mode))
2599 			return 1;
2600 		/* Not a dir; might be a link to a dir. */
2601 		/* If it's not a link, then it's not a link to a dir. */
2602 		if (!S_ISLNK(st->st_mode))
2603 			return 0;
2604 		/*
2605 		 * It's a link, but we don't know what it's a link to,
2606 		 * so we'll have to use stat().
2607 		 */
2608 	}
2609 
2610 	st = tree_current_stat(t);
2611 	/* If we can't stat it, it's not a dir. */
2612 	if (st == NULL)
2613 		return 0;
2614 	/* Use the definitive test.  Hopefully this is cached. */
2615 	return (S_ISDIR(st->st_mode));
2616 }
2617 
2618 /*
2619  * Test whether current entry is a physical directory.  Usually, we
2620  * already have at least one of stat() or lstat() in memory, so we
2621  * use tricks to try to avoid an extra trip to the disk.
2622  */
2623 static int
2624 tree_current_is_physical_dir(struct tree *t)
2625 {
2626 	const struct stat *st;
2627 
2628 	/*
2629 	 * If stat() says it isn't a dir, then it's not a dir.
2630 	 * If stat() data is cached, this check is free, so do it first.
2631 	 */
2632 	if (t->flags & hasStat) {
2633 		st = tree_current_stat(t);
2634 		if (st == NULL)
2635 			return (0);
2636 		if (!S_ISDIR(st->st_mode))
2637 			return (0);
2638 	}
2639 
2640 	/*
2641 	 * Either stat() said it was a dir (in which case, we have
2642 	 * to determine whether it's really a link to a dir) or
2643 	 * stat() info wasn't available.  So we use lstat(), which
2644 	 * hopefully is already cached.
2645 	 */
2646 
2647 	st = tree_current_lstat(t);
2648 	/* If we can't stat it, it's not a dir. */
2649 	if (st == NULL)
2650 		return 0;
2651 	/* Use the definitive test.  Hopefully this is cached. */
2652 	return (S_ISDIR(st->st_mode));
2653 }
2654 
2655 /*
2656  * Test whether the same file has been in the tree as its parent.
2657  */
2658 static int
2659 tree_target_is_same_as_parent(struct tree *t, const struct stat *st)
2660 {
2661 	struct tree_entry *te;
2662 
2663 	for (te = t->current->parent; te != NULL; te = te->parent) {
2664 		if (te->dev == (int64_t)st->st_dev &&
2665 		    te->ino == (int64_t)st->st_ino)
2666 			return (1);
2667 	}
2668 	return (0);
2669 }
2670 
2671 /*
2672  * Test whether the current file is symbolic link target and
2673  * on the other filesystem.
2674  */
2675 static int
2676 tree_current_is_symblic_link_target(struct tree *t)
2677 {
2678 	static const struct stat *lst, *st;
2679 
2680 	lst = tree_current_lstat(t);
2681 	st = tree_current_stat(t);
2682 	return (st != NULL && lst != NULL &&
2683 	    (int64_t)st->st_dev == t->current_filesystem->dev &&
2684 	    st->st_dev != lst->st_dev);
2685 }
2686 
2687 /*
2688  * Return the access path for the entry just returned from tree_next().
2689  */
2690 static const char *
2691 tree_current_access_path(struct tree *t)
2692 {
2693 	return (t->basename);
2694 }
2695 
2696 /*
2697  * Return the full path for the entry just returned from tree_next().
2698  */
2699 static const char *
2700 tree_current_path(struct tree *t)
2701 {
2702 	return (t->path.s);
2703 }
2704 
2705 /*
2706  * Terminate the traversal.
2707  */
2708 static void
2709 tree_close(struct tree *t)
2710 {
2711 
2712 	if (t == NULL)
2713 		return;
2714 	if (t->entry_fd >= 0) {
2715 		close_and_restore_time(t->entry_fd, t, &t->restore_time);
2716 		t->entry_fd = -1;
2717 	}
2718 	/* Close the handle of readdir(). */
2719 	if (t->d != INVALID_DIR_HANDLE) {
2720 		closedir(t->d);
2721 		t->d = INVALID_DIR_HANDLE;
2722 	}
2723 	/* Release anything remaining in the stack. */
2724 	while (t->stack != NULL) {
2725 		if (t->stack->flags & isDirLink)
2726 			close(t->stack->symlink_parent_fd);
2727 		tree_pop(t);
2728 	}
2729 	if (t->working_dir_fd >= 0) {
2730 		close(t->working_dir_fd);
2731 		t->working_dir_fd = -1;
2732 	}
2733 	if (t->initial_dir_fd >= 0) {
2734 		close(t->initial_dir_fd);
2735 		t->initial_dir_fd = -1;
2736 	}
2737 }
2738 
2739 /*
2740  * Release any resources.
2741  */
2742 static void
2743 tree_free(struct tree *t)
2744 {
2745 	int i;
2746 
2747 	if (t == NULL)
2748 		return;
2749 	archive_string_free(&t->path);
2750 #if defined(USE_READDIR_R)
2751 	free(t->dirent);
2752 #endif
2753 	free(t->sparse_list);
2754 	for (i = 0; i < t->max_filesystem_id; i++)
2755 		free(t->filesystem_table[i].allocation_ptr);
2756 	free(t->filesystem_table);
2757 	free(t);
2758 }
2759 
2760 #endif
2761